Skip to main content
Log in

Oxomollugin, an oxidized substance in mollugin, inhibited LPS-induced NF-κB activation via the suppressive effects on essential activation factors of TLR4 signaling

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Oxomollugin is a degraded product of mollugin and was found to be an active compound that inhibits LPS-induced NF-κB activation. In this study, we investigated the inhibitory activity of oxomollugin, focusing on TLR4 signaling pathway, resulting in NF-κB activation. Oxomollugin inhibited the LPS-induced association of essential factors for initial activation of TLR4 signaling, MyD88, IRAK4 and TRAF6. Furthermore, oxomollugin showed suppressive effects on LPS-induced modification of IRAK1, IRAK2 and TRAF6, LPS-induced association of TRAF6-TAK1/TAB2, and followed by IKKα/β phosphorylation, which critical in signal transduction leading to LPS-induced NF-κB activation. The consistent results suggested that oxomollugin inhibits LPS-induced NF-κB activation via the suppression against signal transduction in TLR4 signaling pathway.

The activities of oxomollugin reported in this study provides a deeper understanding on biological activity of mollugin derivatives as anti-inflammatory compounds.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Itokawa H, Qiao Y, Takeya K (1989) Anthraquinones and naphthohydroquinones from Rubia cordifolia. Phytochemistry 28:3465–3468

    Article  CAS  Google Scholar 

  2. Itokawa H, Mihara K, Takeya K (1983) Studies on a novel anthraquinone and its glycosides isolated from Rubia cordifolia and R. akane. Chem Pharm Bull 31:2353–2358

    Article  CAS  Google Scholar 

  3. Kawasaki Y, Goda Y, Yoshihira K (1992) The mutagenic constituents of Rubia tinctorum. Chem Pharm Bull 40:1504–1509

    Article  CAS  Google Scholar 

  4. Wen M, Chen Q, Chen W, Yang J, Zhou X, Zhang C, Wu A, Lai J, Chen J, Mei Q, Yang S, Lan C, Wu J, Huang F, Wang L (2022) A comprehensive review of Rubia cordifolia L.: Traditional uses, phytochemistry, pharmacological activities, and clinical applications. Front Pharmacol. https://doi.org/10.3389/fphar.2022.965390

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang P, Wang J, El-Demerdash FM, Wei J (2023) Coagulant compounds in Rubia cordifolia L. Journal of Future Foods 3:220–224

    Article  Google Scholar 

  6. Dosseh C, Tessier AM, Delaveau P (1981) Rubia cordifolia roots. II: new quinones. Planta Med 43:141–147

    Article  CAS  PubMed  Google Scholar 

  7. Wang SX, Hua HM, Wu LJ, Li X, Zhu TR (1992) Studies on anthraquinones from the roots of Rubia cordifolia L. Acta Pharm Sin 27:743–747

    CAS  Google Scholar 

  8. Lee JE, Hitotsuyanagi Y, Kim IH, Hasuda T, Takeya K (2008) A novel bicyclic hexapeptide, RA-XVIII, from Rubia cordifolia: structure, semisynthesis, and cytotoxicity. Bioorg Med Chem Lett 18:808–811

    Article  CAS  PubMed  Google Scholar 

  9. Hitotsuyanagi Y, Hasuda T, Aihara T, Ishikawa H, Yamaguchi K, Itokawa H, Takeya K (2004) Synthesis of [Gly-1]RA-VII, [Gly-2]RA-VII, and [Gly-4]RA-VII. glycine-containing analogues of RA-VII, an antitumor bicyclic hexapeptide from Rubia plants. J Org Chem 69:1481–1486

    Article  CAS  PubMed  Google Scholar 

  10. Hitotsuyanagi Y, Hirai M, Odagiri M, Komine M, Hasuda T, Fukaya H, Takeya K (2019) RA-XXV and RA-XXVI, bicyclic hexapeptides from Rubia cordifolia L.: structure, synthesis, and conformation. Chem Asian J 14:205–215

    Article  CAS  PubMed  Google Scholar 

  11. Hitotsuyanagi Y, Odagiri M, Kato S, Kusano J, Hasuda T, Fukaya H, Takeya K (2012) Isolation, structure determination, and synthesis of allo-RA-V and neo-RAV, RA-series bicyclic peptides from Rubia cordifolia L. Chemistry 18:2839–2846

