Skip to main content

Advertisement

Log in

Changes in oral health during aging in a novel non-human primate model

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Oral health plays a significant role in the quality of life and overall well-being of the aging population. However, age-related changes in oral health are not well understood due to challenges with current animal models. In this study, we analyzed the oral health and microbiota of a short-lived non-human primate (i.e., marmoset), as a step towards establishing a surrogate for studying the changes that occur in oral health during human aging. We investigated the oral health of marmosets using cadaveric tissues in three different cohorts: young (aged ≤6 years), middle-aged, and older (>10 years) and assessed the gingival bacterial community using analyses of the V3–V4 variable region of 16S rRNA gene. The oldest cohort had a significantly higher number of dental caries, increased dental attrition/erosion, and deeper periodontal pocket depth scores. Oral microbiome analyses showed that older marmosets had a significantly greater abundance of Escherichia-Shigella and Propionibacterium, and a lower abundance of Agrobacterium/Rhizobium at the genus level. Alpha diversity of the microbiome between the three groups showed no significant differences; however, principal coordinate analysis and non-metric multidimensional scaling analysis revealed that samples from middle-aged and older marmosets were more closely clustered than the youngest cohort. In addition, linear discriminant analysis effect size (LEFSe) identified a higher abundance of Esherichia-Shigella as a potential pathogenic biomarker in older animals. Our findings confirm that changes in the oral microbiome are associated with a decline in oral health in aging marmosets. The current study suggests that the marmoset model recapitulates some of the changes in oral health associated with human aging and may provide opportunities for developing new preventive strategies or interventions which target these disease conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kishore M, Panat SR, Choudhary A, Aggarwal A, Upadhyay N, Agarwal N, Alok A. Oral diagnostics: an integral component to geriatric health care. Aging Male. 2013;16(4):159–63. https://doi.org/10.3109/13685538.2013.789014.

    Article  PubMed  Google Scholar 

  2. Halpern LR. The geriatric syndrome and oral health: Navigating oral disease treatment strategies in the elderly. Dent Clin North Am. 2020;64(1):209–28. https://doi.org/10.1016/j.cden.2019.08.011.

    Article  PubMed  Google Scholar 

  3. Nam Y, Kim NH, Kho HS. Geriatric oral and maxillofacial dysfunctions in the context of geriatric syndrome. Oral Dis. 2018;24(3):317–24. https://doi.org/10.1111/odi.12647.

    Article  CAS  PubMed  Google Scholar 

  4. van der Putten GJ, de Baat C, De Visschere L, Schols J. Poor oral health, a potential new geriatric syndrome. Gerodontology. 2014;31(1):17–24. https://doi.org/10.1111/ger.12086.

    Article  PubMed  Google Scholar 

  5. Tonetti MS, Bottenberg P, Conrads G, Eickholz P, Heasman P, Huysmans MC, López R, Madianos P, Müller F, Needleman I, Nyvad B, Preshaw PM, Pretty I, Renvert S, Schwendicke F, Trombelli L, van der Putten GJ, Vanobbergen J, West N, et al. Dental caries and periodontal diseases in the ageing population: call to action to protect and enhance oral health and well-being as an essential component of healthy ageing - consensus report of group 4 of the joint EFP/ORCA workshop on the boundaries between caries and periodontal diseases. J Clin Periodontol. 2017;44(18):135–44. https://doi.org/10.1111/jcpe.12681.

    Article  Google Scholar 

  6. Kassebaum NJ, Smith AGC, Bernabé E, Fleming TD, Reynolds AE, Vos T, Murray CJL, Marcenes W. GBD 2015 oral health collaborators. Global, regional, and national prevalence, incidence, and disability-adjusted life years for oral conditions for 195 countries, 1990–2015: A systematic analysis for the global burden of diseases, injuries, and risk factors. J Dent Res. 2017;96(4):380–7. https://doi.org/10.1177/0022034517693566.

