Skip to main content

Advertisement

Log in

A critical review of the interactions of organic carbon components with soil minerals: Insight from bibliometric analysis of the environmental behaviors of heavy metal(loid)s

  • Soils, Sec 3 • Remediation and Management of Contaminated or Degraded Lands • Review Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to summarize the research progresses in the effects of the interactions between active soil organic carbon (SOC) components and minerals on the sorption, immobilization, remobilization, transport, and bioavailability of heavy metals (HMs) in the environment.

Materials and methods

This paper presents a discussion based on a bibliometric analysis of the interactions between SOC components and minerals and their influence on the fate of HMs. An in-depth and comprehensive analysis of publication characteristics of 3351 articles using VOSviewer, Histcite, and Bibliometrix was conducted.

Results and discussion

The analyses revealed that the number of articles in this field varied in four stages and China dominated research in this field. The Chinese Academy of Sciences was the center with the most productive cooperation network and registered the largest number of publications. The analysis of the co-occurrence of keywords showed that the coexistence of SOC components would increase or decrease the adsorption and immobilization of HMs on minerals, and this was influenced by environmental parameters such as pH, redox potential, and solution ionic strength. Anionic HMs have become a research hotspot in recent years, and their environmental behaviors, especially redox reactions at the mineral micro solid-phase interfaces, were significantly influenced by the coexistence of active SOC components. The ternary interaction mechanisms between SOC components, minerals, and HMs were complex and presented no clear reasons why some SOC components would inhibit HM adsorption. Based on the bibliometric analysis and mechanistic insights, we make the following recommendations: Research on the molecular interaction mechanisms at the micro/nanoscale interfaces between SOC components, especially microorganisms and biochar, and minerals with HMs needs to be expanded; the redox transformation of anionic HMs at the organo-mineral interfaces is important for their remediation; the establishment of an accurate model is critical to predict and control the environmental risks of HMs, thus expanding research in this field at the micro/nanoscale could speed up the development of new remediation technologies. There is, therefore, a need to develop more advanced in situ methods for characterizing micro/nanoscale interfaces of ternary systems and the environmental behaviors of HMs at the interfaces.

Conclusions

The environmental behaviors of HMs were affected by the mineral-SOC/soil organic matter (SOM) interaction and environmental conditions. The biochar/microbial-mineral interaction should be of more concern and exploring mineral-SOC/SOM-HM ternary interaction mechanisms by high-resolution characterization technology is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be made available on request by the corresponding author.

References

  • Adekola F, Fédoroff M, Geckeis H, Kupcik T, Lefèvre G, Lützenkirchen J, Plaschke M, Preocanin T, Rabung T, Schild D (2011) Characterization of acid-base properties of two gibbsite samples in the context of literature results. J Colloid Interface Sci 354(1):306–317

  • Agbenin JO, Olojo LA (2004) Competitive adsorption of copper and zinc by a Bt horizon of a savanna Alfisol as affected by pH and selective removal of hydrous oxides and organic matter. Geoderma 119(1–2):85–95

  • Alessi DS, Fein JB (2010) Cadmium adsorption to mixtures of soil components: testing the component additivity approach. Chem Geol 270:186–195

    Article  CAS  Google Scholar 

  • Allen C, Metternicht G, Wiedmann T (2016) National pathways to the sustainable development goals (SDGs): a comparative review of scenario modelling tools. Environ Sci Policy 66:199–207

    Article  Google Scholar 

  • Amini M, Antelo J, Fiol S, Rahnemaie R (2020) Modeling the effects of humic acid and anoxic condition on phosphate adsorption onto goethite. Chemosphere 253:126691

  • Ampese LC, Sganzerla WG, di Domenico ZH, Mudhoo A, Martins G, Forster-Carneiro T (2022) Research progress, trends, and updates on anaerobic digestion technology: a bibliometric analysis. J Clean Prod 331:130004

    Article  CAS  Google Scholar 

  • Angelico R, Ceglie A, He JZ, Liu YR, Palumbo G, Colombo C (2014) Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite. Chemosphere 99:239–247

    Article  CAS  Google Scholar 

  • Antelo J, Arce F, Avena M, Fiol S, López R, Macías F (2007) Adsorption of a soil humic acid at the surface of goethite and its competitive interaction with phosphate. Geoderma 138:12–19

    Article  CAS  Google Scholar 

  • Aria M, Cuccurullo C (2017) Bibliometrix: an R-tool for comprehensive science mapping analysis. J Informetr 11:959–975

    Article  Google Scholar 

  • Arul Manikandan N, Alemu AK, Goswami L, Pakshirajan K, Pugazhenthi G (2016) Waste litchi peels for Cr (VI) removal from synthetic wastewater in batch and continuous systems: sorbent characterization, regeneration and reuse study. J Environ Eng 142(9):C4016001