    Article  CAS  PubMed  Google Scholar 

  12. Ho LK, Don MJ, Chen HC, Yeh SF, Chen JM (1996) Inhibition of hepatitis B surface antigen secretion on human hepatoma cells. components from Rubia cordifolia. J Nat Prod 59:330–333

    Article  CAS  PubMed  Google Scholar 

  13. Itokawa H, Ibraheim Z, Qiao Y, Takeya K (1993) Anthraquinones, naphthohydroquinones and naphthohydroquinone dimers from Rubia cordifolia and their cytotoxic activity. Chem Pharm Bull 41:1869–1872

    Article  CAS  Google Scholar 

  14. Son JK, Jung SJ, Jung JH, Fang Z, Lee CS, Seo CS, Moon DC, Min BS, Kim MR, Woo MH (2008) Anticancer constituents from the roots of Rubia cordifolia L. Chem Pharm Bull 56:213–216

    Article  CAS  Google Scholar 

  15. Kim KJ, Lee JS, Kwak MK, Choi HG, Yong CS, Kim JA, Lee YR, Lyoo WS, Park Y-J (2009) Anti-inflammatory action of mollugin and its synthetic derivatives in HT-29 human colonic epithelial cells is mediated through inhibition of NF-κB activation. Eur J Pharmacol 622:52–57

    Article  CAS  PubMed  Google Scholar 

  16. Jeong GS, Lee DS, Kim DC, Jahng Y, Son JK, Lee SH, Kim YC (2011) Neuroprotective and anti-inflammatory effects of mollugin via up-regulation of heme oxygenase-1 in mouse hippocampal and microglial cells. Eur J Pharmacol 654:226–234

    Article  CAS  PubMed  Google Scholar 

  17. Zhu ZG, Jin H, Yu PJ, Tian YX, Zhang JJ, Wu SG (2013) Mollugin inhibits the inflammatory response in lipopolysaccharide-stimulated RAW264.7 macrophages by blocking the janus kinase-signal transducers and activators of transcription signaling pathway. Biol Pharm Bull 36:399–406

    Article  CAS  PubMed  Google Scholar 

  18. Do MT, Hwang YP, Kim HG, Na M, Jeong HG (2013) Mollugin inhibits proliferation and induces apoptosis by suppressing fatty acid synthase in HER2-overexpressing cancer cells. J Cell Physio 228:1087–1097

    Article  CAS  Google Scholar 

  19. Zhang L, Wang H, Zhu J, Xu J, Ding K (2014) Mollugin induces tumor cell apoptosis and autophagy via the PI3K/AKT/mTOR/p70S6 K and ERK signaling pathways. Biochem Biophys Res Commun 450:247–254

    Article  CAS  PubMed  Google Scholar 

  20. Baek JM, Kim JY, Jung Y, Moon SH, Choi MK, Kim SH, Lee MS, Kim I, Oh J (2015) Mollugin from Rubea cordifolia suppresses receptor activator of nuclear factor-κB ligand-induced osteoclastogenesis and bone resorbing activity in vitro and prevents lipopolysaccharide-induced bone loss in vivo. Phytomedicine 22:27–35

    Article  CAS  PubMed  Google Scholar 

  21. Han L, Yong FL, Hong Z, Jiang MH, Hong ML, Shou JL (2021) Synthesis and antitumor activity of 1-substituted 1,2,3-triazole-mollugin derivatives. Molecules 26:3249

    Article  Google Scholar 

  22. Zhang LH, Li MY, Wang DY, Jin XJ, Chen FE, Piao HR (2022) Synthesis and evaluation of NF-κB inhibitory activity of mollugin derivatives. Molecules 27:7925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Morita H, Nishino H, Nakajima Y, Kakubari Y, Nakata A, Deguchi J, Alfarius EN, Hirasawa Y, Kaneda T, Kawasaki Y, Goda Y (2015) Oxomollugin, a potential inhibitor of lipopolysaccharide-induced nitric oxide production including nuclear factor kappa B signals. J Nat Med 69:608–611

    Article  CAS  PubMed  Google Scholar 

  24. Hayden MS, Ghosh S (2008) Shared principles in NF-κB signaling. Cell 132:344–362

    Article  CAS  PubMed  Google Scholar 

  25. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol 11:373–384

    Article  CAS  PubMed  Google Scholar 

  26. Lumb JP, Choong KC, Trauner D (2008) ortho-Quinone methides from para-quinones: total synthesis of rubioncolin B. J Am Chem Soc 130:9230–9231

