Skip to main content

Advertisement

Log in

Therapeutic efficacies of mitochondria-targeted esculetin and metformin in the improvement of age-associated atherosclerosis via regulating AMPK activation

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

A Correction to this article was published on 26 December 2023

This article has been updated

Abstract

Atherosclerosis, in general, is an age-associated cardiovascular disease wherein a progressive decline in mitochondrial function due to aging majorly contributes to the disease development. Mitochondria-derived ROS due to dysregulated endothelial cell function accentuates the progression of atherosclerotic plaque formation. To circumvent this, mitochondrially targeted antioxidants are emerging as potential candidates to combat metabolic abnormalities. Recently, we synthesized an alkyl TPP+ tagged esculetin (Mito-Esc), and in the current study, we investigated the therapeutic efficacies of Mito-Esc and metformin, a well-known anti-diabetic drug, in the amelioration of age-associated plaque formation in the aortas of 12 months aged Apoe−/− and 20 months aged C57BL/6 mice, in comparison to young C57BL/6 control mice. Administration of Mito-Esc or metformin significantly reduced age-induced atherosclerotic lesion area, macrophage polarization, vascular inflammation, and senescence. Further, chronic passaging of human aortic endothelial cells (HAEC) with either Mito-Esc or metformin significantly delayed cellular senescence via the activation of the AMPK-SIRT1/SIRT6 axis. Conversely, depletion of either AMPK/SIRT1/SIRT6 caused premature senescence. Consistent with this, Mito-Esc or metformin treatment attenuated NFkB-mediated inflammatory signaling and enhanced ARE-mediated anti-oxidant responses in comparison to late passage control HAECs. Importantly, culturing of HAECs for several passages with either Mito-Esc or metformin significantly improved mitochondrial function. Overall, Mito-Esc and metformin treatments delay age-associated atherosclerosis by regulating vascular senescence via the activation of AMPK-SIRT1/SIRT6 axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

Data Availability

All the data included in the manuscript will be available upon reasonable request.

Change history

References

  1. Wang JC, Bennett M. Aging and atherosclerosis. Circ Res. 2012;111(2):245–59.

    Article  CAS  PubMed  Google Scholar 

  2. Minamino T, et al. Endothelial cell senescence in human atherosclerosis. Circulation. 2002;105(13):1541–4.

    Article  CAS  PubMed  Google Scholar 

  3. Matthews C, et al. Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis. Circ Res. 2006;99(2):156–64.

    Article  CAS  PubMed  Google Scholar 

  4. Poch E, et al. Short telomeres protect from diet-induced atherosclerosis in apolipoprotein E-null mice. FASEB J. 2004;18(2):1–16.

    Article  Google Scholar 

  5. Honda S, et al. Cellular senescence promotes endothelial activation through epigenetic alteration, and consequently accelerates atherosclerosis. Sci Rep. 2021;11(1):14608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harman D. Free radical theory of aging. Mutation Research/DNAging. 1992;275(3):257–66.

    Article  CAS  Google Scholar 

  7. Giorgi C, et al. Mitochondria and reactive oxygen species in aging and age-related diseases. Int Rev Cell Mol Biol. 2018;340:209–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yuan T, et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 2019;20:247–60.

    Article  CAS  PubMed  Google Scholar 

  9. Madamanchi NR, Runge MS. Mitochondrial dysfunction in atherosclerosis. Circ Res. 2007;100(4):460–73.

    Article  CAS  PubMed  Google Scholar 

  10. Wang JY, et al. Triphenylphosphonium (TPP)-based antioxidants: a new perspective on antioxidant design. ChemMedChem. 2020;15(5):404–10.

    Article  CAS  PubMed  Google Scholar 

  11. Petrov A, et al. SkQ1 Ophthalmic solution for dry eye treatment: results of a phase 2 safety and efficacy clinical study in the environment and during challenge in the controlled adverse environment model. Adv Ther. 2016;33(1):96–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang Q-H, Qin S-W, Jiang J-G. Improvement effects of esculetin on the formation and development of atherosclerosis. Biomed Pharmacother. 2022;150:113001.

    Article  CAS  PubMed  Google Scholar 

  13. Karnewar S, et al. Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis. Sci Rep. 2016;6:24108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karnewar S, et al. Mitochondria-targeted esculetin mitigates atherosclerosis in the setting of aging via the modulation of SIRT1-mediated vascular cell senescence and mitochondrial function in Apoe−/− mice. Atherosclerosis. 2022;356:28–40.

