Skip to main content

Advertisement

Log in

Exploratory radioisotope measurements suggest that in-stream erosion represents the main sediment source in a pristine, tropical rainforest in Costa Rica

  • Sediments, Sec 3 • Hillslope and River Basin Sediment Dynamics • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Volcanic, humid tropical landscapes are characterized by short-term geomorphic transformations due to volcanism and seismic activity, landslides, and other frequent mass movements. These landscape-forming processes are amplified by high temperatures, high annual precipitation rates, and intense rainstorms. The latter can result in significant surface runoff and sediment mobilization, even under pristine rainforest cover. However, knowledge about sediment sources and the magnitude of the associated erosion and accumulation rates remains limited in these systems.

Methods

This study explores the use of radioisotopes (U-235, Bi-214, Pb-214, total Pb-210, and K-40) and of the fallout radionuclide (FRN) Cs-137 to address that knowledge gap in a pristine, tropical rainforest catchment in northern Costa Rica. We analyzed FRN and radioisotope activities from two reference soil profiles and compared them with those of 17 superficial soil samples collected on two hillslopes and of three streambed sediment samples.

Results

Modeled hillslope erosion and accumulation rates ranged from 6 t ha−1 year−1 erosion to 6.7 t ha−1 year−1 deposition with up to ± 60% uncertainty reflecting spatially variable interception of rainfall inputs. Preliminary sediment fingerprinting results suggested that deeper soil material, likely originating from in-stream bank erosion and channel incision, was the dominant source of stream sediment (79 ± 19%), whereas superficial soil present on the hillslopes only contributed 22 ± 18% to the stream mixture.

Conclusion

Our exploratory work highlights the potential importance of channel erosion processes in the sediment yield of steep rainforest catchments, even when hillslopes and streams have a strong hydrological connection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrello AC, Appoloni CR, Nascimentto Filho VF (2007) Assessment of soil erosion by 137Cs technique in native forests in Londrina City, Parana. Brazil Brazilian Arch Biol Tech 50(6):1051–1060

    Article  CAS  Google Scholar 

  • Balzer L, Schulz K, Birkel C, Biester H (2020) Iron oxides control sorption and mobilisation of iodine in a tropical rainforest catchment. SOIL Discuss. https://doi.org/10.5194/soil-2020-20

  • Birkel C, Correa-Barahona A, Martinez-Martinez M et al (2020) Headwaters drive streamflow and lowland tracer export in a large-scale humid tropical catchment. Hydrol Process 34:3824–3841. https://doi.org/10.1002/hyp.13841

    Article  Google Scholar 

  • Birkel C, Correa Barahona A, Duvert C, Granados Bolaños S, Chavarría Palma A, Durán Quesada AM, Sánchez Murillo R, Biester H (2021) End Member and Bayesian mixing models consistently indicate near-surface flowpath dominance in a pristine humid tropical rainforest. Hydrol Process 35(4):e14153. https://doi.org/10.1002/hyp.14153

    Article  Google Scholar 

  • Blake WH, Boeckx P, Stock BC et al (2018) A deconvolutional Bayesian mixing model approach for river basin sediment source apportionment. Sci Rep 8:13073. https://doi.org/10.1038/s41598-018-30905-9

    Article  CAS  Google Scholar 

  • Bonell M, Gilmour DA (1978) The development of overland flow in a tropical rainforest catchment. J Hydrol 39(3–4):365–382. https://doi.org/10.1016/0022-1694(78)90012-4

    Article  Google Scholar 

  • Brandt C, Benmansour M, Walz L, Nguyen LT, Cadisch G, Rasche F (2018) Integrating compound-specific δ13C isotopes and fallout radionuclides to retrace land use type-specific net erosion rates in a small tropical catchment exposed to intense land use change. Geoderma 310:53–64. https://doi.org/10.1016/j.geoderma.2017.09.008

  • Cassells DS, Gilmour DA, Bonell M (1985) Catchment response and watershed management in the tropical rainforests in North-Eastern Australia. Forest Ecol Manag 10:155–175

