Skip to main content
Log in

Intermittent fasting promotes rejuvenation of immunosenescent phenotypes in aged adipose tissue

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

The aging of white adipose tissue (WAT) involves senescence of adipose stem and progenitor cells (ASPCs) and dysregulation of immune cell populations, serving as a major driver of age-associated adipose dysfunction and metabolic diseases. Conversely, the elimination of senescent ASPCs is associated with improvements in overall health. Intermittent fasting (IF), a dietary intervention that incorporates periodic cycles of fasting and refeeding, has been reported to promote weight loss and fat mass reduction and improve glucose and insulin homeostasis in both murine and human studies. While previous studies have assessed the effects of IF on obesity-associated metabolic dysfunction, few studies have examined the aging-specific changes to ASPCs and immune cell populations in WAT. Here, we show that IF in 18–20-month-old mice reduced senescent phenotypes of ASPCs and restored their adipogenic potential. Intriguingly, IF-treated mice exhibited an increase in adipose eosinophils, which has been reported to be associated with improved WAT homeostasis and immunological fitness in aged mice. The observed cellular and metabolic changes suggest that IF may be a feasible lifestyle regimen to reduce cellular senescence which could result in attenuation of downstream aging-induced WAT dysfunction and metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that supports the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Li Z, Zhang Z, Ren Y, Wang Y, Fang J, Yue H, Ma S, Guan F. Aging and age-related diseases: from mechanisms to therapeutic strategies. Biogerontology. 2021;22(2):165–87.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Conley SM, Hickson LJ, Kellogg TA, McKenzie T, Heimbach JK, Taner T, Tang H, Jordan KL, Saadiq IM, Woollard JR, et al. Human obesity induces dysfunction and early senescence in adipose tissue-derived mesenchymal stromal/stem cells. Front Cell Dev Biol. 2020;8:197.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Spinelli R, Parrillo L, Longo M, Florese P, Desiderio A, Zatterale F, Miele C, Raciti GA, Beguinot F. Molecular basis of ageing in chronic metabolic diseases. J Endocrinol Invest. 2020;43(10):1373–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pappas LE, Nagy TR. The translation of age-related body composition findings from rodents to humans. Eur J Clin Nutr. 2019;73(2):172–8.

    Article  PubMed  Google Scholar 

  5. Schosserer M, Grillari J, Wolfrum C, Scheideler M. Age-induced changes in white, brite, and brown adipose depots: a mini-review. Gerontology. 2018;64(3):229–36.

    Article  CAS  PubMed  Google Scholar 

  6. Zoico E, Rubele S, De Caro A, Nori N, Mazzali G, Fantin F, Rossi A, Zamboni M. Brown and beige adipose tissue and aging. Front Endocrinol (Lausanne). 2019;10:368.

    Article  PubMed  Google Scholar 

  7. Chait A, den Hartigh LJ. Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front Cardiovasc Med. 2020;7:22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang M, Hu T, Zhang S, Zhou L. Associations of different adipose tissue depots with insulin resistance: a systematic review and meta-analysis of observational studies. Sci Rep. 2015;5:18495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schaum N, Lehallier B, Hahn O, Palovics R, Hosseinzadeh S, Lee SE, Sit R, Lee DP, Losada PM, Zardeneta ME, et al. Ageing hallmarks exhibit organ-specific temporal signatures. Nature. 2020;583(7817):596–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tabula MC. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature. 2020;583(7817):590–5.

    Article  Google Scholar 

  11. Trim WV, Walhin JP, Koumanov F, Bouloumie A, Lindsay MA, Chen YC, Travers RL, Turner JE, Thompson D. Divergent immunometabolic changes in adipose tissue and skeletal muscle with ageing in healthy humans. J Physiol. 2022;600(4):921–47.

    Article  CAS  PubMed  Google Scholar 

  12. Ou MY, Zhang H, Tan PC, Zhou SB, Li QF. Adipose tissue aging: mechanisms and therapeutic implications. Cell Death Dis. 2022;13(4):300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ferrero R, Rainer P, Deplancke B. Toward a consensus view of mammalian adipocyte stem and progenitor cell heterogeneity. Trends Cell Biol. 2020;30(12):937–50.

    Article  CAS  PubMed  Google Scholar 

  14. Von Bank H, Kirsh C, Simcox J. Aging adipose: depot location dictates age-associated expansion and dysfunction. Ageing Res Rev. 2021;67:101259.

