Skip to main content
Log in

Anti-Helicobacter pylori activity of swertianolin, isolated from swertia herb

  • Natural Resource Letter
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Helicobacter pylori is a Gram-negative, spiral-shaped, motile bacterium present in human stomachs that causes gastric ulcers. A preliminary screening revealed that a methanolic extract of swertia herb demonstrated anti-H. pylori activity. Swertia herb (Swertia japonica Makino, Gentianaceae) is a well-known Japanese traditional medicine to treat gastrointestinal diseases. In this study, we explored the active compounds in methanolic extract of swertia herb. The dried extract was dissolved in water and partitioned with n-hexane, ethyl acetate, and n-butanol, successively. The part soluble in ethyl acetate showed effective anti-H. pylori activity, and two compounds, swertianolin (1) and isoorientin (2), were isolated. The IC50 values of 1, 2, and amoxicillin (AMPC) which is used as positive control were 6.1, 177.0, and 0.044 μM, respectively. The minimum bactericidal concentration (MBC) values of 1 and AMPC were 91.7 and 0.21 μM, respectively. The MBC of 2 could not be determined (> 892.9 μM). Furthermore, synergy was observed when compound 1 was used in combination with AMCP. Therefore, 1 could be considered as one of the active compounds of swertia herb. To our knowledge, the anti-H. pylori activities of methanolic extract of swertia herb and its isolated compound have never been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Zamani M, Ebrahimtabar F, Zamani V, Miller WH, Alizadeh-Navaei R, Shokri-Shirvani J, Derakhshan MH (2018) Systematic review with meta-analysis: the worldwide prevalence of Helicobacter pylori infection. Aliment Pharmacol Ther 47:868–876. https://doi.org/10.1111/apt.14561

    Article  CAS  PubMed  Google Scholar 

  2. Inoue M (2017) Changing epidemiology of Helicobacter pylori in Japan. Gastric Cancer 20:3–7. https://doi.org/10.1007/s10120-016-0658-5

    Article  CAS  PubMed  Google Scholar 

  3. Crowe SE (2019) Helicobacter pylori infection. N Engl J Med 380:1158–1165. https://doi.org/10.1056/NEJMcp1710945

    Article  PubMed  Google Scholar 

  4. Kato M, Ota H, Okuda M, Kikuchi S, Satoh K, Shimoyama T, Suzuki H, Handa O, Furuta T, Mabe K, Murakami K, Sugiyama T, Uemura N, Takahashi S (2019) Guidelines for the management of Helicobacter pylori infection in Japan: 2016 Revised Edition. Helicobacter 24:e12597. https://doi.org/10.1111/hel.12597

    Article  PubMed  Google Scholar 

  5. The Japanese Pharmacopoeia (English version) (2016), 17th (edn) Ministry of Health, Labor and Welfare, Japan, p 1996

  6. Inouye H, Ueda S, Nakamura Y (1970) Studies on Monoterpene glucosides. XII. Biosynthesis of gentianaceous secoiridoid glucosides. Chem Pharm Bull 18:2043–2049. https://doi.org/10.1248/cpb.18.2043

    Article  CAS  Google Scholar 

  7. Hase K, Li J, Basnet P, Xiong Q, Namba TS, T, Kadota S, (1997) Hepatoprotective principles of Swertia japonica Makino on D-galactosamine/lipopolysaccharide-induced liver injury in mice. Chem Pharm Bull 45:1823–1827

    Article  CAS  Google Scholar 

  8. Kimura Y, Sumiyoshi M (2011) Effects of Swertia japonica extract and its main compound swertiamarin on gastric emptying and gastrointestinal motility in mice. Fitoterapia 82:827–833

    Article  CAS  PubMed  Google Scholar 

  9. Sakamoto I, Tanaka T, Tanaka O, Tomimori T (1982) Xanthone glucosides of Swertia japonica Makino and a related plant: structure of a new glucoside, isoswertianolin and structure revision of swertianolin and norswertianolin. Chem Pharm Bull 30:4088–4091. https://doi.org/10.1248/cpb.30.4088