    Article  Google Scholar 

  • Chang JH, Lau LS (1983) Definition of the humid tropics. In: Bonell M, Hufschmidt MM, Gladwell JS (eds) Hydrology and water management in the humid tropics. Cambridge University Press, Cambridge, pp 571–575

    Google Scholar 

  • Collins AL, Blackwell M, Boeckx P et al (2020) Sediment source fingerprinting: benchmarking recent outputs, remaining challenges and emerging themes. J Soils Sediments 20:4160–4193. https://doi.org/10.1007/s11368-020-02755-4

    Article  Google Scholar 

  • Correa A, Birkel C, Gutierrez J et al (2020) Modelling non-stationary water ages in a tropical rainforest: a preliminary spatially distributed assessment. Hydrol Process 34(25):4776–4793. https://doi.org/10.1002/hyp.13925

    Article  Google Scholar 

  • Cooper RJ, Krueger T, Hiscock KM, Rawlins BG (2014) Sensitivity of fluvial sediment source apportionment to mixing model assumptions: a Bayesian model comparison. Water Resour Res 50:9031–9047. https://doi.org/10.1002/2014WR016194

  • Cooper RJ, Krueger T (2017) An extended Bayesian sediment fingerprinting mixing model for the full Bayes treatment of geochemical uncertainties. Hydrol Process 31:1900–1912. https://doi.org/10.1002/hyp.11154

    Article  CAS  Google Scholar 

  • Davies J, Olley J, Hawker D, McBroom J (2018) Application of the Bayesian approach to sediment fingerprinting and source attribution. Hydrol Process 32:3978–3995. https://doi.org/10.1002/hyp.13306

    Article  Google Scholar 

  • Dehaspe J, Birkel C, Tetzlaff D, Sánchez-Murillo R, Durán-Quesada AM, Soulsby C (2018) Spatially distributed tracer-aided modelling to explore water and isotope transport, storage and mixing in a pristine, humid tropical catchment. Hydrol Process 32:3206–3224. https://doi.org/10.1002/hyp.13258

    Article  Google Scholar 

  • Dercon G, Mabit L, Hancock G et al (2012) Fallout radionuclide-based techniques for assessing the impact of soil conservation measures on erosion control and soil quality: an overview of the main lessons learnt under an FAO/IAEA Coordinated Research Project. J Environ Radioactivity 107:78–85

    Article  CAS  Google Scholar 

  • Durán-Quesada A, Gimeno L, Amador J et al (2010) Moisture sources for Central America: identification of moisture sources using a lagrangian analysis technique. J Geophysical Res 115(D5):D05103. https://doi.org/10.1029/2009JD012455

    Article  Google Scholar 

  • Durán-Quesada AM, Sor R, Ordoñez P et al (2020) Climate perspectives in the Intra-Americas Seas. Atmosphere 11(9):959

    Article  Google Scholar 

  • Duvert C, Gratiot N, Evrard O, Navratil O, Némery J, Prat C, Esteves M (2010) Drivers of erosion and suspended sediment transport in three contrasted headwater catchments of the Mexican Central Highlands. Geomorphology 123:243–256. https://doi.org/10.1016/j.geomorph.2010.07.016

    Article  Google Scholar 

  • Evrard O, Laceby JP, Huon S et al (2016) Combining multiple fallout radionuclides (137Cs, 7Be, 210Pbxs) to investigate temporal sediment source dynamics in tropical, ephemeral riverine systems. J Soils Sediments 16:1130–1144. https://doi.org/10.1007/s11368-015-1316-y

    Article  CAS  Google Scholar 

  • Evrard O, Némery J, Gratiot N et al (2010) Sediment dynamics during the rainy season in tropical highland catchments of central Mexico using fallout radionuclides. Geomorphology 124:42–54. https://doi.org/10.1016/j.geomorph.2010.08.007

    Article  Google Scholar 

  • Evrard O, Chaboche PA, Ramon R, Foucher A, Laceby PJ (2020) A global review of sediment source fingerprinting research incorporating fallout radiocesium (137Cs). Geomorphology 362:103–107. https://doi.org/10.1016/j.geomorph.2020.107103

