Skip to main content
Log in

Hydrophobic constituents of Polygonum multiflorum roots promote renal erythropoietin expression in healthy mice

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The roots of Polygonum multiflorum Thunberg (Polygonaceae) are used as a crude drug Kashu that is considered to improve blood deficiency based on a Kampo concept. Kashu has been included in Kampo formulas, such as Tokiinshi, which is used to treat eczema and dermatitis with itchiness by inhibiting inflammation and facilitating blood circulation in the skin. However, the effects of P. multiflorum roots on erythropoiesis are unclear. Previously, we isolated six phenolic constituents from an ethyl acetate (EtOAc)-soluble fraction of P. multiflorum root extract and identified them as (E)-2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucopyranoside [(E)-THSG], emodin, emodin-8-O-β-D-glucopyranoside, physcion, physcion-8-O-β-D-glucopyranoside, and catechin. To examine whether P. multiflorum roots facilitate erythropoiesis, the EtOAc-soluble fraction was orally administered to healthy ICR mice. When compared with mice fed a standard diet alone (Controls), the mice fed a diet including the EtOAc-soluble fraction exhibited significantly higher serum erythropoietin (Epo) levels. The renal Epo mRNA levels in EtOAc-soluble fraction-administered mice were significantly higher than those in the control mice. Then, we administered roxadustat, which is a drug to treat the patient suffering with renal anemia by specifically inhibiting hypoxia-inducible factor prolyl hydroxylases. Roxadustat slightly increased renal Epo mRNA levels in healthy mice. Administration of (E)-THSG, a major constituent, significantly increased serum Epo levels. It is likely that (E)-THSG may facilitate the process to convert inactive renal Epo-producing cells to active Epo-producing cells. Collectively, it is implied that (E)-THSG in the EtOAc-soluble fraction of P. multiflorum roots may primarily improve blood deficiency of Kampo concept by promoting erythropoiesis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EtOAc:

Ethyl acetate

THSG:

2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucopyranoside

Epo:

Erythropoietin

REP:

Renal erythropoietin-producing

HIF:

Hypoxia-inducible factor

PHD2:

Prolyl hydroxylase domain protein 2

pVHL:

Von Hippel‒Lindau protein

RBC:

Red blood cell

ELISA:

Enzyme-linked immunosorbent assay

RT‒PCR:

Reverse transcription–polymerase chain reaction

EF:

Elongation factor 1α

SD:

Standard deviation

References

  1. Polygonum Root (No. 1222) in: Scientific Information of Crude Drugs, Traditional Medical & Pharmaceutical Database, Institute of Natural Medicine, Toyama University. https://dentomed.toyama-wakan.net/en/scientific_information_on_crude_drugs/Polygonum%20Root/SCC000084

  2. Ikeya Y, Epp DA, Nishizawa M (2019) Anti-inflammatory effect of foods and crude drugs in relation to bitter and spicy tastes. Bioact Compoun Health Dis 2:77–93. https://doi.org/10.31989/bchd.v2i4.613

    Article  Google Scholar 

  3. Ulfa SM, Shirako S, Sato M, Dwijayanti DR, Okuyama T, Horie S, Watanabe J, Ikeya Y, Nishizawa M (2022) Anti-inflammatory effects of anthraquinones of Polygonum multiflorum roots. Bioact Compoun Health Dis 5:136–148. https://doi.org/10.31989/bchd.v5i6.948

    Article  Google Scholar 

  4. Souma T, Yamazaki S, Moriguchi T, Suzuki N, Hirano I, Pan X, Minegishi N, Abe M, Kiyomoto H, Ito S, Yamamoto M (2013) Plasticity of renal erythropoietin-producing cells governs fibrosis. J Am Soc Nephrol 24(10):1599–1616. https://doi.org/10.1681/ASN.2013010030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Souma T, Suzuki N, Yamamoto M (2015) Renal erythropoietin-producing cells in health and disease. Front Physiol 6:167. https://doi.org/10.3389/fphys.2015.00167

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shih HM, Wu CJ, Lin SL (2018) Physiology and pathophysiology of renal erythropoietin-producing cells. J Formos Med Assoc 117:955–963. https://doi.org/10.1016/j.jfma.2018.03.017

    Article  CAS  PubMed  Google Scholar 

  7. Dahl SL, Bapst AM, Khodo SN, Scholz CC, Wenger RH (2022) Fount, fate, features, and function of renal erythropoietin-producing cells. Pflugers Arch. https://doi.org/10.1007/s00424-022-02714-7

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jelkmann W (2011) Regulation of erythropoietin production. J Physiol 589(Pt 6):1251–1258. https://doi.org/10.1113/jphysiol.2010.195057

    Article  CAS  PubMed  Google Scholar 

  9. Ohkura N, Oishi K, Sekine Y, Atsumi G, Ishida N, Matsuda J, Horie S (2007) Comparative study of circadian variation in numbers of peripheral blood cells among mouse strains: Unique feature of C3H/HeN mice. Biol Pharm Bull 30:1177–1180. https://doi.org/10.1248/bpb.30.1177

    Article  CAS  PubMed  Google Scholar 

  10. Ma YN, Chen MT, Wu ZK, Zhao HL, Yu HC, Yu J, Zhang JW (2013) Emodin can induce K562 cells to erythroid differentiation and improve the expression of globin genes. Mol Cell Biochem 382:127–136. https://doi.org/10.1007/s11010-013-1726-3