    Article  CAS  PubMed  Google Scholar 

  15. Soukas AA, Hao H, Wu L. Metformin as anti-aging therapy: is it for everyone? Trends Endocrinol Metab. 2019;30(10):745–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Karnewar S, et al. 2018 Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K79 methylation relevance in age-associated vascular dysfunction. Biochim Biophys Acta (BBA) - Mol Basis Dis. 1864;4:1115–28.

    Google Scholar 

  17. Vasamsetti SB, et al. Metformin inhibits monocyte-to-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: potential role in atherosclerosis. Diabetes. 2015;64(6):2028–41.

    Article  CAS  PubMed  Google Scholar 

  18. Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev. 2012;11(2):230–41.

    Article  CAS  PubMed  Google Scholar 

  19. Stancu AL. AMPK activation can delay aging Discoveries (Craiova). 2015;3(4): e53.

    PubMed  Google Scholar 

  20. Gopoju R, Panangipalli S, Kotamraju S. Metformin treatment prevents SREBP2-mediated cholesterol uptake and improves lipid homeostasis during oxidative stress-induced atherosclerosis. Free Radic Biol Med. 2018;118:85–97.

    Article  CAS  PubMed  Google Scholar 

  21. Gao F, Chen J, Zhu H. A potential strategy for treating atherosclerosis: improving endothelial function via AMP-activated protein kinase. Sci China Life Sci. 2018;61(9):1024–9.

    Article  CAS  PubMed  Google Scholar 

  22. Merksamer PI, et al. The sirtuins, oxidative stress and aging: an emerging link. Aging (Albany NY). 2013;5(3):144–50.

    Article  CAS  PubMed  Google Scholar 

  23. D’Onofrio N, Servillo L, Balestrieri ML. SIRT1 and SIRT6 signaling pathways in cardiovascular disease protection. Antioxid Redox Signal. 2018;28(8):711–32.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yang Y, et al. SIRT6 protects vascular endothelial cells from angiotensin II-induced apoptosis and oxidative stress by promoting the activation of Nrf2/ARE signaling. Eur J Pharmacol. 2019;859:172516.

    Article  CAS  PubMed  Google Scholar 

  25. Kuang J, et al. The role of Sirt6 in obesity and diabetes. Front Physiol. 2018;9:135.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shaikh A, et al. A functional and self-assembling octyl-phosphonium-tagged esculetin as an effective siRNA delivery agent. Chem Commun (Camb). 2021;57(92):12329–32.

    Article  CAS  PubMed  Google Scholar 

  27. Hissin PJ, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem. 1976;74(1):214–26.

    Article  CAS  PubMed  Google Scholar 

  28. Mallappa S, et al. Doxorubicin induces prostate cancer drug resistance by upregulation of ABCG4 through GSH depletion and CREB activation: relevance of statins in chemosensitization. Mol Carcinog. 2019;58(7):1118–33.

    Article  CAS  PubMed  Google Scholar 

  29. Georgakopoulou EA, et al. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging (Albany NY). 2013;5(1):37–50.

    Article  CAS  PubMed  Google Scholar 

  30. Getz GS, Reardon CA. ApoE knockout and knockin mice: the history of their contribution to the understanding of atherogenesis. J Lipid Res. 2016;57(5):758–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rodgers JL, et al. Cardiovascular risks associated with gender and aging. J Cardiovasc Dev Dis. 2019;6:2.

    Google Scholar 

  32. Jablonski KA, et al. Novel markers to delineate murine M1 and M2 macrophages. PLoS ONE. 2015;10(12):e0145342.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lee SG, et al. Macrophage polarization and acceleration of atherosclerotic plaques in a swine model. PLoS ONE. 2018;13(3):e0193005.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jung T, Bader N, Grune T. Lipofuscin: formation, distribution, and metabolic consequences. Ann N Y Acad Sci. 2007;1119:97–111.

    Article  CAS  PubMed  Google Scholar 

  35. Sastre J, Pallardó FV, Viña J. Glutathione, oxidative stress and aging. Age. 1996;19(4):129–39.

    Article  CAS  Google Scholar 

  36. Prasad A, et al. Glutathione reverses endothelial dysfunction and improves nitric oxide bioavailability. J Am Coll Cardiol. 1999;34(2):507–14.

