Skip to main content
Log in

Differentials-Based Segmentation and Parameterization for Point-Sampled Surfaces

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Efficient parameterization of point-sampled surfaces is a fundamental problem in the field of digital geometry processing. In order to parameterize a given point-sampled surface for minimal distance distortion, a differentials-based segmentation and parameterization approach is proposed in this paper. Our approach partitions the point-sampled geometry based on two criteria: variation of Euclidean distance between sample points, and angular difference between surface differential directions. According to the analysis of normal curvatures for some specified directions, a new projection approach is adopted to estimate the local surface differentials. Then a k-means clustering (k-MC) algorithm is used for partitioning the model into a set of charts based on the estimated local surface attributes. Finally, each chart is parameterized with a statistical method — multidimensional scaling (MDS) approach, and the parameterization results of all charts form an atlas for compact storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Levy B, Petitjean S, Ray N, Maillot J. Least squares conformal maps for automatic texture atlas generation. ACM Transactions on Graphics, 2002, 21(3): 362–371.

    Article  Google Scholar 

  2. Zwicker M, Pauly M, Knoll O, Gross M. Pointshop 3D: An interactive system for point-based surface editing. ACM Transactions on Graphics, 2002, 21(3): 322–329.

    Article  Google Scholar 

  3. Zigelman G, Kimmel R, Kiryati N. Texture mapping using surface flattening via multidimensional scaling. IEEE Transactions on Visualization and Computer Graphics, 2002, 8(2): 198–207.

    Article  Google Scholar 

  4. Biermann H, Martin I, Bernardini F, Zorin D. Cut-and-paste editing of multiresolution surfaces. ACM Transactions on Graphics, 2002, 21(3): 312–321.

    Article  Google Scholar 

  5. Pauly M, Keiser R, Kobbelt L, Gross M. Shape modeling with point-sampled geometry. ACM Transactions on Graphics, 2003, 22(3): 641–650.

    Article  Google Scholar 

  6. Liu X G, Bao H J, Peng Q S. Digital differential geometry processing. Journal of Computer Science and Technology, 2006, 21(5): 847–860.

    Article  MATH  MathSciNet  Google Scholar 

  7. Eck M, DeRose T, Duchamp T et al. Multiresolution analysis of arbitrary meshes. In Proc. ACM SIGGRAPH'95, Los Angeles, California, 1995, pp.173–182.

  8. Lee A, Sweldens W, Schröder P et al. MAPS: Multiresolution adaptive parametrization of surfaces. In Proc. ACM SIGGRAPH'98, Orlando, Florida, 1998, pp. 95–104.

  9. Liu Y J, Tang K, Yuen M M. Multiresolution free form object modeling with point sampled geometry. Journal of Computer Science and Technology, 2004, 19(5): 607–617.

    Google Scholar 

  10. Khodakovsky A, Schröder P, Sweldens W. Progressive geometry compression. In Proc. ACM SIGGRAPH'00, New Orleans, Louisiana, 2000, pp.271–278.

  11. Waschbüsch M, Würmlin S, Lamboray E et al. Progressive compression of point-sampled models. In Proc. the Eurographics Symposium on Point-Based Graphics'04, Zurich, Switzerland, 2004, pp.95–102.

  12. Zhou K, Bao H J, Shi J Y, Peng Q S. Geometric signal compression. Journal of Computer Science and Technology, 2004, 19(5): 596–606.

    Article  Google Scholar 

  13. Floater M, Hormann K. Surface Parameterization: A Tutorial and Survey. Advances in Multiresolution for Geometric Modelling, Dodgson N, Floater M, Sabin M (eds.), Heidelberg: Springer-Verlag, 2005, pp.157–186.

    Chapter  Google Scholar 

  14. doCarmo M P. Differential Geometry of Curves and Surfaces. Englewood Cliffs: Prentice-Hall, New Jersey, 1976.

    Google Scholar 

  15. Maillot J, Yahia H, Verroust A. Interactive Texture Mapping. In Proc. ACM SIGGRAPH'93, Anaheim, California, 1993, pp.27–34.

  16. Sander P, Snyder J, Gortler S, Hoppe H. Texture mapping progressive meshes. In Proc. ACM SIGGRAPH'01, Los Angeles, California, 2001, pp.409–416.

  17. Sorkine O, Cohen-or D, Goldenthal R, Lischinski D. Bounded-distortion piecewise mesh parameterization. In Proc. IEEE Visualization'02, Boston, Massachusetts, 2002, pp.355–362.

  18. Sander P, Wood Z, Gortler S et al. Multi-chart geometry images. In Proc. the Eurographics Symposium on Geometry Processing'03, Aachen, Germany, 2003, pp.146–155.

  19. Zhou K, Snyder J, Guo B, Shum H-Y. Iso-charts: Stretch-driven mesh parameterization using spectral analysis. In Proc. the Eurographics Symposium on Geometry Processing'04, Nice, France, 2004, pp.47–56.

