Skip to main content

Advertisement

Log in

Improving odour assessment in LCA—the odour footprint

  • NON-TOXIC IMPACT CATEGORIES ASSOCIATED WITH EMISSIONS TO AIR, WATER, SOIL
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Odour is an important aspect of systems for human and agricultural waste management and many technologies are developed with the sole purpose of reducing odour. Compared with greenhouse gas assessment and the assessment of toxicity, odour assessment has received little attention in the life cycle assessment (LCA) community. This article aims to redress this.

Methods

Firstly, a framework for the assessment of odour impacts in LCA was developed considering the classical LCA framework of emissions, midpoint and endpoint indicators. This suggested that an odour footprint midpoint indicator was worth striving for. An approach to calculating an areal indicator we call “odour footprint”, which considers the odour detection threshold, the diffusion rate and the kinetics of degradation of odourants, was implemented in MATLAB. We demonstrated the use of the characterisation factors we calculated in a case study based on odour removal technology applied to a pig barn.

Results and discussion

We produced a list of 33 linear characterisation factors based on hydrogen sulphide equivalents, analogous to the linear carbon dioxide equivalency factors in use in carbon footprinting, or the dichlorobenzene equivalency factors developed for assessment of toxic impacts in LCA. Like the latter, this odour footprint method does not take local populations and exposure pathway analysis into account—its intent is not to assess regulatory compliance or detailed design. The case study showed that despite the need for materials and energy, large factor reductions in odour footprint and eutrophication potential were achieved at the cost of a smaller factor increase in greenhouse emissions.

Conclusions

The odour footprint method is proposed as an improvement on the established midpoint method for odour assessment in LCA. Unlike it, the method presented here considers the persistence of odourants. Over time, we hope to increase the number of characterised odourants, enabling analysts to perform simple site-generic LCA on systems with odourant emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abraham MH, Sanchez-Moreno R, Cometto-Muniz JE, Cain WS (2012) An algorithm for 353 odor detection thresholds in humans. Chem Senses 37(3):207–218

    Article  CAS  Google Scholar 

  • Allen DT (2001) Evaluating environmental fate: approaches based on chemical structure. Chapter 5. In: Allen DT, Shonnard D (eds) Green engineering: environmentally conscious design of chemical processes. Prentice Hall, Englewood Cliffs, 539 pp

    Google Scholar 

  • Bare JC, Hofstetter P, Pennington DW, Udo de Haes HA (2000) Midpoints versus endpoints: the sacrifices and benefits. Int J Life Cycle Assess 5(6):319–326

    Article  Google Scholar 

  • Baumann H, Tillman A-M (2004) The hitch hiker’s guide to LCA. Studentlitteratur, Malmö

    Google Scholar 

  • Benetto E, Becker M, Welfring J (2009) Life cycle assessment of oriented strand boards (OSB): from process innovation to ecodesign. Environ Sci Technol 43:6003–6009

    Article  CAS  Google Scholar 

  • Bridle T, Skrypski-Mantele S (2000) Assessment of sludge reuse options: a life-cycle approach. Water Sci Technol 41(8):131–135

    Google Scholar 

  • Cucurachi S, Heijungs R, Peijnenburg WJGM, Bolte JFB, de Snoo GR (2014) A framework for deciding on the inclusion of emerging impacts in life cycle impact assessment. J Clean Prod. doi:10.1016/j.jclepro.2014.05.010

    Google Scholar 

  • De Schryver AM, Brakkee KW, Goedkoop MJ, Huijbregts MAJ (2009) Characterisation factors for global warming in life cycle assessment based on damages to humans and ecosystems. Environ Sci Technol 43:1689–1695

    Article  Google Scholar 

  • Feilberg A, Nyord T, Hansen MN, Lindholst S (2011) Chemical evaluation of odor reduction by soil injection of animal manure. J Environ Qual 40(5):1674–1682

    Article  CAS  Google Scholar 

  • Fogler HS (1992) Elements of chemical reaction engineering. Hall, Prentice. ISBN 9780132635349

    Google Scholar 

  • Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J,Van Zelm R (2009) ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level; First edition Report I: characterisation. Ministry for housing, spatial planning and environment. The Netherlands. http://www.leidenuniv.nl/cml/ssp/publications/recipe_characterisation_addenum.pdf

  • Guinee JB (2002) Handbook on life cycle assessment: operational guide to the ISO standards. Kluwer Academic. ISBN 1402002289

  • Hansen MJ, Adamsen APS, Pedersen P, Feilberg A (2012) Prediction of odor from pig production based on chemical odorants. J Environ Qual 41(2):436–443

