Skip to main content
Log in

Divergence in aerobic capacity and energy expenditure influence metabolic tissue mitochondrial protein synthesis rates in aged rats

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Age-associated declines in aerobic capacity promote the development of various metabolic diseases. In rats selectively bred for high/low intrinsic aerobic capacity, greater aerobic capacity reduces susceptibility to metabolic disease while increasing longevity. However, little remains known how intrinsic aerobic capacity protects against metabolic disease, particularly with aging. Here, we tested the effects of aging and intrinsic aerobic capacity on systemic energy expenditure, metabolic flexibility and mitochondrial protein synthesis rates using 24-month-old low-capacity (LCR) or high-capacity runner (HCR) rats. Rats were fed low-fat diet (LFD) or high-fat diet (HFD) for eight weeks, with energy expenditure (EE) and metabolic flexibility assessed utilizing indirect calorimetry during a 48 h fast/re-feeding metabolic challenge. Deuterium oxide (D2O) labeling was used to assess mitochondrial protein fraction synthesis rates (FSR) over a 7-day period. HCR rats possessed greater EE during the metabolic challenge. Interestingly, HFD induced changes in respiratory exchange ratio (RER) in male and female rats, while HCR female rat RER was largely unaffected by diet. In addition, analysis of protein FSR in skeletal muscle, brain, and liver mitochondria showed tissue-specific adaptations between HCR and LCR rats. While brain and liver protein FSR were altered by aerobic capacity and diet, these effects were less apparent in skeletal muscle. Overall, we provide evidence that greater aerobic capacity promotes elevated EE in an aged state, while also regulating metabolic flexibility in a sex-dependent manner. Modulation of mitochondrial protein FSR by aerobic capacity is tissue-specific with aging, likely due to differential energetic requirements by each tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Myers J, et al. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346(11):793–801.

    Article  PubMed  Google Scholar 

  2. Hawkins MN, et al. Maximal oxygen uptake as a parametric measure of cardiorespiratory capacity. Med Sci Sports Exerc. 2007;39(1):103–7.

    PubMed  Google Scholar 

  3. Rogers MA, et al. Decline in VO2max with aging in master athletes and sedentary men. J Appl Physiol. 1990;68(5):2195–9.

    Article  CAS  PubMed  Google Scholar 

  4. Betik AC, Hepple RT. Determinants of VO2 max decline with aging: an integrated perspective. Appl Physiol Nutr Metab. 2008;33(1):130–40.

    Article  PubMed  Google Scholar 

  5. Fleg JL, et al. Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation. 2005;112(5):674–82.

    Article  PubMed  Google Scholar 

  6. Pontzer H, et al. Daily energy expenditure through the human life course. Science. 2021;373(6556):808–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Manini TM. Energy expenditure and aging. Ageing Res Rev. 2010;9(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  8. Hill JO, Wyatt HR, Peters JC. The importance of energy balance. Eur Endocrinol. 2013;9(2):111–5.

    PubMed  PubMed Central  Google Scholar 

  9. Yasukata J, et al. Relationship between measured aerobic capacity and total energy expenditure obtained by the doubly labeled water method in community-dwelling, healthy adults aged 81–94 years. Geriatrics (Basel). 2022;7(2):48.

    Article  PubMed  Google Scholar 

  10. Roberts SB, Dallal GE. Effects of age on energy balance. Am J Clin Nutr. 1998;68(4):975S-979S.

    Article  CAS  PubMed  Google Scholar 

  11. Amdanee N, et al. Age-associated changes of resting energy expenditure, body composition and fat distribution in Chinese Han males. Physiol Rep. 2018;6(23):e13940.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bosy-Westphal A, et al. The Age-related decline in resting energy expenditure in humans is due to the loss of fat-free mass and to alterations in its metabolically active components. J Nutr. 2003;133(7):2356–62.

    Article  CAS  PubMed  Google Scholar 

  13. Goodpaster BH, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006;61(10):1059–64.

    Article  PubMed  Google Scholar 

  14. Paez HG, Pitzer CR, Alway SE. Age-related dysfunction in proteostasis and cellular quality control in the development of sarcopenia. Cells. 2023;12(2):249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Short KR, et al. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci U S A. 2005;102(15):5618-23.