    Article  CAS  PubMed  Google Scholar 

  7. An JY, Darveau R, Kaeberlein M. Oral health in geroscience: animal models and the aging oral cavity. Geroscience. 2018;40(1):1–10. https://doi.org/10.1007/s11357-017-0004-9.

    Article  PubMed  Google Scholar 

  8. Liang S, Hosur KB, Domon H, Hajishengallis G. Periodontal inflammation and bone loss in aged mice. J Periodontal Res. 2010;45(4):574–8. https://doi.org/10.1111/j.1600-0765.2009.01245.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. An JY, Quarles EK, Mekvanich S, Kang A, Liu A, Santos D, Miller RA, Rabinovitch PS, Cox TC, Kaeberlein M. Rapamycin treatment attenuates age-associated periodontitis in mice. Geroscience. 2017;39(4):457–63. https://doi.org/10.1007/s11357-017-9994-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Sousa-Pereira P, Amado F, Abrantes J, Ferreira R, Esteves PJ, Vitorino R. An evolutionary perspective of mammal salivary peptide families: cystatins, histatins, statherin and PRPs. Arch Oral Biol. 2013;58(5):451–8. https://doi.org/10.1016/j.archoralbio.2012.12.011.

    Article  CAS  PubMed  Google Scholar 

  11. Azen EA. Properties of salivary basic proteins showing polymorphism. Biochem Genet. 1973;9(1):69–86. https://doi.org/10.1007/BF00485592.

    Article  CAS  PubMed  Google Scholar 

  12. García HF, García-Poblete E, Moro-Rodríguez E, Catalá-Rodríguez M, Rico-Morales ML, García-Gómez de las Heras MS. Histomorphometrical study of the submandibular gland ductal system in the rat. Histol Histopathol. 2002;17(3):813–6. https://doi.org/10.14670/HH-17.813.

  13. Tardif SD, Mansfield KG, Ratnam R, Ross CN, Ziegler TE. The marmoset as a model of aging and age-related diseases. ILAR J. 2011;52(1):54–65. https://doi.org/10.1093/ilar.52.1.54.

    Article  CAS  PubMed  Google Scholar 

  14. Ross CN, Davis K, Dobek G, Tardif SD. Aging phenotypes of common marmosets (Callithrix jacchus). J Aging Res. 2012;2012:567143. https://doi.org/10.1155/2012/567143.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ross CN, Austad S, Brasky K, Brown CJ, Forney LJ, Gelfond JA, Lanford R, Richardson A, Tardif SD. The development of a specific pathogen free (SPF) barrier colony of marmosets (Callithrix jacchus) for aging research. Aging (Albany NY). 2017;9(12):2544–58. https://doi.org/10.18632/aging.101340.

    Article  CAS  PubMed  Google Scholar 

  16. Wang Q, Turnquist JE, Kessler MJ. Free-ranging Cayo Santiago rhesus monkeys (Macaca mulatta): III. Dental eruption patterns and dental pathology. Am J Primatol. 2016;78(1):127–42. https://doi.org/10.1002/ajp.22434.

    Article  PubMed  Google Scholar 

  17. Auskaps AM, Shaw JH. Studies on the dentition of the cynomolgus monkey. J Dent Res. 1957;36(3):432–6. https://doi.org/10.1177/00220345570360031601.

    Article  CAS  PubMed  Google Scholar 

  18. Stoner KE. Dental pathology in Pongo satyrus borneensis. Am J Phys Anthropol. 1995;98(3):307–21. https://doi.org/10.1002/ajpa.1330980305.

    Article  CAS  PubMed  Google Scholar 

  19. Lovell NC. Patterns of injury and illness in great apes: A skeletal analysis. Smithsonian Institution Press. 1990;273

  20. Gilmore CC. A comparison of antemortem tooth loss in human hunter-gatherers and non-human catarrhines: implications for the identification of behavioral evolution in the human fossil record. Am J Phys Anthropol. 2013;151(2):252–64. https://doi.org/10.1002/ajpa.22275.