    Article  CAS  PubMed  Google Scholar 

  27. Bulman Page PC, Chan Y, Armylisas AHN, Alahmdi M (2016) Asymmetric epoxidation of chromenes mediated by iminium salts: synthesis of mollugin and (3S,4R)-trans-3,4-dihydroxy-3,4- dihydromollugin. Tetrahedron 72:8406–8416

    Article  CAS  Google Scholar 

  28. Kinoshita E, Kinoshita-Kikuta E, Takiyama K, Koike T (2006) Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol Cell Proteomics 5:749–757

    Article  CAS  PubMed  Google Scholar 

  29. Pauls E, Nanda SK, Smith H, Toth R, Arthur JSC (2013) Two phases of inflammatory mediator production defined by the study of IRAK2 and IRAK1 knock-in mice. J Immunol 191:2717–2730

    Article  CAS  PubMed  Google Scholar 

  30. Motshwene PG, Moncrieffe MC, Grossmann JG, Kao C, Ayaluru M, Sandercock AM, Robinson CV, Latz E, Gay NJ (2009) An oligomeric signaling platform formed by the toll-like receptor signal transducers MyD88 and IRAK-4. J Biol Chem 284:25404–25411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li S, Strelow A, Fontana EJ, Wesche H (2002) IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc Natl Acad Sci USA 99:5567–5572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kollewe C, Mackensen AC, Neumann D, Knop J, Cao P, Li S, Wesche H, Martin MU (2004) Sequential autophosphorylation steps in the interleukin-1 receptor-associated kinase-1 regulate its availability as an adapter in interleukin-1 signaling. J Biol Chem 279:5227–5236

    Article  CAS  PubMed  Google Scholar 

  33. Yamin TT, Miller DK (1997) The interleukin-1 receptor-associated kinase is degraded by proteasomes following its phosphorylation. J Biol Chem 272:21540–21547

    Article  CAS  PubMed  Google Scholar 

  34. O’Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in toll-like receptor signaling. Nat Rev Immunol 7:353–364

    Article  CAS  PubMed  Google Scholar 

  35. Li X, Zhong CQ, Yin Z, Qi H, Xu F, He Q, Shuai J (2020) Data-driven modeling identifies TIRAP-independent MyD88 activation complex and myddosome assembly strategy in LPS/TLR4 signaling. Int J Mol Sci 21:3061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gilmore TD (2008) NF-κB target genes. www.NF-kB.org. Accessed 1 Oct 2023

  37. Keating SE, Maloney GM, Moran EM, Bowie AG (2007) IRAK-2 participates in multiple toll-like receptor signaling pathways to NFkappaB via activation of TRAF6 Ubiquitination. J Biol Chem 282:33435–33443

    Article  CAS  PubMed  Google Scholar 

  38. Kawagoe T, Sato S, Matsushita K, Kato H, Matsui K, Kumagai Y, Saitoh T, Kawai T, Takeuchi O, Akira S (2008) Sequential control of toll-like receptor–dependent responses by IRAK1 and IRAK2. Nat Immunol 9:684–691

    Article  CAS  PubMed  Google Scholar 

  39. Meylan E, Tschopp J (2008) IRAK2 takes its place in TLR signaling. Nat Immunol 9:581–582

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly supported by JSPS KAKENHI (JP 19K07152 and JP22K06671 to MH), Japan.

Funding

This work was partly supported by JSPS KAKENHI (JP 19K07152 and JP22K06671 to MH), Japan.

Author information

Authors and Affiliations

Authors

Contributions

Yuki Nakajima, Naohide Tsuboi, Kumiko Katori, Maigunuer Waili, Yusuke Hirasawa, Toshio Kaneda, and Hiroshi Morita conceived and designed the experiments; Alfarius Eko Nugroho, Hitomi Nishino, Kazunori Takahashi, Yoko Kawasaki, and Yukihiro Goda prepared mollugin and oxomollugin; Yuki Nakajima and Toshio Kaneda and Hiroshi Morita wrote the paper.

Corresponding authors

Correspondence to Toshio Kaneda or Hiroshi Morita.

Ethics declarations

Conflict of interest

The authors declare no competing final interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 861 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakajima, Y., Tsuboi, N., Katori, K. et al. Oxomollugin, an oxidized substance in mollugin, inhibited LPS-induced NF-κB activation via the suppressive effects on essential activation factors of TLR4 signaling. J Nat Med 78, 568–575 (2024). https://doi.org/10.1007/s11418-024-01798-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-024-01798-y

Keywords

Navigation