    Article  CAS  Google Scholar 

  • Hansen M, Adamsen APS, Feilberg A (2013) Recovery of odorants from an olfactometer measured by proton-transfer-reaction mass spectrometry. Sensors 13(6):7860–7871

    Article  CAS  Google Scholar 

  • Heijungs RJ, Guinee J, Huppes G, Lankreijer RM, Udo de Haes HA, Wegener Sleeswijk A, Ansems AMM, Eggels PG, van Duin R, de Goede HP (1992) Environmental life cycle assessment of products. Guide and backgrounds. CML, Leiden University. https://openaccess.leidenuniv.nl/handle/1887/8062

  • Huerta-Cuellar G, Jimenez-Lopez E, Campos-Campon E, Pisarchik AN (2014) An approach to generate deterministic Brownian motion. Commun Nonlinear Sci Numer Simul 19(8):2740–2746

    Article  Google Scholar 

  • Huijbregts M, Hauschild M, Jolliet O, Margni M, McKone T, Rosenbaum RK, van de Meent D (2010) USEtox user manual. www.usetox.org/support/tutorials-manuals

  • JRC (2010) International Reference Life Cycle Data System (ILCD), general guide for life cycle assessment—detailed guidance. Joint Research Centre, European Commission. ISBN 978-92-79-19092-6. http://bookshop.europa.eu/sv/international-reference-life-cycle-data-system-ilcd-handbook-general-guide-for-life-cycle-assessment-detailed-guidance-pbLBNA24708/

  • Jullien A, Moneron P, Quaranta G, Gaillard D (2006) Air emissions from pavement layers compossed of varying rates of reclaimed asphalt. Resour Conserv Recycl 47:356–374

    Article  Google Scholar 

  • Kadam KL (2002) Environmental benefits on a life cycle basis of using bagasse-derived ethanol as gasoline oxygenate in India. Energy Policy 30:371–384

    Article  Google Scholar 

  • Klinglemair M, Sala S, Brandao M (2014) Assessing resource depletion in LCA: a review of methods and methodological issues. Int J Life Cycle Assess 19:580–592

    Article  Google Scholar 

  • Kounina A, Margni M, Bayart J-B, Boulay A-M, Berger M, Bulle C, Frischknecht R, Koehler A, Milà i Canals L, Motoshita M, Núñez M, Peters G, Pfister S, Ridoutt B, van Zelm R, Verones F, Humbert S (2013) Review of methods addressing freshwater use in life cycle inventory and impact assessment. Int J Life Cycle Assess 18:707–721

    Article  CAS  Google Scholar 

  • Kwok ESC, Atkinson R (1995) Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure-reactivity relationship: an update. Atmos Res 29(14):1685–1895

    CAS  Google Scholar 

  • Latos M, Karageorgos P, Kalogerkis N, Lazaridis M (2011) Dispersion of odorous gaseous compounds emitted from wastewater treatment plants. Water Air Soil Pollut 215(1–4):667–677

    Article  CAS  Google Scholar 

  • Liu D, Hansen MJ, Guldberg LB, Feilberg A (2012) Kinetic evaluation of removal of odorous contaminants in a three-stage biological air filter. Environ Sci Technol 46:8261–8269

    Article  CAS  Google Scholar 

  • Lundie S, Huijbregts MAJ, Rowley HV, Mohr NJ, Feitz AJ (2007) Australian characterisation factors and normalisation figures for human toxicity and ecotoxicity. J Clean Prod 15(8–9):819–832

    Article  Google Scholar 

  • Manion JA, Huie RE, Levin RD, Burgess Jr. DR, Orkin VL, Tsang W, McGivern WS, Hudgens JW, Knyazev VD, Atkinson DB, Chai E, Tereza AM, Lin CY, Allison TC, Mallard WG, Westley F, Herron JT, Hampson RF, Frizzell DH (2008) NIST Chemical Kinetics Database, NIST Standard Reference Database 17, Version 7.0 (Web Version), Release 1.4.3, Data version 2008.12, National Institute of Standards and Technology, Gaithersburg, Maryland. http://kinetics.nist.gov/ accessed June 2013

  • Marchand M, Aissani L, Mallard P, Béline F, Réveret J-P (2013) Odour and life cycle assessment (LCA) in waste management: a local assessment proposal. Waste Biomass Valor 4:607–617

    Article  CAS  Google Scholar 

  • Nagata Y (2003) Measurement of odor threshold by triangle odor bag method. In: Odor Measurement Review. Office of Odor, Noise and Vibration, Environmental Management Bureau, Ministry of Environment, pp 118–127. http://www.orea.or.jp/en/PDF/Odor_Measurement_Review.pdf accessed November 2013

  • Nicell JA (2009) Assessment and regulation of odour impacts. Atmos Environ 43:196–206