  16. Markaki M, Tavernarakis N. Mitochondrial turnover and homeostasis in ageing and neurodegeneration. FEBS Lett. 2020;594(15):2370–9.

    Article  CAS  PubMed  Google Scholar 

  17. Rooyackers OE, et al. Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proc Natl Acad Sci U S A. 1996;93(26):15364-9

  18. Menshikova EV, et al. Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J Gerontol A Biol Sci Med Sci. 2006;61(6):534–40.

    Article  PubMed  Google Scholar 

  19. Wisloff U, et al. Cardiovascular risk factors emerge after artificial selection for low aerobic capacity. Science. 2005;307(5708):418–20.

    Article  CAS  PubMed  Google Scholar 

  20. Koch LG, Britton SL. Artificial selection for intrinsic aerobic endurance running capacity in rats. Physiol Genomics. 2001;5(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  21. Thyfault JP, Morris EM. Intrinsic (genetic) aerobic fitness impacts susceptibility for metabolic disease. Exerc Sport Sci Rev. 2017;45(1):7–15.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Morris EM, et al. Aerobic capacity mediates susceptibility for the transition from steatosis to steatohepatitis. J Physiol. 2017;595(14):4909–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Morris EM, et al. Aerobic capacity and hepatic mitochondrial lipid oxidation alters susceptibility for chronic high-fat diet-induced hepatic steatosis. Am J Physiol Endocrinol Metab. 2016;311(4):E749-e760.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Britton SL, Koch LG. Animal genetic models for complex traits of physical capacity. Exerc Sport Sci Rev. 2001;29(1):7–14.

    Article  CAS  PubMed  Google Scholar 

  25. Thyfault JP, et al. Rats selectively bred for low aerobic capacity have reduced hepatic mitochondrial oxidative capacity and susceptibility to hepatic steatosis and injury. J Physiol. 2009;587(Pt 8):1805–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morris EM, et al. Difference in housing temperature-induced energy expenditure elicits sex-specific diet-induced metabolic adaptations in mice. Obesity (Silver Spring). 2020;28(10):1922–31.

    Article  CAS  PubMed  Google Scholar 

  27. Miller BF, et al. Enhanced skeletal muscle regrowth and remodelling in massaged and contralateral non-massaged hindlimb. J Physiol. 2018;596(1):83–103.

    Article  CAS  PubMed  Google Scholar 

  28. Morris EM, et al. Intrinsic aerobic capacity impacts susceptibility to acute high-fat diet-induced hepatic steatosis. Am J Physiol-Endocrinol Metab. 2014;307(4):E355–64.

    Article  CAS  PubMed  Google Scholar 

  29. Corbett SW, Stern JS, Keesey RE. Energy expenditure in rats with diet-induced obesity. Am J Clin Nutr. 1986;44(2):173–80.

    Article  CAS  PubMed  Google Scholar 

  30. Jackman MR, MacLean PS, Bessesen DH. Energy expenditure in obesity-prone and obesity-resistant rats before and after the introduction of a high-fat diet. Am J Physiol Regul Integr Comp Physiol. 2010;299(4):R1097–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Seifert EL, et al. Intrinsic aerobic capacity correlates with greater inherent mitochondrial oxidative and H2O2 emission capacities without major shifts in myosin heavy chain isoform. J Appl Physiol (1985). 2012;113(10):1624–34.

    Article  CAS  PubMed  Google Scholar 

  32. Bouchard C, Blair SN, Katzmarzyk PT. Less sitting, more physical activity, or higher fitness? Mayo Clin Proc. 2015;90(11):1533–40.

    Article  PubMed  Google Scholar 

  33. Koch LG, et al. Intrinsic aerobic capacity sets a divide for aging and longevity. Circ Res. 2011;109(10):1162–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Church TS, et al. Cardiorespiratory fitness and body mass index as predictors of cardiovascular disease mortality among men with diabetes. Arch Intern Med. 2005;165(18):2114–20.