  • Bao YP, Bolan NS, Lai JH, Wang YS, Jin XH, Kirkham MB, Wu XL, Fang Z, Zhang Y, Wang HL (2022) Interactions between organic matter and Fe (hydr)oxides and their influences on immobilization and remobilization of metal(loid)s: a review. Crit Rev Environ Sci Technol 52:4016–4037

    Article  CAS  Google Scholar 

  • Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils−To mobilize or to immobilize? J Hazard Mater 266:141–166

    Article  CAS  Google Scholar 

  • Bradl HB (2004) Adsorption of heavy metal ions on soils and soils constituents. J Colloid Interface Sci 277:1–18

    Article  CAS  Google Scholar 

  • Brown GE, Foster AL, Ostergren JD (1999) Mineral surfaces and bioavailability of heavy metals: a molecular-scale perspective. Proc Natl Acad Sci USA 96:3388–3395

    Article  CAS  Google Scholar 

  • Chen C, Dynes JJ, Wang J, Sparks DL (2014) Properties of Fe-organic matter associations via coprecipitation versus adsorption. Environ Sci Technol 48:13751–13759

    Article  CAS  Google Scholar 

  • Chen KY, Tzou YM, Hsu LC, Guo JW, Cho YL, Teah HY, Hsieh YC, Liu YT (2022a) Oxidative removal of thallium(I) using Al beverage can waste with amendments of Fe: Tl speciation and removal mechanisms. Chem Eng J 427:130846

    Article  CAS  Google Scholar 

  • Chen X, Chen H, Yang L, Wei W, Ni BJ (2022b) A comprehensive analysis of evolution and underlying connections of water research themes in the 21st century. Sci Total Environ 835:155411

    Article  CAS  Google Scholar 

  • Christl I, Kretzschmar R (2001) Interaction of copper and fulvic acid at the hematite-water interface. Geochim Cosmochim Acta 65:3435–3442

    Article  CAS  Google Scholar 

  • Covelo EF, Andrade ML, Vega FA (2004) Heavy metal adsorption by humic umbrisols: selectivity sequences and competitive sorption kinetics. J Colloid Interface Sci 280:1–8

    Article  CAS  Google Scholar 

  • Covelo EF, Vega FA, Andrade ML (2007a) Competitive sorption and desorption of heavy metals by individual soil components. J Hazard Mater 140(1–2):308–315

  • Covelo EF, Vega FA, Andrade ML (2007b) Simultaneous sorption and desorption of Cd, Cr, Cu, Ni, Pb, and Zn in acid soils I. selectivity sequences. J Hazard Mater 147:852–861

    Article  CAS  Google Scholar 

  • Cuong DV, Wu PC, Chen LI, Hou CH (2021) Active MnO2/biochar composite for efficient As(III) removal: insight into the mechanisms of redox transformation and adsorption. Water Res 188:116495

    Article  CAS  Google Scholar 

  • Dorau K, Pohl L, Just C, Hoschen C, Ufer K, Mansfeldt T, Mueller CW (2019) Soil organic matter and phosphate sorption on natural and synthetic Fe oxides under in situ conditions. Environ Sci Technol 53:13081–13087

    Article  CAS  Google Scholar 

  • Du HH, Chen WL, Cai P, Rong XM, Dai K, Peacock CL, Huang QY (2016a) Cd(II) sorption on montmorillonite-humic acid-bacteria composites. Sci Rep 6:19499

    Article  CAS  Google Scholar 

  • Du HH, Chen WL, Cai P, Rong XM, Feng X, Huang QY (2016b) Competitive adsorption of Pb and Cd on bacteria−montmorillonite composite. Environ Pollut 218:168–175

    Article  CAS  Google Scholar 

  • Du HH, Qu CC, Liu J, Chen WL, Cai P, Shi ZH, Yu XY, Huang QY (2017) Molecular investigation on the binding of Cd(II) by the binary mixtures of montmorillonite with two bacterial species. Environ Pollut 229:871–878

    Article  CAS  Google Scholar 

  • Du HH, Huang QY, Lei M, Tie BQ (2018a) Sorption of Pb(II) by nanosized ferrihydrite organo-mineral composites formed by adsorption versus coprecipitation. ACS Earth Space Chem 2:556–564

    Article  CAS  Google Scholar 

  • Du HH, Huang QY, Yang R, Tie BQ, Lei M (2018b) Cd sequestration by bacteria–aluminum hydroxide composites. Chemosphere 198:75–82