    Article  Google Scholar 

  • FAO/IAEA (2017) Use of Cs for soil erosion assessment. In: Fulajtar, E., Mabit, L., Renschler, C.S., Lee Zhi Yi, A., Food and Agriculture Organization of the United Nations, Rome, Italy. 64 pages

  • Garcia-Oliva F, Martinez Lugo R, Maass JM (1995) Long-term net soil erosion as determined by 137 Cs redistribution in an undisturbed and perturbed tropical deciduous forest ecosystem. Geoderma 68:135–147

    Article  CAS  Google Scholar 

  • Gourdin E, Evrard O, Huon S, Lefèvre I, Ribolzi O, Reyss JL, Sengtaheuanghoung O, Ayrault S (2014) Suspended sediment dynamics in a Southeast Asian mountainous catchment: combining river monitoring and fallout radionuclide tracers. J Hydrol 519(B):1811–1823. https://doi.org/10.1016/j.jhydrol.2014.09.056

  • Grande A, Schmidt AH, Bierman PR et al (2021) Landslides, hurricanes, and sediment sourcing impact basin-scale erosion estimates in Luquillo, Puerto Rico. Earth & Plan Sci Lett 566:116821. https://doi.org/10.1016/j.epsl.2021.116821

    Article  CAS  Google Scholar 

  • Haddadchi A, Olley J, Pietsch T (2016) Using LM-OSL of quartz to distinguish sediments derived from surface-soil and channel erosion. Hydrol Process 30:637–647. https://doi.org/10.1002/hyp.10646

    Article  Google Scholar 

  • Junge B, Mabit L, Dercon G, Walling D, Abaidoo R, Chikoye D, Stahr K (2010) First use of the 137Cs technique in Nigeria for estimate of medium-term soil redistribution rates on cultivated farmland. Soil & Tillage Res 110:211–220

    Article  Google Scholar 

  • Kroese S, Batista J, Jacobs SR et al (2020) Agricultural land is the main source of stream sediments after conversion of an African montane forest. Sci Rep 10:14827. https://doi.org/10.1038/s41598-020-71924-9

    Article  CAS  Google Scholar 

  • Labriére N, Locatelli B, Laumonier Y, Freycon V, Bernoux M (2015) Soil erosion in the humid tropics: a systematic quantitative review. Agric Ecosyst Environ 203:127–139. https://doi.org/10.1016/j.agee.2015.01.027

    Article  Google Scholar 

  • Lachance C, Lobb DA, Pelletier G et al (2020) Determination of sediment sources in a mixed watershed within the Appalachian-St. Lawrence Lowland Regions of southern Quebec using sediment fingerprinting. Environ Monit Assess 192:603. https://doi.org/10.1007/s10661-020-08568-9

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627. https://doi.org/10.1126/science.1097396

    Article  CAS  Google Scholar 

  • Lal R, Pimentel D (2008) Soil erosion: a carbon sink or source? Science 319:1040–1042. https://doi.org/10.1126/science.319.5866.1040

    Article  CAS  Google Scholar 

  • Lal R, Tims SG, Fifield LK, Wasson RJ, Howe D (2013) Applicability of Pu-239 as a tracer for soil erosion in the wet-dry tropics of northern Australia. Nucl Instrum Methods Phys Res, Sect B 294:577–583. https://doi.org/10.1016/j.nimb.2012.07.041

    Article  CAS  Google Scholar 

  • Li S, Lobb DA, Kachanoski RG, McConkey BG (2011) Comparing the use of the traditional and repeated-sampling-approach of the 137Cs technique in soil erosion estimation. Geoderma 160:324–335

    Article  Google Scholar 

  • Mabit L, Meusburger K, Fulajtar E, Alewell C (2013) The usefulness of 137Cs as a tracer for soil erosion assessment: A critical reply to Parsons and Foster (2011). Earth-Sci Rev 127:300–307. https://doi.org/10.1016/j.earscirev.2013.05.008