    Article  CAS  PubMed  Google Scholar 

  35. Mandsager K, et al. Association of cardiorespiratory fitness with long-term mortality among adults undergoing exercise treadmill testing. JAMA Netw Open. 2018;1(6):e183605–e183605.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Reimers CD, Knapp G, Reimers AK. Does physical activity increase life expectancy? A review of the literature. J Aging Res. 2012;2012:243958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morris EM, et al. Intrinsic high aerobic capacity in male rats protects against diet-induced insulin resistance. Endocrinology. 2019;160(5):1179–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Naples SP, et al. Skeletal muscle mitochondrial and metabolic responses to a high-fat diet in female rats bred for high and low aerobic capacity. Appl Physiol Nutr Metab. 2010;35(2):151–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Goodpaster BH, et al. Skeletal muscle lipid content and insulin resistance: Evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab. 2001;86(12):5755–61.

    Article  CAS  PubMed  Google Scholar 

  40. Haus JM, et al. Improved hepatic lipid composition following short-term exercise in nonalcoholic fatty liver disease. J Clin Endocrinol Metab. 2013;98(7):E1181–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aon MA, et al. Mitochondrial health is enhanced in rats with higher vs. lower intrinsic exercise capacity and extended lifespan. NPJ Aging Mech Dis. 2021;7(1):1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Henry CJK. Mechanisms of changes in basal metabolism during ageing. Eur J Clin Nutr. 2000;54(3):S77–91.

    Article  PubMed  Google Scholar 

  43. Monferrer-Marín J, et al. Impact of ageing on female metabolic flexibility: A cross-sectional pilot study in over-60 active women. Sports Med - Open. 2022;8(1):97.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Morris EM, et al. Reduced hepatic mitochondrial respiration following acute high-fat diet is prevented by PGC-1α overexpression. Am J Physiol Gastrointest Liver Physiol. 2013;305(11):G868–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jackson AS, et al. Role of lifestyle and aging on the longitudinal change in cardiorespiratory fitness. Arch Intern Med. 2009;169(19):1781–7.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bouchard C, Rankinen T, Timmons JA. Genomics and genetics in the biology of adaptation to exercise. Compr Physiol. 2011;1(3):1603–48.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mukherjee SD, et al. Aerobic capacity modulates adaptive thermogenesis: Contribution of non-resting energy expenditure. Physiol Behav. 2020;225:113048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gavini CK, et al. Leanness and heightened nonresting energy expenditure: role of skeletal muscle activity thermogenesis. Am J Physiol Endocrinol Metab. 2014;306(6):E635–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Son C, et al. Reduction of diet-induced obesity in transgenic mice overexpressing uncoupling protein 3 in skeletal muscle. Diabetologia. 2004;47(1):47–54.

    Article  CAS  PubMed  Google Scholar 

  50. Fink BD, et al. Mitochondrial proton leak in obesity-resistant and obesity-prone mice. Am J Physiol Regul Integr Comp Physiol. 2007;293(5):R1773–80.

    Article  CAS  PubMed  Google Scholar 

  51. Matthew Morris E, et al. Increased aerobic capacity reduces susceptibility to acute high-fat diet-induced weight gain. Obesity (Silver Spring). 2016;24(9):1929–37.

    Article  CAS  PubMed  Google Scholar 

  52. Smith RL, et al. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. Endocr Rev. 2018;39(4):489–517.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Coen PM, et al. Skeletal muscle mitochondrial energetics are associated with maximal aerobic capacity and walking speed in older adults. J Gerontol: Ser A. 2012;68(4):447–55.

    Article  Google Scholar 

  54. Lagerwaard B, et al. In vivo assessment of muscle mitochondrial function in healthy, young males in relation to parameters of aerobic fitness. Eur J Appl Physiol. 2019;119(8):1799–808.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Moehle EA, Shen K, Dillin A. Mitochondrial proteostasis in the context of cellular and organismal health and aging. J Biol Chem. 2019;294(14):5396–407.