    Article  CAS  Google Scholar 

  • Du HH, Peacock CL, Chen WL, Huang QY (2018c) Binding of Cd by ferrihydrite organo-mineral composites: implications for Cd mobility and fate in natural and contaminated environments. Chemosphere 207:404–412

    Article  CAS  Google Scholar 

  • Du HH, Nie N, Rao WK, Lu L, Lei M, Tie BQ (2021) Ferrihydrite-organo composites are a suitable analog for predicting Cd(II)-As(V) coexistence behaviors at the soil solid-liquid interfaces. Environ Pollut 290:118040

    Article  CAS  Google Scholar 

  • Eusterhues K, Wagner FE, Haeusler W, Hanzlik M, Knicker H, Totsche KU, Koegel-Knabner I, Schwertmann U (2008) Characterization of ferrihydrite-soil organic matter coprecipitates by X-ray diffraction and mossbauer spectroscopy. Environ Sci Technol 42:7891–7897

    Article  CAS  Google Scholar 

  • Gao SA, Walker WJ, Dahlgren RA, Bold J (1997) Simultaneous sorption of Cd, Cu, Ni, Zn, Pb, and Cr on soils treated with sewage sludge supernatant. Water Air Soil Pollut 93:331–345

    Article  CAS  Google Scholar 

  • Gomes PC, Fontes MPF, da Silva AG, Mendonca ED, Netto AR (2001) Selectivity sequence and competitive adsorption of heavy metals by Brazilian soils. Soil Sci Soc Am J 65:1115–1121

    Article  CAS  Google Scholar 

  • Grafe M, Eick MJ, Grossl PR, Saunders AM (2002) Adsorption of arsenate and arsenite on ferrihydrite in the presence and absence of dissolved organic carbon. J Environ Qual 31:1115–1123

    Article  CAS  Google Scholar 

  • Grafe M, Singh B, Balasubramanian M (2007) Surface speciation of Cd(II) and Pb(II) on kaolinite by XAFS spectroscopy. J Colloid Interface Sci 315:21–32

    Article  Google Scholar 

  • Hong ZN, Li JY, Jiang J, Liu ZD, Xu RK (2015) Presence of bacteria reduced phosphate adsorption on goethite. Eur J Soil Sci 66:406–416

    Article  CAS  Google Scholar 

  • Höschen C, Höschen T, Mueller CW, Lugmeier J, Elgeti S, Rennert T, Kögel-Knabner I (2015) Novel sample preparation technique to improve spectromicroscopic analyses of micrometer-sized particles. Environ Sci Technol 49:9874–9880

    Article  Google Scholar 

  • Iglesias A, López R, Gondar D, Antelo J, Fiol S, Arce F (2010) Adsorption of paraquat on goethite and humic acid-coated goethite. J Hazard Mater 183(1–3):664–668

  • Jiang J, Xu RK, Jiang TY, Li Z (2012) Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J Hazard Mater 229–230:145–150

    Article  Google Scholar 

  • Kleber M, Eusterhues K, Keiluweit M, Mikutta C, Mikutta R, Nico PS (2015) Mineral-organic associations: formation, properties, and relevance in soil environments. Adv Agron 130:1–140

    Article  Google Scholar 

  • Kunene SC, Lin KS, Mdlovu NV, Lin YS, Mdlovu NB (2021) Speciation and fate of toxic cadmium in contaminated paddy soils and rice using XANES/EXAFS spectroscopy. J Hazard Mater 407:124879

    Article  CAS  Google Scholar 

  • Lackovic K, Angove MJ, Wells JD, Johnson BB (2004a) Modeling the adsorption of Cd(II) onto goethite in the presence of citric acid. J Colloid Interface Sci 269:37–45

    Article  CAS  Google Scholar 

  • Lackovic K, Wells JD, Johnson BB, Angove MJ (2004b) Modeling the adsorption of Cd(II) onto kaolinite and Muloorina illite in the presence of citric acid. J Colloid Interface Sci 270:86–93

    Article  CAS  Google Scholar 

  • Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528:60–68

    Article  CAS  Google Scholar 

  • Li Q, Wang YH, Li YC, Li LF, Tang MD, Hu WF, Chen L, Ai SY (2022) Speciation of heavy metals in soils and their immobilization at micro-scale interfaces among diverse soil components. Sci Total Environ 825:153862

    Article  CAS  Google Scholar 

  • Li SZ, Xu RK (2008) Electrical double layers’ interaction between oppositely charged particles as related to surface charge density and ionic strength. Colloid Surface A 326:157–161

    Article  CAS  Google Scholar 

  • Liu C, Zhang HX (2022) Modified-biochar adsorbents (MBAs) for heavy-metal ions adsorption: a critical review. J Environ Chem Eng 10:107393