  20. Zhou K, Wang X, Tong Y et al. TextureMontage: seamless texturing of arbitrary surfaces from multiple images. ACM Transactions on Graphics, 2005, 24(3): 1148–1155.

    Article  Google Scholar 

  21. Floater M, Reimers M. Meshless parameterization and surface reconstruction. Computer Aided Geometric Design, 2001, 18(2): 77–92.

    Article  MATH  MathSciNet  Google Scholar 

  22. Zwicker M, Gotsman C. Meshing point clouds using spherical parameterization. In Proc. the Eurographics Symposium on Point-Based Graphics'04, Zurich, Switzerland, 2004, pp.173–180.

  23. Kalaiah A, Varshney A. Differential point rendering. In Proc. 12th Eurographics Workshop on Rendering, London, UK, 2001, pp.139–150.

  24. Pauly M, Gross M, Kobbelt L. Efficient simplification of point-sampled surfaces. In Proc. IEEE Visualization'02, Boston, Massachusetts, 2002, pp.163–170.

  25. Adamson A, Alexa M. Anisotropic point set surfaces. In Proc. Afrigraph'06, Cape Town, South Africa, 2006, pp.7–13.

  26. Levin D. Mesh-Independent Surface Interpolation. Geometric Modeling for Scientific Visualization, Brunnett G, Hamann B, Mueller K, Linsen L (eds.), Heidelberg: Springer-Verlag, 2003, pp.37–49.

    Google Scholar 

  27. Alexa M, Adamson A. On normals and projection operators for surfaces defined by point sets. In Proc. the Eurographics Symposium on Point-Based Graphics'04, Zurich, Switzerland, 2004, pp.149–155.

  28. Taubin G. Estimating the tensor of curvature of a surface from a polyhedral approximation. In Proc. 5th International Conference on Computer Vision'95, Boston, Massachusetts, 1995, pp.902–907.

  29. Lange C, Polthier K. Anisotropic smoothing of point sets. Computer Aided Geometric Design, 2005, 22(7): 680–692.

    Article  MATH  MathSciNet  Google Scholar 

  30. Krishnamurthy V, Levoy M. Fitting smooth surfaces to dense polygon meshes. In Proc. ACM SIGGRAPH'96, New Orleans, Louisiana, 1996, pp.313–324.

  31. Yamauchi H, Gumhold S, Zayer R, Seidel H-P. Mesh segmentation driven by Gaussian curvature. The Visual Computer, 2005, 21(8–10): 659–668.

    Article  Google Scholar 

  32. Katz S, Tal A. Hierachical mesh decomposition using fuzzy clustering and cuts. ACM Transactions on Graphics, 2003, 22(3): 954–961.

    Article  Google Scholar 

  33. Sander P, Gortler S, Snyder J, Hoppe H. Signal-specialized parameterization. In Proc. 13th Eurographics Workshop on Rendering, Pisa, Italy, 2002, pp.87–100.

  34. Desbrun M, Meyer M, Alliez P. Intrinsic parameterizations of surface meshes. Computer Graphics Forum, 2002, 21(3): 209–218.

    Article  Google Scholar 

  35. Barhak J, Fischer A. Parameterization and reconstruction from 3D scattered points based on neural network and PDE techniques. IEEE Transactions on Visualization and Computer Graphics, 2001, 7(1): 1–16.

    Article  Google Scholar 

  36. Lloyd S P. Least squares quantization in PCM. IEEE Trans. Information Theory, 1982, 28(2): 129–137.

    Article  MATH  MathSciNet  Google Scholar 

  37. Kanungo T, Mount D M, Netanyahu N S et al. An efficient k-means clustering algorithm: Analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 881–892.

    Article  Google Scholar 

  38. Tenenbaum J, Silva V, Langford J. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290(12): 2319–2323.

    Article  Google Scholar 

  39. Jia Y-B, Mi L C, Tian J. Surface patch reconstruction via curve sampling. In Proc. the IEEE International Conference on Robotics and Automation, Orlando, Florida, 2006, pp.1371–1377.

  40. Kruskal J B, Wish M. Multidimensional scaling. Beverly Hills, California: Sage Publications, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Wei Miao.

Additional information

This work is supported by the National Grand Fundamental Research 973 Program of China under Grant No. 2002CB312101, the National Natural Science Foundation of China (NSFC) under Grant Nos. 60503056, 60333010, and the Natural Science Foundation of Zhejiang Province under Grant No. R106449.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, YW., Feng, JQ., Xiao, CX. et al. Differentials-Based Segmentation and Parameterization for Point-Sampled Surfaces. J Comput Sci Technol 22, 749–760 (2007). https://doi.org/10.1007/s11390-007-9088-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-007-9088-5

Keywords

Navigation