    Article  CAS  Google Scholar 

  • Meusburger K, Mabit L, Ketterer M, Park JH, Sandor T, Porto P, Alewell C (2016) A multi-radionuclide approach to evaluate the suitability of 239+240Pu as soil erosion tracer. Sci Tot Environ 566–567:1489–1499. https://doi.org/10.1016/j.scitotenv.2016.06.035

    Article  CAS  Google Scholar 

  • Navratil O, Evrard O, Esteves M et al (2012) Temporal variability of suspended sediment sources in an alpine catchment combining river/rainfall monitoring and sediment fingerprinting. Earth Surf Process Landf 37:828–846. https://doi.org/10.1002/esp.3201

    Article  Google Scholar 

  • Parsons AJ, Foster IDL (2011) What can we learn about soil erosion from the use of 137-Cs? Earth-Sci Rev 108(1–2):101–113

    Article  CAS  Google Scholar 

  • Pennock DJ, Appleby PG (2002) Site selection and sampling design. In F. Zapata (Ed.), Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides (pp. 15–40). Dordrecht, The Netherlands: Kluwer https://doi.org/10.1007/0‐306‐48054‐9_2

  • Quock M, Schmidt AH, Corbett LB, Bierman PR, Hidy AJ, Caffee M (2022) Hurricanes alter 10Be concentrations in tropical river sediment but do not change regional erosion rate estimates. Earth Surf Process Landf 47:1196–1211. https://doi.org/10.1002/esp.5310

    Article  Google Scholar 

  • Ribolzi O, Evrard O, Huon S et al (2017) From shifting cultivation to teak plantation: effect on overland flow and sediment yield in a montane tropical catchment. Sci Rep 7:3987. https://doi.org/10.1038/s41598-017-04385-2

    Article  CAS  Google Scholar 

  • Rode M, op de Hipt F, Collins AL, Zhang Y, Theuring P, Schkade UK, Diekkrüger B (2018) Subsurface sources contribute substantially to fine-grained suspended sediment transported in a tropical West African watershed in Burkina Faso. Land Degr Develop 29:4092–4105

    Article  Google Scholar 

  • Schuller P, Walling DE, Iroumé A, Quilodrán C, Castillo A, Navas A (2013) Using 137Cs and 210Pbex and other sediment source fingerprints to document suspended sediment sources in small forested catchments in south-central Chile. J Environ Radioact 124:147–159. https://doi.org/10.1016/j.jenvrad.2013.05.002

    Article  CAS  Google Scholar 

  • Smith HG, Karam DS, Lennard AT (2018) Evaluating tracer selection for catchment sediment fingerprinting. J Soils Sediments 18:3005–3019. https://doi.org/10.1007/s11368-018-1990-7

    Article  Google Scholar 

  • Solano-Rivera V, Geris J, Granados-Bolaños S, Brenes-Cambronero L, Artavia-Rodriguez G, Sanchez-Murillo R, Birkel C (2019) Exploring extreme rainfall impacts on flow and turbidity dynamics in a steep, pristine and tropical volcanic catchment. CATENA 182:104118. https://doi.org/10.1016/j.catena.2019.104118

    Article  Google Scholar 

  • Stock BC, Jackson AL, Ward EJ, Parnell AC, Phillips DL, Semmens BX (2018) Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6:e5096. https://doi.org/10.7717/peerj.5096

    Article  Google Scholar 

  • Sutherland RA (1996) Caesium-137 soil sampling and inventory variability in reference locations: a literature review. Hydrol Process 10:43–53

    Article  Google Scholar 

  • VandenBygaart et al (2008) Cautionary notes on the assumptions made in erosion studies using fallout 137Cs as a marker. Can J Soil Sci 79:395–397

    Article  Google Scholar 

  • Velasco H, Torres Astorga R, Joseph D, Antoine JS, Mabit L, Toloza A, Dercon G, Walling DE (2018) Adapting the Caesium-137 technique to document soil redistribution rates associated with traditional cultivation practices in Haiti. J Environ Radioact 183:7–16. https://doi.org/10.1016/j.jenvrad.2017.12.008

    Article  CAS  Google Scholar 

  • Vercruysse K, Grabowski RC (2019) Temporal variation in suspended sediment transport: linking sediment sources and hydro-meteorological drivers. Earth Surf Process Landf 44:2587–2599. https://doi.org/10.1002/esp.4682