    Article  CAS  Google Scholar 

  • Liu QJ, Li X, Tang JP, Zhou YM, Lin QT, Xiao RB, Zhang M (2019) Characterization of goethite-fulvic acid composites and their impact on the immobility of Pb/Cd in soil. Chemosphere 222:556–563

    Article  CAS  Google Scholar 

  • Liu Y, Cheng ZQ, Zhi LL, Zhou SQ (2020a) Binding of Hg to preformed ferrihydrite-humic acid composites synthesized via co-precipitation and adsorption with different morphologies. Ecotox Environ Safe 204:111097

    Article  CAS  Google Scholar 

  • Liu YN, Wu KN, Zhao R (2020b) Bibliometric analysis of research on soil health from 1999 to 2018. J Soils Sediments 20:1513–1525

    Article  Google Scholar 

  • Liu ZD, Hong ZN, Li JY, Jiang J, Xu RK (2015a) Interactions between Escherichia coli and the colloids of three variable charge soils and their effects on soil surface charge properties. Geomicrobiol J 32:511–520

    Article  CAS  Google Scholar 

  • Liu ZD, Wang HC, Li JY, Hong ZN, Xu RK (2015b) Adhesion of Escherichia coli and Bacillus subtilis to amorphous Fe and Al hydroxides and their effects on the surface charges of the hydroxides. J Soils Sediments 15:2293–2303

    Article  CAS  Google Scholar 

  • Lu YH, Li T, Zhang K, Fu BJ (2017) Fledging critical zone science for environmental sustainability. Environ Sci Technol 51:8209–8211

    Article  CAS  Google Scholar 

  • Lv JT, Zhang SZ, Wang SS, Luo L, Cao D, Christie P (2016) Molecular-scale investigation with ESI-FT-ICR-MS on fractionation of dissolved organic matter induced by adsorption on iron oxyhydroxides. Environ Sci Technol 50:2328–2336

    Article  CAS  Google Scholar 

  • Mao GZ, Huang N, Chen L, Wang HM (2018) Research on biomass energy and environment from the past to the future: a bibliometric analysis. Sci Total Environ 635:1081–1090

    Article  CAS  Google Scholar 

  • Masset S, Monteil-Rivera F, Dupont L, Dumonceau J, Aplincourt M (2000) Influence of humic acid on sorption of Co(II), Sr(II), and Se(IV) on goethite. Agronomie 20:525–535

    Article  Google Scholar 

  • Mikutta R, Lorenz D, Guggenberger G, Haumaier L, Freund A (2014) Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus adsorption: clues from arsenate batch adsorption. Geochim Cosmochim Acta 144:258–276

    Article  CAS  Google Scholar 

  • Miranda LS, Ayoko GA, Egodawatta P, Goonetilleke A (2022) Adsorption-desorption behavior of heavy metals in aquatic environments: influence of sediment, water and metal ionic properties. J Hazard Mater 421:126743

    Article  CAS  Google Scholar 

  • Mohamed A, Yu L, Fang Y, Ashry N, Riahi Y, Uddin I, Dai K, Huang QY (2020) Iron mineral-humic acid complex enhanced Cr(VI) reduction by Shewanella oneidensis MR-1. Chemosphere 247:125902

    Article  CAS  Google Scholar 

  • Moon EM, Peacock CL (2012) Adsorption of Cu(II) to ferrihydrite and ferrihydrite-bacteria composites: importance of the carboxyl group for Cu mobility in natural environments. Geochim Cosmochim Acta 92:203–219

    Article  CAS  Google Scholar 

  • Moon EM, Peacock CL (2013) Modelling Cu(II) adsorption to ferrihydrite and ferrihydrite-bacteria composites: deviation from additive adsorption in the composite sorption system. Geochim Cosmochim Acta 104:148–164

    Article  CAS  Google Scholar 

  • Moreira RFPM, Vandresen S, Luiz DB, José HJ, Puma GL (2017) Adsorption of arsenate, phosphate and humic acids onto acicular goethite nanoparticles recovered from acid mine drainage. J Environ Chem Eng 5(1):652–659

  • Nachtegaal M, Sparks DL (2003) Nickel sequestration in a kaolinite-humic acid complex. Environ Sci Technol 37:529–534

    Article  CAS  Google Scholar 

  • Nkoh JN, Lu HL, Pan XY, Dong G, Kamran MA, Xu RK (2019a) Effects of extracellular polymeric substances of Pseudomonas fluorescens, citrate, and oxalate on Pb sorption by an acidic Ultisol. Ecotox Environ Safe 171:790–797

