Skip to main content
Log in

Existence of generalized heteroclinic solutions of the coupled Schrödinger system under a small perturbation

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

The following coupled Schrödinger system with a small perturbation

$$\begin{array}{*{20}c} {u_{xx} + u - u^3 + \beta uv^2 + \varepsilon f(\varepsilon ,u,u_x ,v,v_x ) = 0 in \mathbb{R},} \\ {v_{xx} - v + v^3 + \beta u^2 v + \varepsilon g(\varepsilon ,u,u_x ,v,v_x ) = 0 in \mathbb{R}} \\ \end{array}$$

is considered, where β and are small parameters. The whole system has a periodic solution with the aid of a Fourier series expansion technique, and its dominant system has a heteroclinic solution. Then adjusting some appropriate constants and applying the fixed point theorem and the perturbation method yield that this heteroclinic solution deforms to a heteroclinic solution exponentially approaching the obtained periodic solution (called the generalized heteroclinic solution thereafter).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Malchiodi, A. and Ni, W. M., Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres, Part I, Commun. Math. Phys., 235, 2003, 427–466.

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosetti, A., Malchiodi, A. and Secchi, S., Multiplicity results for some nonlinear Schrödinger equations with potentials, Arch. Rat. Mech. Anal., 159, 2001, 253–271.

    Article  MathSciNet  MATH  Google Scholar 

  3. Belmonte-Beitia, J., A note on radial nonlinear Schrödinger systems with nonlinearity spatially modulated, Electron. J. Diff. Equ., 148, 2008, 1–6.

    MathSciNet  Google Scholar 

  4. Benney, D. J. and Newell, A. C., The propagation of nonlinear wave envelopes, J. Math. and Phys., 46, 1967, 133–139.

    MathSciNet  MATH  Google Scholar 

  5. Bernard, P., Homoclinic orbit to a center manifold, Calc. Var. Partial Differential Equations, 17, 2003, 121–157.

    Article  MathSciNet  MATH  Google Scholar 

  6. Brezzi, F. and Markowich, P. A., The three-dimensional Wigner-Poisson problem: Existence, uniqueness and approximation, Math. Mod. Meth. Appl. Sci., 14, 1991, 35–61.

    Article  MathSciNet  MATH  Google Scholar 

  7. Champneys, A. R., Homoclinic orbits in reversible systems and their applications in mechanics, fluids and optics, Phys. D, 112, 1998, 158–186.

    Article  MathSciNet  MATH  Google Scholar 

  8. Champneys, A. R., Homoclinic orbits in reversible systems II: Multi-bumps and saddle-centres, CWI. Quart., 12, 1999, 185–212.

    MATH  Google Scholar 

  9. Champneys, A. R., Malomed, B. A., Yang, J. and Kaup D. J., Embedded solitons: Solitary waves in resonance with the linear spectrum, Phys. D, 152–153, 2001, 340–354.

    Article  MathSciNet  Google Scholar 

  10. Chen, X., Lin, T. and Wei, J., Blowup and solitary wave solutions with ring profiles of two-component nonlinear Schrödinger systems, Phys. D, 239, 2010, 613–616.

    Article  MathSciNet  MATH  Google Scholar 

  11. Coti Zelati, V. and Macrì, M., Existence of homoclinic solutions to periodic orbits in a center manifold, J. Differential Equations, 202, 2004, 158–182.

    Article  MathSciNet  MATH  Google Scholar 

  12. Coti Zelati, V. and Macrì, M., Multibump solutions homoclinic to periodic orbits of large energy in a centre manifold, Nonlinearity, 18, 2005, 2409–2445.

    Article  MathSciNet  MATH  Google Scholar 

  13. Coti Zelati, V. and Macrì, M., Homoclinic solutions to invariant tori in a center manifold, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 19, 2008, 103–134.

    Article  MathSciNet  MATH  Google Scholar 

  14. Dalfovo, F., Giorgini, S., Pitaevskii, L. P. and Stringari, S., Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys., 71, 1997, 463–512.

    Article  Google Scholar 

  15. Deng, S. and Guo, B. Generalized homoclinic solutions of a coupled Schrödinger system under a small perturbation, J. Dyn. Diff. Equat., 24, 2012, 761–776.

    Article  MathSciNet  MATH  Google Scholar 

  16. Dodd, R. K., Eilbeck, J. C., Gibbon, J. D. and Morris, H. C., Solitons and Nonlinear Wave Equations, Academic Press, New York, 1982.

    MATH  Google Scholar 

  17. Fedele, R., Miele, G., Palumbo, L. and Vaccaro, V. G., Thermal wave model for nonlinear longitudinal dynamics in particle accelerators, Phys. Lett. A, 173, 1993, 407–413.

