Skip to main content
Log in

On Geometric Realization of the General Manakov System

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

It is well-known that the general Manakov system is a 2-components nonlinear Schrödinger equation with 4 nonzero real parameters. The analytic property of the general Manakov system has been well-understood though it looks complicated. This paper devotes to exploring geometric properties of this system via the prescribed curvature representation in the category of Yang-Mills’ theory. Three models of moving curves evolving in the symmetric Lie algebras u(2,1) = kαmα (α = 1, 2) and u(3) = k3m3 are shown to be simultaneously the geometric realization of the general Manakov system. This reflects a new phenomenon in geometric realization of a partial differential equation/system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Akhmediev, N., Krolikowski, W. and Snyder, A. W., Partially coherent solitons of variable shape, Phys. Rev. Lett., 81, 1998, 4632–4635.

    Article  Google Scholar 

  2. Baronio, F., Conforti, M., Degasperis, A., et al., Vector rogue waves and baseband modulation instability in the defocusing regime, Phys. Rev. Lett., 113, 2014, 034101.

    Article  Google Scholar 

  3. Baronio, F., Degasperis, A., Conforti, M. and Wabnitz, S., Solutions of the Vector Nonlinear Schrödinger Equations: Evidence for Deterministic Rogue Waves, Phys. Rev. Lett., 109, 2012, 044102.

    Article  Google Scholar 

  4. Chen, W. J., Chen, S. O., Liu, O., et al., Nondegenerate Kuznetsov-Ma solitons of Manakov equations and their physical spectra, Phys. Rev. A, 105, 2022, 043526.

    Article  MathSciNet  Google Scholar 

  5. Ding, Q. and He, Z. Z., The noncommutative KdV equation and its para-Kähler structure, Sci. China Math., 57, 2014, 1505–1516.

    Article  MathSciNet  MATH  Google Scholar 

  6. Ding, Q., Wang, W. and Wang, Y. D., A motion of spacelike curves in the Minkowski 3-space and the KdV equation, Phys. Lett. A, 374, 2010, 2301–2305.

    Article  MathSciNet  Google Scholar 

  7. Ding, Q. and Wang, Y. D., Vortex filament on symmetric Lie algebras and generalized bi-Schrödinger flows, Math. Z., 290, 2018, 167–193.

    Article  MathSciNet  MATH  Google Scholar 

  8. Ding, Q., Zhong, S. P. and Ma, D., A Geometric characterization of a kind of Manakov systems, Sci. Sin. (Math.), 2023, https://doi.org/10.1360/SSM-2023-0067 (in Chinese).

  9. Ding, Q. and Zhu, Z. N., On the gauge equivalent structure of the Landua-Lishitz equation and its applications, J. Phys. Soc. Jpn., 71, 2003, 49–53.

    Article  Google Scholar 

  10. Khawaja, U. A. and Sakkaf, L. A., Handbook of Exact Solutions to the Nonlinear Schrödinger Equations, IOP Publising, Bristol UK, 2020.

    MATH  Google Scholar 

  11. Kanna, T., Lakshmanan, M., Dinda, P. T. and Akhmediev, N., Soliton collisions with shape change by intensity redistribution in mixed coupled nonlinear Schrödinger equations, Phys. Rev. E, 73, 2006, 026604.

    Article  MathSciNet  Google Scholar 

  12. Langer, J. and Perline, R., Geometric realizations of Fordy-Kulish nonlinear Schrödinger sysyems, Pacific J. Math., 195, 2000, 157–178.

    Article  MathSciNet  MATH  Google Scholar 

  13. Manakov, S. V., On the theory of two-dimensional stationary self-focusing electro-magnetic waves, Sov. Phys. JETP., 38(2), 1974, 248–253.

    Google Scholar 

  14. Mao, N. and Zhao, L. C., Exact analytical soliton solutions of N-component coupled nonlinear Schrödinger equations with arbitrary nonlinear parameters, Phys. Rev. E, 106, 2022, 064206.

    Article  Google Scholar 

  15. Nogami, Y. and Warke, C. S., Soliton solutions of multicomponent nonlinear Schrödinger equation, Phys. Lett. A, 59, 1976, 251.

    Article  MathSciNet  Google Scholar 

  16. Pohlmeyer, K., Integrable Hamiltonian systems and interactions through quadratic constraints, Comm.Math. Phys., 46, 1976, 207–221.

    Article  MathSciNet  MATH  Google Scholar 

  17. Radha, R., Vinayagam, P. S. and Porsezian, K., Rotation of the trajectories of bright solitons and re-alignment of intensity distribution in the coupled nonlinear Schrödinger equation, Phys. Rev. E, 88, 2013, 032903.

    Article  Google Scholar 

  18. Rao, J. G., Kanna, T., Sakkaravarthi, K. and He, J. S., Multiple double-pole bright-bright and bright-dark solitons and energy-exchanging collision in the M-component nonlinear Schrödinger equations, Phys. Rev. E, 103, 2021, 062214.

    Article  Google Scholar 

  19. Sym, A., Soliton surfaces and their applications, Lecture Notes in Physics, 239, Springer-Verlag, Berlin, 1985, 145–231.

    MATH  Google Scholar 

  20. Terng, C. L. and Uhlenbeck, K., Schrödinger flows on Grassmannians, AMS/IP Studies in Advanced Mathematics, 36, American Mathematical Society, Providence, RI, 2006, 235–256.

    MATH  Google Scholar 

  21. Vijayajayanthi, M., Kanna, T. and Lakshmanan, M., Bright-dark solitons and their collisions in mixed N-coupled nonlinear Schrödinger equations, Phys. Rev. A, 77, 2008, 013820.

    Article  Google Scholar 

  22. Yeh, C. and Bergman, L., Enhanced pulse compression in a nonlinear fiber by a wavelength division multiplexed optical pulse, Phys. Rev. E, 57, 1998, 2398–2404.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Ding or Shiping Zhong.

Ethics declarations

Conflicsts of interest The authors declare no conflicts of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 12071080, 12141104), the Science Technology Project of Jiangxi Educational Committee (No. GJJ2201202) and the Natural Science Foundation of Jiangxi Province (Nos. 20212BAB211005, 20232BAB201006).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Q., Zhong, S. On Geometric Realization of the General Manakov System. Chin. Ann. Math. Ser. B 44, 753–764 (2023). https://doi.org/10.1007/s11401-023-0042-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-023-0042-9

Keywords

2000 MR Subject Classification

Navigation