    Article  CAS  Google Scholar 

  • Nkoh JN, Xu RK, Yan J, Jiang J, Li JY, Kamran MA (2019b) Mechanism of Cu(II) and Cd(II) immobilization by extracellular polymeric substances (Escherichia coli) on variable charge soils. Environ Pollut 247:136–145

    Article  CAS  Google Scholar 

  • Nkoh JN, Liu ZD, Yan J, Cai SJ, Hong ZN, Xu RK (2020) The role of extracellular polymeric substances in bacterial adhesion onto variable charge soils. Arch Agron Soil Sci 66:1780–1793

    Article  CAS  Google Scholar 

  • Nkoh JN, Ajibade FO, Atakpa EO, Baquy MAA, Mia S, Odii EC, Xu RK (2022a) Reduction of heavy metal uptake from polluted soils and associated health risks through biochar amendment: a critical synthesis. J Hazard Mater Adv 6:100086

    Article  CAS  Google Scholar 

  • Nkoh JN, Hong ZN, Lu HL, Li JY, Xu RK (2022b) Adsorption of amino acids by montmorillonite and gibbsite: adsorption isotherms and spectroscopic analysis. Appl Clay Sci 219:106437

    Article  CAS  Google Scholar 

  • Nkoh JN, Li KW, Shi RY, Li JY, Xu RK (2022c) The mechanism for enhancing phosphate immobilization on colloids of Oxisol, Ultisol, hematite, and gibbsite by chitosan. Chemosphere 309:136749

    Article  CAS  Google Scholar 

  • Orsetti S, Quiroga M, Andrade EM (2006) Binding of Pb(II) in the system humic acid/goethite at acidic pH. Chemosphere 65:2313–2321

    Article  CAS  Google Scholar 

  • Otero-Farina A, Fiol S, Arce F, Antelo J (2017) Effects of natural organic matter on the binding of arsenate and copper onto goethite. Chem Geol 459:119–128

    Article  CAS  Google Scholar 

  • Pan JJ, Jiang J, Xu RK (2013) Adsorption of Cr(III) from acidic solutions by crop straw derived biochars. J Environ Sci 25:1957–1965

    Article  CAS  Google Scholar 

  • Peacock CL, Sherman DM (2005) Surface complexation model for multisite adsorption of copper(II) onto kaolinite. Geochim Cosmochim Acta 69:3733–3745

    Article  CAS  Google Scholar 

  • Piri M, Sepehr E, Rengel Z (2019) Citric acid decreased and humic acid increased Zn sorption in soils. Geoderma 341:39–45

    Article  CAS  Google Scholar 

  • Pohl L, Kölbl A, Uteau D, Peth S, Hausler W, Mosley L, Marschner P, Fitzpatrick R, Kögel-Knabner I (2021) Porosity and organic matter distribution in jarositic phyto tubules of sulfuric soils assessed by combined mu CT and NanoSIMS analysis. Geoderma 399:115124

    Article  CAS  Google Scholar 

  • Qin GW, Niu ZD, Yu JD, Li ZH, Ma JY, Xiang P (2021) Soil heavy metal pollution and food safety in China: effects, sources and removing technology. Chemosphere 267:129205

    Article  CAS  Google Scholar 

  • Qu CC, Ma MK, Chen WL, Cai P, Yu XY, Feng XH, Huang QY (2018) Modeling of Cd adsorption to goethite-bacteria composites. Chemosphere 193:943–950

    Article  CAS  Google Scholar 

  • Qu CC, Chen WL, Hu XP, Cai P, Chen CR, Yu XY, Huang QY (2019) Heavy metal behaviour at mineral-organo interfaces: mechanisms, modelling and influence factors. Environ Int 131:104995

    Article  CAS  Google Scholar 

  • Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH (2019) Heavy metals in food crops: health risks, fate, mechanisms, and management. Environ Int 125:365–385

    Article  CAS  Google Scholar 

  • Redman AD, Macalady DL, Ahmann D (2002) Natural organic matter affects arsenic speciation and sorption onto hematite. Environ Sci Technol 36:2889–2896

    Article  CAS  Google Scholar 

  • Reid MK, Spencer KL, Shotbolt L (2011) An appraisal of microwave-assisted Tessier and BCR sequential extraction methods for the analysis of metals in sediments and soils. J Soils Sediments 11:518–528

    Article  CAS  Google Scholar 

  • Rennert T, Handel M, Höschen C, Lugmeier J, Steffens M, Totsche KU (2014) A NanoSIMS study on the distribution of soil organic matter, iron and manganese in a nodule from a Stagnosol. Eur J Soil Sci 65:684–692