    Article  CAS  Google Scholar 

  10. Kato T, Morita Y (1990) C-Glycosylflavones with acetyl substitution from Rumex acetosa L. Chem Pharm Bull 38:2277–2280. https://doi.org/10.1248/cpb.38.2277

    Article  CAS  Google Scholar 

  11. Kawase M, Tanaka T, Sohara Y, Tani S, Sakagami H, Hauer H, Chatterjee SS (2003) Structural requirements of hydroxylated coumarins for in vitro anti-Helicobacter pylori activity. In Vivo 17:509–512

    CAS  PubMed  Google Scholar 

  12. Isra T, Talal A, Abu-Q Luay, Nehaya AL-K, Wesam A, Al-S Ali (2020) In vitro Anti-Helicobacter pylori activity of capsaicin. J Pure Appl Microbiol 14(1):279–286. https://doi.org/10.22207/JPAM.14.1.29

    Article  Google Scholar 

  13. Pedro F, Chon-H H, Chi-C I, Pou-I S, Li-R M (2019) In silico and in vitro anti-Helicobacter pylori effects of combinations of phytochemicals and antibiotics. Molecules 24:3608. https://doi.org/10.3390/molecules24193608

    Article  CAS  Google Scholar 

  14. Roger LW, David SB, Madhavi M, John AB (1996) Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E test. Antimicrob Agents Chemother 40(8):1914–1918

    Article  Google Scholar 

  15. Matsumoto H, Shiotani A, Graham DY (2019) Current and future treatment of Helicobacter pylori infections. Adv Exp Med Biol 1149:211–225. https://doi.org/10.1007/5584_2019_367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tateda K, Ishii Y, Matsumoto T, Yamaguchi K (2006) “Break-point checkerboard plate” for screening of appropriate antibiotic combinations against multidrug-resistant Pseudomonas aeruginosa. Scand J Infect Dis 38:268–272. https://doi.org/10.1080/00365540500440353

    Article  CAS  PubMed  Google Scholar 

  17. Kwon DH, Kato M, El-Zaatari FAK, Osato MS, Graham DY (2000) Frame-shift mutations in NAD(P)H flavin oxidoreductase encoding gene (frxA) from metronidazole resistant Helicobacter pylori ATCC43504 and its involvement in metronidazole resistance. FEMS Microbiol Lett 188:197–202

    Article  CAS  PubMed  Google Scholar 

  18. Jannarin N, Napaporn C, Wanchalerm U, Malai T (2014) Sunit SuksamrarnAnti-Helicobacter pylori xanthones of Garcinia fusca. Arch Pharm Res 37:972–977. https://doi.org/10.1007/s12272-013-0266-4

    Article  CAS  Google Scholar 

  19. Saeed MA, Khan Z, Ford MR (1998) Antimicrobial potential of some xanthones from Swertia ciliata Buch et Ham. Acta Pharm Turc 40:175–184

    CAS  Google Scholar 

  20. Klesiewicz K, Karczewska E, Budak A, Marona H, Szkaradek N (2016) Anti-Helicobacter pylori activity of some newly synthesized derivatives of xanthone. The J Antibiot 69:825–834

    Article  CAS  Google Scholar 

  21. Huang KJ, Lin SH, Lin MR, Ku H, Szkaradek N, Marona H, Hsu A, Shiuan D (2013) Xanthone derivatives could be potential antibiotics: virtual screening for the inhibitors of enzyme I of bacterial phosphoenolpyruvate-dependent phosphotransferase system. J Antibiot 66:453–458

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ryuichiro Suzuki or Toru Tanaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 1795 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, R., Yumoto, R., Shirai, H. et al. Anti-Helicobacter pylori activity of swertianolin, isolated from swertia herb. J Nat Med 77, 1005–1008 (2023). https://doi.org/10.1007/s11418-023-01718-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-023-01718-6

Keywords

Navigation