    Article  Google Scholar 

  15. Nguyen HP, Lin F, Yi D, Xie Y, Dinh J, Xue P, Sul HS. Aging-dependent regulatory cells emerge in subcutaneous fat to inhibit adipogenesis. Dev Cell. 2021;56(10):1437-1451 e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schafer MJ, White TA, Evans G, Tonne JM, Verzosa GC, Stout MB, Mazula DL, Palmer AK, Baker DJ, Jensen MD, et al. Exercise prevents diet-induced cellular senescence in adipose tissue. Diabetes. 2016;65(6):1606–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu M, Palmer AK, Ding H, Weivoda MM, Pirtskhalava T, White TA, Sepe A, Johnson KO, Stout MB, Giorgadze N, et al. Targeting senescent cells enhances adipogenesis and metabolic function in old age. Elife. 2015;4:e12997.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Palmer AK, Xu M, Zhu Y, Pirtskhalava T, Weivoda MM, Hachfeld CM, Prata LG, van Dijk TH, Verkade E, Casaclang-Verzosa G, et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell. 2019;18(3):e12950.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Brigger D, Riether C, van Brummelen R, Mosher KI, Shiu A, Ding Z, Zbaren N, Gasser P, Guntern P, Yousef H, et al. Eosinophils regulate adipose tissue inflammation and sustain physical and immunological fitness in old age. Nat Metab. 2020;2(8):688–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Molofsky AB, Nussbaum JC, Liang HE, Van Dyken SJ, Cheng LE, Mohapatra A, Chawla A, Locksley RM. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J Exp Med. 2013;210(3):535–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Berry DC, Jiang Y, Arpke RW, Close EL, Uchida A, Reading D, Berglund ED, Kyba M, Graff JM. Cellular aging contributes to failure of cold-induced beige adipocyte formation in old mice and humans. Cell Metab. 2017;25(1):166–81.

    Article  CAS  PubMed  Google Scholar 

  22. Pifferi F, Aujard F. Caloric restriction, longevity and aging: recent contributions from human and non-human primate studies. Prog Neuropsychopharmacol Biol Psychiatry. 2019;95:109702.

    Article  PubMed  Google Scholar 

  23. Lee JH, Verma N, Thakkar N, Yeung C, Sung HK. Intermittent fasting: physiological implications on outcomes in mice and men. Physiology (Bethesda). 2020;35(3):185–95.

    CAS  PubMed  Google Scholar 

  24. Kim KH, Kim YH, Son JE, Lee JH, Kim S, Choe MS, Moon JH, Zhong J, Fu K, Lenglin F, et al. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage. Cell Res. 2017;27(11):1309–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. 2018;27(6):1212-1221 e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brandhorst S, Choi IY, Wei M, Cheng CW, Sedrakyan S, Navarrete G, Dubeau L, Yap LP, Park R, Vinciguerra M, et al. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab. 2015;22(1):86–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hutchison AT, Regmi P, Manoogian ENC, Fleischer JG, Wittert GA, Panda S, Heilbronn LK. Time-restricted feeding improves glucose tolerance in men at risk for type 2 diabetes: a randomized crossover trial. Obesity (Silver Spring). 2019;27(5):724–32.

    Article  CAS  PubMed  Google Scholar 

  28. Liu B, Page AJ, Hatzinikolas G, Chen M, Wittert GA, Heilbronn LK. Intermittent fasting improves glucose tolerance and promotes adipose tissue remodeling in male mice fed a high-fat diet. Endocrinology. 2019;160(1):169–80.

    Article  CAS  PubMed  Google Scholar 

  29. Mina AI, LeClair RA, LeClair KB, Cohen DE, Lantier L, Banks AS. CalR: a web-based analysis tool for indirect calorimetry experiments. Cell Metab. 2018;28(4):656-666 e1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee JH, Ealey KN, Patel Y, Verma N, Thakkar N, Park SY, Kim JR, Sung HK. Characterization of adipose depot-specific stromal cell populations by single-cell mass cytometry. iScience. 2022;25(4):104166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim YH, Lee JH, Yeung JL, Das E, Kim RY, Jiang Y, Moon JH, Jeong H, Thakkar N, Son JE, et al. Thermogenesis-independent metabolic benefits conferred by isocaloric intermittent fasting in ob/ob mice. Sci Rep. 2019;9(1):2479.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li G, Xie C, Lu S, Nichols RG, Tian Y, Li L, Patel D, Ma Y, Brocker CN, Yan T, et al. Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metab. 2017;26(5):801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu B, Page AJ, Hutchison AT, Wittert GA, Heilbronn LK. Intermittent fasting increases energy expenditure and promotes adipose tissue browning in mice. Nutrition. 2019;66:38–43.