    Article  CAS  Google Scholar 

  • Rumpel C, Baumann K, Remusat L, Dignac MF, Barre P, Deldicque D, Glasser G, Lieberwirth I, Chabbi A (2015) Nanoscale evidence of contrasted processes for root-derived organic matter stabilization by mineral interactions depending on soil depth. Soil Biol Biochem 85:82–88

    Article  CAS  Google Scholar 

  • Shen XY, Zhu HY, Wang P, Zheng LR, Hu SW, Liu CX (2022) Mechanistic and modeling insights into the immobilization of Cd and organic carbon during abiotic transformation of ferrihydrite induced by Fe(II). J Hazard Mater 436:129216

    Article  CAS  Google Scholar 

  • Shi WJ, Lu CW, He J, En H, Gao MS, Zhao BY, Zhou B, Zhou HJ, Liu HL, Zhang Y (2018) Nature differences of humic acids fractions induced by extracted sequence as explanatory factors for binding characteristics of heavy metals. Ecotox Environ Safe 154:59–68

    Article  CAS  Google Scholar 

  • Siebecker MG, Li W, Sparks DL (2018) The important role of layered double hydroxides in soil chemical processes and remediation: what we have learned over the past 20 years. Adv Agron 147:1–59

    Article  Google Scholar 

  • Simeoni MA, Batts BD, McRae C (2003) Effect of groundwater fulvic acid on the adsorption of arsenate by ferrihydrite and gibbsite. Appl Geochem 18:1507–1515

    Article  CAS  Google Scholar 

  • Skoczylas M, Bocian S, Buszewski B (2018) Influence of silica functionalization by amino acids and peptides on the stationary phases zeta potential. J Chromatogr A 1573:98–106

    Article  CAS  Google Scholar 

  • Sodano M, Lerda C, Nisticò R, Martin M, Magnacca G, Celi L, Said-Pullicino D (2017) Dissolved organic carbon retention by coprecipitation during the oxidation of ferrous iron. Geoderma 307:19–29

    Article  CAS  Google Scholar 

  • Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82

    Article  CAS  Google Scholar 

  • Sparks DL (2003) Environmental soil chemistry. Academic Press

    Book  Google Scholar 

  • Strathmann TJ, Myneni SCB (2005) Effect of soil fulvic acid on nickel(II) sorption and bonding at the aqueous-boehmite (γ-AlOOH) interface. Environ Sci Technol 39:4027–4034

    Article  CAS  Google Scholar 

  • Sun Q, Liu C, Cui PX, Fan TT, Zhu MQ, Alves ME, Siebecker MG, Sparks DL, Wu TL, Li W, Zhou D, Wang Y (2019) Formation of Cd precipitates on γ-Al2O3: implications for Cd sequestration in the environment. Environ Int 126:234–241

    Article  CAS  Google Scholar 

  • Tang WW, Zeng GM, Gong JL, Liang J, Xu P, Zhang C, Huang BB (2014) Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review. Sci Total Environ 468:1014–1027

    Article  Google Scholar 

  • Tong XJ, Li JY, Yuan JH, Xu RK (2011) Adsorption of Cu(II) by biochars generated from three crop straws. Chem Eng J 172:828–834

    Article  CAS  Google Scholar 

  • Tong XJ, Xu RK (2013) Removal of Cu(II) from acidic electroplating effluent by biochars generated from crop straws. J Environ Sci 25:652–658

    Article  CAS  Google Scholar 

  • Ustunol IB, Gonzalez-Pech NI, Grassian VH (2019) pH-dependent adsorption of α-amino acids, lysine, glutamic acid, serine and glycine, on TiO2 nanoparticle surfaces. J Colloid Interface Sci 554:362–375

    Article  CAS  Google Scholar 

  • van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84:523–538

    Article  Google Scholar 

  • Vasconcelos IF, Haack EA, Maurice PA, Bunker BA (2008) EXAFS analysis of cadmium(II) adsorption to kaolinite. Chem Geol 249:237–249

    Article  CAS  Google Scholar 

  • Vega FA, Covelo EF, Andrade ML (2006) Competitive sorption and desorption of heavy metals in mine soils: influence of mine soil characteristics. J Colloid Interface Sci 298:582–592

    Article  CAS  Google Scholar 

  • Violante A, Cozzolino V, Perelomov L, Caporale AG, Pigna M (2010) Mobility and bioavailability of heavy metals and metalloids in soil environments. J Soil Sci Plant Nutr 10:268–292

    Article  Google Scholar 

  • Violante A, Pigna M (2002) Competitive sorption of arsenate and phosphate on different clay minerals and soils. Soil Sci Soc Am J 66:1788–1796