    Article  PubMed  Google Scholar 

  21. Reynolds MA, Dawson DR, Novak KF, Ebersole JL, Gunsolley JC, Branch-Mays GL, Holt SC, Mattison JA, Ingram DK, Novak MJ. Effects of caloric restriction on inflammatory periodontal disease. Nutrition. 2009;25(1):88–97. https://doi.org/10.1016/j.nut.2008.07.003.

    Article  CAS  PubMed  Google Scholar 

  22. Goodroe A, Wachtman L, Benedict W, Allen-Worthington K, Bakker J, Burns M, Diaz LL, Dick E, Dickerson M, Eliades SJ, Gonzalez O, Graf DJ, Haroush K, Inoue T, Izzi J, Laudano A, Layne-Colon D, Leblanc M, Ludwig B, Mejia A, Miller C, Sarfaty A, Sosa M, Vallender E, Brown C, Forney L, Schultz-Darken N, Colman R, Power M, Capuano S, Ross C, Tardif S. Current practices in nutrition management and disease incidence of common marmosets (Callithrix jacchus). J Med Primatol. 2021;50(3):164–75. https://doi.org/10.1111/jmp.12525.

  23. Levy BM, Dreizen S, Bernick S. Effect of aging on the marmoset periodontium. J Oral Pathol. 1972;1(2):61–5.

    Article  CAS  PubMed  Google Scholar 

  24. He XS, Shi WY. Oral microbiology: past, present and future. Int J Oral Sci. 2009;1(2):47–58. https://doi.org/10.4248/ijos.09029.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Feres M, Teles F, Teles R, Figueiredo LC, Faveri M. The subgingival periodontal microbiota of the aging mouth. Periodontol 2000. 2016;72(1):30–53. https://doi.org/10.1111/prd.12136.

    Article  PubMed  PubMed Central  Google Scholar 

  26. O'Byrne KT, Morris KD. A restraint system for the common marmoset (Callithrix jacchus). Lab Anim. 1988;22(2):148–50. https://doi.org/10.1258/002367788780864501.

    Article  CAS  PubMed  Google Scholar 

  27. Limaye A. Drishti: a volume exploration and presentation tool. Proc. SPIE 8506, developments in x-ray tomography VIII, 85060X 2012. https://doi.org/10.1117/12.935640.

  28. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–3. https://doi.org/10.1038/nmeth.3869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McMurdie PJ, Holmes S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 8(4):e61217. https://doi.org/10.1371/journal.pone.0061217.

  30. Xu S, Zhan L, Tang W, Wang Q, Dai Z, Zhou L, Feng T, Chen M, Wu T, Hu E, Yu G. Microbiota process: A comprehensive R package for deep mining microbiome. Innovation (Camb). 2023;4(2):100388. https://doi.org/10.1016/j.xinn.2023.100388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cao Y, Dong Q, Wang D, Zhang P, Liu Y, Niu C. Microbiome marker: An R/Bioconductor package for microbiome marker identification and visualization. Bioinformatics. 2022;38(16):4027–9. https://doi.org/10.1093/bioinformatics/btac438.

    Article  CAS  PubMed  Google Scholar 

  32. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Reveles KR, Patel S, Forney L, Ross CN. Age-related changes in the marmoset gut microbiome. Am J Primatol. 2019;81(2):e22960. https://doi.org/10.1002/ajp.22960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ross CN, Salmon AB. Aging research using the common marmoset: Focus on aging interventions. Nutr Healthy Aging. 2019;5(2):97–109. https://doi.org/10.3233/nha-180046.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lochner KA, Cox CS. Prevalence of multiple chronic conditions among Medicare beneficiaries, United States, 2010. Prev Chronic Dis. 2013;10:E61. https://doi.org/10.5888/pcd10.120137.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang AM, Promislow DEL, Kaeberlein M. Fertile waters for aging research. Cell. 2015;160(5):814–5. https://doi.org/10.1016/j.cell.2015.02.026.

    Article  CAS  PubMed  Google Scholar 

  37. Mansfield K, Tardif S, Eichler EE: White paper for complete sequencing of the common marmoset (Callithrix jacchus) genome (2004). http://www.genome.gov/Pages/Research/Sequencing/SeqProposals/MarmosetSeq.pdf.