    Article  CAS  PubMed  Google Scholar 

  34. Emont MP, Jacobs C, Essene AL, Pant D, Tenen D, Colleluori G, Di Vincenzo A, Jorgensen AM, Dashti H, Stefek A, et al. A single-cell atlas of human and mouse white adipose tissue. Nature. 2022;603(7903):926–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu X, Song W, Wong BY, Zhang T, Yu S, Lin GN, Ding X. A comparison framework and guideline of clustering methods for mass cytometry data. Genome Biol. 2019;20(1):297.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sun C, Berry WL, Olson LE. PDGFRalpha controls the balance of stromal and adipogenic cells during adipose tissue organogenesis. Development. 2017;144(1):83–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Merrick D, Sakers A, Irgebay Z, Okada C, Calvert C, Morley MP, Percec I and Seale P. Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science. 2019; 364(6438).

  38. Perez-Perez A, Sanchez-Jimenez F, Vilarino-Garcia T, and Sanchez-Margalet V Role of leptin in inflammation and vice versa. Int J Mol Sci. 2020; 21(16).

  39. Jequier E. Leptin signaling, adiposity, and energy balance. Ann N Y Acad Sci. 2002;967:379–88.

    Article  CAS  PubMed  Google Scholar 

  40. Distefano G, and Goodpaster BH. Effects of exercise and aging on skeletal muscle. Cold Spring Harb Perspect Med. 2018; 8(3).

  41. Hepler C, Weidemann BJ, Waldeck NJ, Marcheva B, Cedernaes J, Thorne AK, Kobayashi Y, Nozawa R, Newman MV, Gao P, et al. Time-restricted feeding mitigates obesity through adipocyte thermogenesis. Science. 2022;378(6617):276–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Berry DC, Jiang Y, Arpke RW, Close EL, Uchida A, Reading D, Berglund ED, Kyba M, Graff JM. Cellular aging contributes to failure of cold-induced beige adipocyte formation in old mice and humans. Cell Metab. 2017;25(2):481.

    Article  CAS  PubMed  Google Scholar 

  43. Delaney KZ, Gillespie ZE, Murphy J, Wang C. Altered immunometabolism in adipose tissue: a major contributor to the ageing process? J Physiol. 2022;600(4):715–7.

    Article  CAS  PubMed  Google Scholar 

  44. Ye J, Gao C, Liang Y, Hou Z, Shi Y, Wang Y. Characteristic and fate determination of adipose precursors during adipose tissue remodeling. Cell Regen. 2023;12(1):13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hatzmann FM, Grossmann S, Waldegger P, Wiegers GJ, Mandl M, Rauchenwald T, Pierer G, Zwerschke W. Dipeptidyl peptidase-4 cell surface expression marks an abundant adipose stem/progenitor cell population with high stemness in human white adipose tissue. Adipocyte. 2022;11(1):601–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bapat SP, Myoung SuhJ, Fang S, Liu S, Zhang Y, Cheng A, Zhou C, Liang Y, LeBlanc M, Liddle C, et al. Depletion of fat-resident Treg cells prevents age-associated insulin resistance. Nature. 2015;528(7580):137–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shan B, Barker CS, Shao M, Zhang Q, Gupta RK, Wu Y. Multilayered omics reveal sex- and depot-dependent adipose progenitor cell heterogeneity. Cell Metab. 2022;34(5):783-799 e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hagg S, and Jylhava J. Sex differences in biological aging with a focus on human studies. Elife 2021; 10.

  49. Baumann CW, Kwak D, Thompson LV. Sex-specific components of frailty in C57BL/6 mice. Aging (Albany NY). 2019;11(14):5206–14.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Center for Advanced Single Cell Analysis at the Hospital for Sick Children Research Institute for their considerable technical contribution, including optimization of staining and panel design in CyTOF experiments.

Funding

H.-K. S. is supported by grants from Canadian Institute of Health Research (CIHR, PJT-162083), Natural Sciences and Engineering Research Council (NSERC, RGPIN-2016–06610) of Canada, and Sun Life Financial New Investigator Award of Banting & Best Diabetes Centre (BBDC) of University of Toronto. H.-K. S. and J.-R. K. are supported by Korea-Canada Research Fund (2019K1A3A1A74107385), S.-Y. P. and J.-R. K. by the Medical Research Center Program (2022R1A5A2018865), and S.-Y. P. (2019R1A2C1088730) and J.-R. K. (2022R1A2C200409912) by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (J. T. is supported by postdoctoral fellowship of Banting & Best Diabetes Centre (BBDC) of University of Toronto). J. H. L. is supported by Doctoral Program Postgraduate Scholarship (PGS-D) from Natural Sciences and Engineering Research (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae-Ryong Kim, So-Young Park or Hoon-Ki Sung.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1.80 MB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ealey, K.N., Togo, J., Lee, J.H. et al. Intermittent fasting promotes rejuvenation of immunosenescent phenotypes in aged adipose tissue. GeroScience 46, 3457–3470 (2024). https://doi.org/10.1007/s11357-024-01093-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-024-01093-4

Keywords

Navigation