    Article  CAS  Google Scholar 

  • Vogel C, Mueller CW, Hoeschen C, Buegger F, Heister K, Schulz S, Schloter M, Koegel-Knabner I (2014) Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils. Nat Commun 5:1–7

    Article  Google Scholar 

  • Wang H, Zhu J, Fu QL, Xiong JW, Hong C, Hu HQ, Violante A (2015) Adsorption of phosphate onto ferrihydrite and ferrihydrite-humic acid complexes. Pedosphere 25(3):405–414

  • Wang J, Shi L, Zhai LL, Zhang HW, Wang SX, Zou JW, Shen ZG, Lian CL, Chen YH (2021) Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect: a review. Ecotox Environ Safe 207:111261

    Article  CAS  Google Scholar 

  • Wang L, Li Y, Weng L, Sun Y, Ma J, Chen Y (2019) Using chromatographic and spectroscopic parameters to characterize preference and kinetics in the adsorption of humic and fulvic acid to goethite. Sci Total Environ 666:766–777

  • Weng LP, Koopal LK, Hiemstra T, Meeussen JCL, van Riemsdijk WH (2005) Interactions of calcium and fulvic acid at the goethite-water interface. Geochim Cosmochim Acta 69(2):325–339

  • Weng LP, van Riemsdijk WH, Hiemstra T (2007) Adsorption of humic acids onto goethite: effects of molar mass, pH and ionic strength. J Colloid Interface Sci 314:107–118

    Article  CAS  Google Scholar 

  • Weng LP, van Riemsdijk WH, Hiemstra T (2008) Cu2+ and Ca2+ adsorption to goethite in the presence of fulvic acids. Geochim Cosmochim Acta 72:5857–5870

    Article  CAS  Google Scholar 

  • Weng LP, van Riemsdijk WH, Hiemstra T (2009) Effects of fulvic and humic acids on arsenate adsorption to goethite: experiments and modeling. Environ Sci Technol 43:7198–7204

    Article  CAS  Google Scholar 

  • Woodward GL, Peacock CL, Otero-Farina A, Thompson OR, Brown AP, Burke IT (2018) A universal uptake mechanism for cobalt(II) on soil constituents: Ferrihydrite, kaolinite, humic acid, and organo-mineral composites. Geochim Cosmochim Acta 238:270–291

    Article  CAS  Google Scholar 

  • Wu CH, Lin CF, Ma HW, Hsi TQ (2003) Effect of fulvic acid on the sorption of Cu and Pb onto γ-Al2O3. Water Res 37:743–752

    Article  CAS  Google Scholar 

  • Wu H, Lin Y, Wu J, Zeng L, Zeng D, Du J (2008) Surface adsorption of iron oxide minerals for phenol and dissolved organic matter. Earth Sci Front 15:133–141

    Article  CAS  Google Scholar 

  • Xia X, Yang JJ, Yan YB, Wang J, Hu YF, Zeng XB (2020) Molecular sorption mechanisms of Cr(III) to organo-ferrihydrite coprecipitates using synchrotron-based EXAFS and STXM techniques. Environ Sci Technol 54:12989–12997

    Article  CAS  Google Scholar 

  • Xiao J, Wen YL, Li H, Hao JL, Shen QR, Ran W, Mei XL, He XH, Yu GH (2015) In situ visualisation and characterisation of the capacity of highly reactive minerals to preserve soil organic matter (SOM) in colloids at submicron scale. Chemosphere 138:225–232

    Article  CAS  Google Scholar 

  • Xiong J, Koopal LK, Weng L, Wang M, Tan W (2015) Effect of soil fulvic and humic acid on binding of Pb to goethite-water interface: Linear additivity and volume fractions of HS in the Stern layer. J Colloid Interface Sci 457:121–130

  • Xu CL, Feng YL, Li HR, Wu RF, Ju JR, Liu SL, Yang Y, Wang B (2022a) Adsorption of heavy metal ions by iron tailings: behavior, mechanism, evaluation and new perspectives. J Clean Prod 344:131065

    Article  CAS  Google Scholar 

  • Xu PF, Zhu XL, Tian HS, Zhao GX, Chi YX, Jia BL, Zhang J (2022b) The broad application and mechanism of humic acids for treating environmental pollutants: insights from bibliometric analysis. J Clean Prod 337:130510

    Article  CAS  Google Scholar 

  • Xu RK, Zhao AZ, Ji GL (2003) Effect of low-molecular-weight organic anions on surface charge of variable charge soils. J Colloid Interface Sci 264:322–326

    Article  CAS  Google Scholar 

  • Xu RK, Li CB, Ji GL (2004) Effect of low-molecular-weight organic anions on electrokinetic properties of variable charge soils. J Colloid Interface Sci 277:243–247