    Article  CAS  PubMed  Google Scholar 

  37. Grootaert MOJ, et al. SIRT6 protects smooth muscle cells from senescence and reduces atherosclerosis. Circ Res. 2021;128(4):474–91.

    Article  CAS  PubMed  Google Scholar 

  38. Li X, et al. SIRT6 in senescence and aging-related cardiovascular diseases. Front Cell Dev Biol. 2021;9:641315.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Xu S, et al. SIRT6 protects against endothelial dysfunction and atherosclerosis in mice. Aging (Albany NY). 2016;8(5):1064–82.

    Article  CAS  PubMed  Google Scholar 

  40. Cantó C, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009;458(7241):1056–60.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fuentes D, et al. Age-related changes in the behavior of apolipoprotein E knockout mice. Behav Sci (Basel). 2018;8:3.

    Google Scholar 

  42. Paigen B, et al. Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis. 1985;57(1):65–73.

    Article  CAS  PubMed  Google Scholar 

  43. Kulkarni AS, Gubbi S, Barzilai N. Benefits of metformin in attenuating the hallmarks of aging. Cell Metab. 2020;32(1):15–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. El Hadri K, et al. Inflammation, oxidative stress, senescence in atherosclerosis: thioredoxine-1 as an emerging therapeutic target. Int J Mol Sci. 2022;23(1):77.

    Article  Google Scholar 

  45. Libby P, et al. Atheroscler Nat Rev Dis Primers. 2019;5(1):56.

    Article  Google Scholar 

  46. Kida Y, Goligorsky MS. Sirtuins, cell senescence, and vascular aging. Can J Cardiol. 2016;32(5):634–41.

    Article  PubMed  Google Scholar 

  47. Kilic U, et al. A remarkable age-related increase in SIRT1 protein expression against oxidative stress in elderly: SIRT1 gene variants and longevity in human. PLoS ONE. 2015;10(3):e0117954.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Roichman A, et al. Restoration of energy homeostasis by SIRT6 extends healthy lifespan. Nat Commun. 2021;12(1):3208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Imai S, Guarente L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 2014;24(8):464–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Santos-Barriopedro I, Vaquero A. Complex role of SIRT6 in NF-κB pathway regulation. Mol Cell Oncol. 2018;5(4):e1445942.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chistiakov DA, et al. Mitochondrial aging and age-related dysfunction of mitochondria. Biomed Res Int. 2014;2014:238463.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sun N, Youle RJ, Finkel T. The mitochondrial basis of aging. Mol Cell. 2016;61(5):654–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grant from the Council of Scientific and Industrial Research, India. Pulipaka S, Singuru G, Sahoo S, and Shaikh A acknowledge ICMR and CSIR, New Delhi, India, for the award of research fellowships. Dr. Muralidharan K for providing animals and animal experimentation. The authors sincerely acknowledge Late Dr. Surendar Reddy Bathula, who was instrumental in designing the process for the synthesis of Mito-Esc. He lost his battle for life due to COVID-19–related complications. We thank the Department of Knowledge and Information Management, CSIR-IICT, Hyderabad, India, for performing the plagiarism check of this manuscript (IICT/Pubs./2023/153).

Author information

Authors and Affiliations

Authors

Contributions

PS contributed to the experiments, data analysis, and writing of the manuscript. SG helped in animal experimentation. SS contributed to data analysis and cell culture experiments. AS contributed to the synthesis of Mito-Esc. RT contributed to the technical and purity aspects of Mito-Esc synthesis. SK supervised the whole project, provision of reagents, and other materials required for performing both in vitro and in vivo experiments, data analysis, and the writing of the manuscript.

Corresponding author

Correspondence to Srigiridhar Kotamraju.

Ethics declarations

Conflict of interest

The authors declare the following competing financial interest(s): patents and patent applications describing Mito-Esc for its biological properties (with inventors PS, SG, AS, RT, and SK) are assigned to CSIR.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Supplementary file2 (PPTX 69210 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pulipaka, S., Singuru, G., Sahoo, S. et al. Therapeutic efficacies of mitochondria-targeted esculetin and metformin in the improvement of age-associated atherosclerosis via regulating AMPK activation. GeroScience 46, 2391–2408 (2024). https://doi.org/10.1007/s11357-023-01015-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-01015-w

Keywords

Navigation