    Article  Google Scholar 

  18. Fibich, G., Gavish, N. and Wang, X. P., Singular ring solutions of critical and supercritical nonlinear Schrödinger equations, Phys. D, 231, 2007, 55–86.

    Article  MathSciNet  MATH  Google Scholar 

  19. Floer, A. and Weinstein, A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69, 1986, 397–408.

    Article  MathSciNet  MATH  Google Scholar 

  20. Hasegawa, A., Optical Solitons in Fibers, Springer-Verlag, Berlin, 1989.

    Book  Google Scholar 

  21. Kielhöfer, H., Bifurcation Theory: An Introduction with Applications to PDEs, Springer-Verlag, New York, 2003.

    Google Scholar 

  22. Kivshar, Y. and Agrawal, G. P., Optical Solitons: From Fibers to Photonic Crystals, Academic Press, San Diego, 2003.

    Google Scholar 

  23. Lerman, L. M., Hamiltonian systems with a separatrix loop of a saddle-center, Selecta. Math. Sov., 10, 1991, 297–306.

    MathSciNet  Google Scholar 

  24. Mesentsev, V. K. and Turitsyn, S. K., Stability of vector solitons in optical fibers, Opt. Lett., I7, 1992, 1497–1500.

    Article  Google Scholar 

  25. Mielke, A., Holmes, P. and O’Reilly, O., Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle-center, J. Dyn. Diff. Equat., 4, 1992, 95–126.

    Article  MathSciNet  MATH  Google Scholar 

  26. Noris, B. and Ramos, M., Existence and bounds of positive solutions for a nonlinear Schrödinger system, Proc. Amer. Math. Soc., 138, 2010, 1681–1692.

    Article  MathSciNet  MATH  Google Scholar 

  27. Noris, B., Trvares, H., Terracini, S. and Verzini, G., Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Comm. Pure. Appl. Math., 6, 2010, 267–302.

    Google Scholar 

  28. Oh, Y-G., On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potentials, Commun. Math. Phys., 131, 1990, 223–253.

    Article  MATH  Google Scholar 

  29. Peletier, L. A. and Rodrígues, J. A., Homoclinic orbits to a saddle-center in a fourth-order differential equation, J. Differential Equations, 203, 2004, 185–215.

    Article  MathSciNet  MATH  Google Scholar 

  30. Pelinovsky, D. E. and Yang, J., Internal oscilations and radiation damping of vector solitions, Stud. Appl. Math., 105, 2000, 245–276.

    Article  MathSciNet  MATH  Google Scholar 

  31. Pelinovsky, D. E. and Yang, J., Instabilities of multihump vector solitons in coupled nonlinear Schrödinger equations, Stud. Appl. Math., 115, 2005, 109–137.

    Article  MathSciNet  MATH  Google Scholar 

  32. Ragazzo, C. G., Irregular dynamics and homoclinic orbits to Hamiltonian saddle-centers, Comm. Pure. App. Math., 50, 1997, 105–147.

    Article  MATH  Google Scholar 

  33. Rosales, J. L. and Sánchez-Gómez, J. L., Nonlinear Schödinger equation coming from the action of the particles gravitational field on the quantum potential, Phys. Lett. A, 66, 1992, 111–115.

    Article  Google Scholar 

  34. Scott, A., Nonlinear Science: Emergence and Dynamics of Coherent Structures, Oxford University Press, Oxford, 1999.

    MATH  Google Scholar 

  35. Shatah, J. and Zeng, C., Orbits homoclinic to center manifolds of conservative PDEs, Nonlinearity, 16, 2003, 591–614.

    Article  MathSciNet  MATH  Google Scholar 

  36. Wagenknecht, T. and Champneys, A. R., When gap solitons become embedded solitons: a generic unfolding, Phys. D, 177, 2003, 50–70.

    Article  MathSciNet  MATH  Google Scholar 

  37. Walter, W., Gewöhnliche Differentialgleichungen, Springer-Verlag, New York, Berlin, 1992.

    Google Scholar 

  38. Yagasaki, K., Homoclinic and heteroclinic orbits to invariant tori in multi-degree-of-freedom Hamiltonian systems with saddle-centres, Nonlinearity, 18, 2005, 1331–1350.

    Article  MathSciNet  MATH  Google Scholar 

  39. Yang, J., Classification of the solitary waves in coupled nonlinear Schröinger equations, Phys. D, 108, 1997, 92–112.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingchun Wang.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11126292, 11201239, 11371314), the Guangdong Natural Science Foundation (No. S2013010015957) and the Project of Department of Education of Guangdong Province (No. 2012KJCX0074).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, S., Guo, B. & Wang, T. Existence of generalized heteroclinic solutions of the coupled Schrödinger system under a small perturbation. Chin. Ann. Math. Ser. B 35, 857–872 (2014). https://doi.org/10.1007/s11401-014-0867-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-014-0867-3

Keywords

2000 MR Subject Classification

Navigation