    Article  CAS  Google Scholar 

  • Xu RK, Qafoku NP, van Ranst E, Li JY, Jiang J (2016) Adsorption properties of subtropical and tropical variable charge soils: implications from climate change and biochar amendment. Adv Agron 135:1–58

    Article  Google Scholar 

  • Xu Z, Tsang DCW (2022) Redox-induced transformation of potentially toxic elements with organic carbon in soil. Carbon Res 1. https://doi.org/10.1007/s44246-022-00010-8

  • Xue J, Huang PM (1995) Zinc adsorption-desorption on short-range ordered iron oxide as influenced by citric acid during its formation. Geoderma 64:343–356

    Article  CAS  Google Scholar 

  • Xue Q, Ran Y, Tan YZ, Peacock CL, Du HH (2019) Arsenite and arsenate binding to ferrihydrite organo-mineral coprecipitate: implications for arsenic mobility and fate in natural environments. Chemosphere 224:103–110

    Article  CAS  Google Scholar 

  • Yamaguchi NU, Scheinost AC, Sparks DL (2001) Surface-induced nickel hydroxide precipitation in the presence of citrate and salicylate. Soil Sci Soc Am J 65:729–736

    Article  CAS  Google Scholar 

  • Yan J, Jiang T, Yao Y, Lu S, Wang Q, Wei S (2016) Preliminary investigation of phosphorus adsorption onto two types of iron oxide-organic matter complexes. J Environ Sci 42:152–162

    Article  CAS  Google Scholar 

  • Yan YP, Wan B, Mansor M, Wang XM, Zhang Q, Kappler A, Feng XH (2022) Co-sorption of metal ions and inorganic anions/organic ligands on environmental minerals: a review. Sci Total Environ 803:149918

    Article  CAS  Google Scholar 

  • Yang L, Wang JB, Yang YS, Li S, Wang TX, Oleksak P, Chrienova Z, Wu QH, Nepovimova E, Zhang XJ, Kuca K (2022) Phytoremediation of heavy metal pollution: hotspots and future prospects. Ecotox Environ Safe 234:113403

    Article  CAS  Google Scholar 

  • Yu TR (1997) Chemistry of variable charge soils. Oxford University Press

    Book  Google Scholar 

  • Yuan JH, Xu RK, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102:3488–3497

    Article  CAS  Google Scholar 

  • Zadaka D, Radian A, Mishael YG (2010) Applying zeta potential measurements to characterize the adsorption on montmorillonite of organic cations as monomers, micelles, or polymers. J Colloid Interface Sci 352:171–177

    Article  CAS  Google Scholar 

  • Zhang GX, Yang BX, Shao LZ, Li FL, Leng YL, Chen XL (2022a) Differences in bioaccumulation of Ni and Zn by microalgae in the presence of fulvic acid. Chemosphere 291:132838

  • Zhang HJ, Zhang RY, Lu TT, Qi W, Zhu YW, Lu MH, Qi ZC, Chen WF (2022b) Enhanced transport of heavy metal ions by low-molecular-weight organic acids in saturated porous media: link complex stability constants to heavy metal mobility. Chemosphere 290:133339

    Article  CAS  Google Scholar 

  • Zhang Q, Amor K, Galer SJG, Thompson I, Porcelli D (2019) Using stable isotope fractionation factors to identify Cr(VI) reduction pathways: Metal-mineral-microbe interactions. Water Res 151:98–109

    Article  CAS  Google Scholar 

  • Zhang SZ, Liu CZ, Yuan YK, Fan MH, Zhang DD, Wang DF, Xu Y (2020) Selective, highly efficient extraction of Cr(III), Pb(II) and Fe(III) from complex water environment with a tea residue derived porous gel adsorbent. Bioresour Technol 311:123520

    Article  CAS  Google Scholar 

  • Zhu J, Pigna M, Cozzolino V, Caporale AG, Violante A (2010) Competitive sorption of copper(II), chromium(III) and lead(II) on ferrihydrite and two organomineral complexes. Geoderma 159:409–416

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Key Research and Development of China (Grant numbers: 2020YFC1806801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-kou Xu.

Ethics declarations

Ethics approval

The research does not involve human participants and animals.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible editor: Zhaohui Wang

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17739 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Nkoh Nkoh, J. & Xu, Rk. A critical review of the interactions of organic carbon components with soil minerals: Insight from bibliometric analysis of the environmental behaviors of heavy metal(loid)s. J Soils Sediments 23, 2396–2416 (2023). https://doi.org/10.1007/s11368-023-03502-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-023-03502-1

Keywords

Navigation