    Article  CAS  Google Scholar 

  • Nord (1995) Nordic guidelines on life-cycle assessment. Nordic Council of Ministers. Nord 1995:20. ISBN 92 9120 692 X

  • Pandey D, Agrawal M, Pandey JS (2011) Carbon footprint: current methods of estimation. Environ Monit Assess 178:135–160

    Article  CAS  Google Scholar 

  • Parker DB, Koziel JA, Cai L, Jacobson LD, Akdeniz N, Bereznicki SD, Lim TT, Caraway EA, Zhang S, Hoff SJ, Heber AJ, Heathcote KY, Hetchler BP (2012) Odor and odorous chemical emissions from animal buildings: part 6. odor activity value. Trans ASABE 55(6):2357–2368

    Article  CAS  Google Scholar 

  • PE International (2014) Gabi software. http://www.gabi-software.com/international/software/gabi-software/

  • Potting J, Schöpp W, Blok K, Hauschild M (1998) Site-dependent life-cycle impact assessment of acidification. J Ind Ecol 2(2):63–87

    Article  CAS  Google Scholar 

  • Powers WJ, Angel CR, Applegate TJ (2005) Air emissions in poultry production: current challenges and future directions. J Appl Poult Res 14:613–621

    Article  Google Scholar 

  • Rabl A, Spadaro JV, Zoughaib A (2008) Environmental impacts and costs of solid waste: a comparison of landfill and incineration. Waste Manag Res 26:147

    Article  CAS  Google Scholar 

  • Roos C (1989) Vooronderzoek financiele consequenties van een geurbelevingsnorm. MT-TNO report 88–230. Apeldoorn, The Netherlands

  • Rosenbaum RK, Margni M, Jolliet O (2007) A flexible matrix algebra framework for the multimedia multipathway modeling of emission to impacts. Environ Int 33(5):624–634

    Article  Google Scholar 

  • Rosenkranz HS, Cunningham AR (2003) Environmental odors and health hazards. Sci Total Environ 313:15–24

    Article  CAS  Google Scholar 

  • Rowley HV, Peters GM, Lundie S, Moore SJ (2012) Aggregating sustainability indicators: Beyond the weighted sum. J Environ Manag 111:24–33

  • Schiffman SS, Sattely Miller EA, Suggs MS, Graham BG (1995) The effect of environmental odors emanating from commercial swine operations on the mood of nearby residents. Brain Res Bull 37(4):369–375

    Article  CAS  Google Scholar 

  • Schiffman SS, Studwell CE, Landerman LR, Berman K, Sundy JS (2005) Symptomatic effects of exposure to diluted air sampled from a swine confinement atmosphere on healthy human subjects. Environ Health Perspect 113(5):567–576

    Article  CAS  Google Scholar 

  • Steen B (1999) A systematic approach to environmental priority strategies in product development (EPS). Version 2000—general system characteristics. Chalmers University of Technology, Technical Environmental Planning. http://lifecyclecenter.se/wordpressnew/wp-content/uploads/2012/12/1999_4.pdf viewed Sept 2013

  • Steinberg I, Bockreis A, Rohde C, Jager J (2004) Ecological assessment of waste air treatment systems in the case of biological waste treatment. Water Sci Technol 50(4):33–38

    CAS  Google Scholar 

  • Steinberg I, Rohde C, Bockreis A, Jager J (2005) Increase of the purification efficiency of biofilters by the use of a complementary ionisation step. Waste Manag 25:375–381

    Article  CAS  Google Scholar 

  • Ten Hoeve M, Hutchings NJ, Peters G, Svanström M, Jensen LS, Bruun S (2014) Life cycle assessment of pig slurry treatment technologies for nutrient redistribution in Denmark. J Environ Manag 132:60–70

    Article  Google Scholar 

  • USEtox (2014) USEtox™ 1.01—UNEP/SETAC model for the comparative assessment of chemicals released to air, water and soil and their toxic effects on the human population and ecosystems. Downloaded from http://www.usetox.org/model/download January 2014

Download references

Acknowledgments

The researchers acknowledge support from the Danish Council for Strategic Research Project 2104-09-0056, the Swedish Foundation for Strategic Environmental Research (MISTRA) Future Fashion project, the Australian Research Council (DP1096691) and Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) grants 2012–1122 and 2013–1214.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory M. Peters.

Additional information

Responsible editor: Jeroen Guinée

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table SI1

(DOCX 18.7 kb)

Table SI2

(DOCX 16.2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peters, G.M., Murphy, K.R., Adamsen, A.P.S. et al. Improving odour assessment in LCA—the odour footprint. Int J Life Cycle Assess 19, 1891–1900 (2014). https://doi.org/10.1007/s11367-014-0782-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-014-0782-6

Keywords

Navigation