    Article  CAS  PubMed  Google Scholar 

  11. Wang C, Dai S, Gong L, Fu K, Ma C, Liu Y, Zhou H, Li Y (2022) A review of pharmacology, toxicity and pharmacokinetics of 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside. Front Pharmacol 12:791214. https://doi.org/10.3389/fphar.2021.791214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ohno N, Yoshigai E, Okuyama T, Yamamoto Y, Okumura T, Sato K, Ikeya Y, Nishizawa M (2012) Chlorogenic acid from the Japanese herbal medicine Kinginka (Flos Lonicerae japonicae) suppresses the expression of inducible nitric oxide synthase in rat hepatocytes. HOAJ Biol 1:2. https://doi.org/10.7243/2050-0874-1-2

    Article  Google Scholar 

  13. Nishidono Y, Tanaka K (2022) Comprehensive characterization of polyacetylenes and diterpenes from the underground parts of Solidago altissima L. and their contribution to the overall allelopathic activity. Phytochemistry 193:112986. https://doi.org/10.1016/j.phytochem.2021.112986

    Article  CAS  PubMed  Google Scholar 

  14. du Sert NP, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, Emerson M, Garner P, Holgate ST, Howells DW, KarpA N, Lazic SE, Lidster K, MacCallum CJ, Macleod M, Pearl EJ, Petersen OH, Rawle F, Reynolds P, Rooney K, Sena ES, Silberberg SD, Steckler T, Würbel H (2020) The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol 18:e3000410. https://doi.org/10.1371/journal.pbio.3000410

    Article  CAS  Google Scholar 

  15. Mima A (2021) Hypoxia-inducible factor-prolyl hydroxylase inhibitors for renal anemia in chronic kidney disease: advantages and disadvantages. Eur J Pharmacol 912:174583. https://doi.org/10.1016/j.ejphar.2021.174583

    Article  CAS  PubMed  Google Scholar 

  16. Matsui K, Nishizawa M, Ozaki T, Kimura T, Hashimoto I, Yamada M, Kaibori M, Kamiyama Y, Ito S, Okumura T (2008) Natural antisense transcript stabilizes inducible nitric oxide synthase messenger RNA in rat hepatocytes. Hepatology 47:686–697. https://doi.org/10.1002/hep.22036

    Article  CAS  PubMed  Google Scholar 

  17. Fujii A, Okuyama T, Wakame K, Okumura T, Ikeya Y, Nishizawa M (2017) Identification of anti-inflammatory constituents in Phellodendri Cortex and Coptidis Rhizoma by monitoring the suppression of nitric oxide production. J Nat Med 71:745–756. https://doi.org/10.1007/s11418-017-1107-4

    Article  CAS  PubMed  Google Scholar 

  18. Nakada D, Oguro H, Levi BP, Ryan N, Kitano A, Saitoh Y, Takeichi M, Wendt GR, Morrison SJ, SJ, (2014) Oestrogen increases haematopoietic stem-cell self-renewal in females and during pregnancy. Nature 505:555–558. https://doi.org/10.1038/nature12932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hsu PL, Horng LY, Peng KY, Wu WURT (2013) Activation of mitochondrial function and Hb expression in non-haematopoietic cells by an EPO inducer ameliorates ischaemic diseases in mice. Br J Pharmacol 169:1461–1476. https://doi.org/10.1111/bph.12197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu LL, Fan LS, Hu M-H, Ma FL, Qi J (2019) Hematopoietic effect of small molecular fraction of Polygoni multiflora Radix Praeparata in cyclophosphamide-induced anemia mice. Chin J Med 17:535–544. https://doi.org/10.1016/S1875-5364(19)30075-5

    Article  CAS  Google Scholar 

  21. Zhao YY, Zhang L, Feng YL, Chen DQ, Xi ZH, Du X, Bai X, Lin RC (2013) Pharmacokinetics of 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside in rat using ultra-performance LC-quadrupole TOF-MS. J Sep Sci 36:863–871. https://doi.org/10.1002/jssc.201200668

    Article  CAS  PubMed  Google Scholar 

  22. Wang D, Wang XH, Yu X, Cao F, Cai X, Chen P, Li M, Feng Y, Li H, Wang X (2021) Pharmacokinetics of anthraquinones from medicinal plants. Front Pharmacol 12:638993. https://doi.org/10.3389/fphar.2021.638993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang J, Huang S, Zhang J, Liang Y, Bai J, Xu W, Gong L, Su H, Huang Z, Qiu X (2022) A Systematic strategy for the characterization of 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside Metabolites In Vivo by ultrahigh performance liquid chromatography coupled with a Q exactive-orbitrap mass system. J Agric Food Chem 70:7773–7785. https://doi.org/10.1021/acs.jafc.2c00572

    Article  CAS  PubMed  Google Scholar 

  24. Bernhardt WM, Wiesener MS, Scigalla P, Chou J, Schmieder RE, Günzler V, Eckardt KU (2010) Inhibition of prolyl hydroxylases increases erythropoietin production in ESRD. J Am Soc Nephrol 21:2151–2156. https://doi.org/10.1681/ASN.2010010116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ms. Noriko Kanazawa for her secretarial assistance and Springer Nature Author Services (https://authorservices.springernature.com) for editing a draft of this manuscript. S.M.U. performed this study as an affiliate assistant professor under support from the Asia-Japan Research Institute, Ritsumeikan University. Y.N. was supported by the JSPS Research Fellowships for Young Scientists. This work was partly supported by the Asia-Japan Research Institute, Ritsumeikan Asia-Japan Research Organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukinobu Ikeya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirako, S., Ulfa, S.M., Nishidono, Y. et al. Hydrophobic constituents of Polygonum multiflorum roots promote renal erythropoietin expression in healthy mice. J Nat Med 77, 880–890 (2023). https://doi.org/10.1007/s11418-023-01737-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-023-01737-3

Keywords

Navigation