    Article  CAS  PubMed  Google Scholar 

  56. Grevendonk L, et al. Impact of aging and exercise on skeletal muscle mitochondrial capacity, energy metabolism, and physical function. Nat Commun. 2021;12(1):4773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lima T, et al. Pleiotropic effects of mitochondria in aging. Nature Aging. 2022;2(3):199–213.

    Article  PubMed  Google Scholar 

  58. Keele GR, Zhang JG, Szpyt J, Korstanje R, Gygi SP, Churchill GA, Schweppe DK. Global and tissue-specific aging effects on murine proteomes. Cell Rep. 2023;42:112715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Robinson MM, et al. Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans. Cell Metab. 2017;25(3):581–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Baar K, et al. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. Faseb j. 2002;16(14):1879–86.

    Article  CAS  PubMed  Google Scholar 

  61. Vieira-Potter VJ, et al. Female rats selectively bred for high intrinsic aerobic fitness are protected from ovariectomy-associated metabolic dysfunction. Am J Physiol Regul Integr Comp Physiol. 2015;308(6):R530–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stephenson EJ, et al. Exercise training enhances white adipose tissue metabolism in rats selectively bred for low- or high-endurance running capacity. Am J Physiol Endocrinol Metab. 2013;305(3):E429–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Choi J, et al. Brain diabetic neurodegeneration segregates with low intrinsic aerobic capacity. Ann Clin Transl Neurol. 2014;1(8):589–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gan L, et al. Region-specific differences in bioenergetic proteins and protein response to acute high fat diet in brains of low and high capacity runner rats. Neurosci Lett. 2018;674:49–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kaliszewska A, et al. The interaction of diet and mitochondrial dysfunction in aging and cognition. Int J Mol Sci. 2021;22(7):3574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wikgren J, et al. Selective breeding for endurance running capacity affects cognitive but not motor learning in rats. Physiol Behav. 2012;106(2):95–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Edziu Franczak was involved in the investigation, statistical analysis, visualization, and writing of the original draft. Adrianna Maurer was involved in the investigation, methodology, and writing-review and editing. Vivien Csikos Drummond, Emily Wells, Madi Wenger, Frederick F. Peelor III, Abby Crosswhite, and Benjamin F. Miller were involved in the investigation, statistical analysis, visualization, and writing-review and editing, Colin S. McCoin and Benjamin A. Kugler were involved in the investigation and writing-review and editing. Steven L. Britton and Lauren G. Koch were involved in the development of rat models and writing-review. John P. Thyfault was involved in the conceptualization, methodology, formal analysis, investigation, funding acquisition, and writing-review and editing.

Funding

This project was supported in part by National Institutes of Health R01DK121497 (JPT) and R01DK121497-03A1 Supplement (JPT), and the National Institute of General Medical Sciences S10OD028598 (JPT). The HCR/LCR rat models were funded by National Institutes of Health Office of Research Infrastructure Programs Grant P40OD-021331 and 3P40OD021331-06S1 (LGK and SLB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Thyfault.

Ethics declarations

Competing interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11357_2023_985_MOESM1_ESM.tiff

Supplemental Fig. 1. Representative images of hepatic triglyceride storage. Representative images of Hematoxylin and eosin staining on liver sections in male and female HCR rats fed either a HFD or LFD (TIFF 163854 KB)

11357_2023_985_MOESM2_ESM.tiff

Supplemental Fig. 2. Skeletal muscle and liver correlations between energy expenditure and mitochondrial protein fractional synthesis rates. Correlations between total EE and mitochondrial protein FSR in (a) male and (b) female gastrocnemius muscle, soleus (c, d) and liver (e, f) (TIFF 4004 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franczak, E., Maurer, A., Drummond, V.C. et al. Divergence in aerobic capacity and energy expenditure influence metabolic tissue mitochondrial protein synthesis rates in aged rats. GeroScience 46, 2207–2222 (2024). https://doi.org/10.1007/s11357-023-00985-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-00985-1

Keywords

Navigation