    Article  Google Scholar 

  • Walling DE (2005) Tracing suspended sediment sources in catchments and river systems. Sci Tot Environ 344:159–184

    Article  CAS  Google Scholar 

  • Walling DE (2013) The evolution of suspended sediment fingerprinting investigations in fluvial systems. J Soils Sediments 13:1658–1675

    Article  Google Scholar 

  • Walling DE, He Q (2000) The global distribution of bomb-derived 137Cs reference inventories. Final report on IAEA technical contracts No. 10361/Ro-R1. University of Exeter, Exeter, UK

  • Walling DE, He Q, Appleby PG (2002) Conversion models for use in soil‐erosion, soil‐redistribution and sedimentation investigations. In F. Zapata (Ed.), Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides (pp. 111–164). Dordrecht, The Netherlands: Kluwer https://doi.org/10.1007/0‐306‐48054‐9_7

  • Walling DE, Zhang YQH (2003) Conversion models and related software. Guidelines for using fallout radionuclides to assess erosion and effectiveness of soil conservation strategies. IAEA-TECDOC-1741, pp. 125–148 Vienna

  • Walling DE, Zhang Y, He Q (2011) Models for deriving estimates of erosion and deposition rates from fallout radionuclide (caesium‐137, excess lead‐210, and beryllium‐7) measurements and the development of user-friendly software for model implementation. In Impact of soil conservation measures on erosion control and soil quality. IAEA TECDOC‐1665 (pp. 11–33)

  • Wohl E, Barros A, Brunsell N et al (2012) The hydrology of the humid tropics. Nat Clim Change 2(9):655–662. https://doi.org/10.1038/nclimate1556

    Article  Google Scholar 

  • Wymore AS, Leon MC, Shanley JB, McDowell WH (2019) Hysteretic response of solutes and turbidity at the event scale across forested tropical montane watersheds. Front Earth Sci 7:126. https://doi.org/10.3389/feart.2019.00126

    Article  Google Scholar 

  • Yang H, Chang Q, Du M, Minami K, Hatta T (1998) Quantitative model of soil erosion rates using 137Cs for uncultivated soil. Soil Sci 163:248–257

    Article  CAS  Google Scholar 

  • Zapata F (Ed.) (2002) Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides. (p. 219). Dordrecht, The Netherlands: Kluwer https://doi.org/10.1007/0%E2%80%93306%E2%80%9348054-9

  • Zhang Z, Tao F, Shi P, Xu W, Sun Y, Fukushima T, Onda Y (2010) Characterizing the flush of stream chemical runoff from forested watersheds. Hydrol Process 24(20):2960–2970. https://doi.org/10.1002/hyp.7717

    Article  CAS  Google Scholar 

  • Zhang XC, Zhang GH, Wei X (2015) How to make 137Cs erosion estimates more useful: an uncertainty perspective. Geoderma 239–240:186–194. https://doi.org/10.1016/j.geoderma.2014.10.004

    Article  Google Scholar 

  • Zimmermann A, Francke T, Elsenbeer H (2012) Forests and erosion: insights from a study of suspended-sediment dynamics in an overland flow-prone rainforest catchment. J Hydrol 27:170–181. https://doi.org/10.1016/j.jhydrol.2012.01.039

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the helpful staff at the RBAMB station for support during the extensive fieldwork campaign. CB would like to acknowledge UCR support for the projects B8709, ED-3319, UCREA-B8276, and the IAEA CRP: F31005. MC acknowledges support by the UCR project 915-B7-082. CD acknowledges support from Charles Darwin University and the Australian Research Council (DE220100852).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Birkel.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible editor: Olivier Evrard

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PNG 194 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birkel, C., Duvert, C., Arias, K.V. et al. Exploratory radioisotope measurements suggest that in-stream erosion represents the main sediment source in a pristine, tropical rainforest in Costa Rica. J Soils Sediments 22, 3209–3224 (2022). https://doi.org/10.1007/s11368-022-03325-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-022-03325-6

Keywords

Navigation