    Google Scholar 

  38. Chatterjee HJ, Ho SY, Barnes I, Groves C. Estimating the phylogeny and divergence times of primates using a supermatrix approach. BMC Evol Biol. 2009;9:259. https://doi.org/10.1186/1471-2148-9-259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tomioka I, Nogami N, Nakatani T, Owari K, Fujita N, Motohashi H, Takayama O, Takae K, Nagai Y, Seki K. Generation of transgenic marmosets using a tetracyclin-inducible transgene expression system as a neurodegenerative disease model. Biol Reprod. 2017;97(5):772–80. https://doi.org/10.1093/biolre/iox129.

    Article  PubMed  Google Scholar 

  40. Casteleyn C, Bakker J, Breugelmans S, Kondova I, Saunders J, Langermans JA, Cornillie P, Van den Broeck W, Van Loo D, Van Hoorebeke L, Bosseler L, Chiers K, Decostere A. Anatomical description and morphometry of the skeleton of the common marmoset (Callithrix jacchus). Lab Anim. 2012;46(2):152–63. https://doi.org/10.1258/la.2012.011167.

    Article  CAS  PubMed  Google Scholar 

  41. Machiulskiene V, Campus G, Carvalho JC, Dige I, Ekstrand KR, Jablonski-Momeni A, Maltz M, Manton DJ, Martignon S, Martinez-Mier EA, Pitts NB, Schulte AG, Splieth CH, Tenuta LMA, Ferreira Zandona A, Nyvad B. Terminology of dental caries and dental caries management: consensus report of a workshop organized by ORCA and Cariology Research Group of IADR. Caries Res. 2020;54(1):7–14. https://doi.org/10.1159/000503309.

    Article  PubMed  Google Scholar 

  42. Sperber GH. Dental wear: Attrition, erosion, and abrasion-a palaeo-odontological approach. Dent J (Basel). 2017;5(2):19. https://doi.org/10.3390/dj5020019.

    Article  PubMed  Google Scholar 

  43. Burke FM, McKenna G. Toothwear and the older patient. Dent Update. 2011;38(3):165–8. https://doi.org/10.12968/denu.2011.38.3.165.

    Article  PubMed  Google Scholar 

  44. Shellis RP, Addy M. The interactions between attrition, abrasion and erosion in tooth wear. Monogr Oral Sci. 2014;25:32–45. https://doi.org/10.1159/000359936.

    Article  PubMed  Google Scholar 

  45. Dentino A, Lee S, Mailhot J, Hefti AF. Principles of periodontology. Periodontol 2000. 2013;61(1):16–53. https://doi.org/10.1111/j.1600-0757.2011.00397.x.

    Article  PubMed  Google Scholar 

  46. Preshaw PM, Kupp L, Hefti AF, Mariotti A. Measurement of clinical attachment levels using a constant-force periodontal probe modified to detect the cemento-enamel junction. J Clin Periodontol. 1999;26(7):434–40. https://doi.org/10.1034/j.1600-051x.1999.260704.x.

    Article  CAS  PubMed  Google Scholar 

  47. Papapanou PN, Susin C. Periodontitis epidemiology: is periodontitis under-recognized, over-diagnosed, or both? Periodontol 2000. 2017;75(1):45–51. https://doi.org/10.1111/prd.12200.

    Article  PubMed  Google Scholar 

  48. An JY, Kerns KA, Ouellette A, Robinson L, Morris HD, Kaczorowski C, Park SI, Mekvanich T, Kang A, McLean JS, Cox TC, Kaeberlein M. Rapamycin rejuvenates oral health in aging mice. Elife. 2020;9:e54318. https://doi.org/10.7554/eLife.54318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Costalonga M, Herzberg MC. The oral microbiome and the immunobiology of periodontal disease and caries. Immunol Lett. 2014;162(2):22–38. https://doi.org/10.1016/j.imlet.2014.08.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shoemark DK, Allen SJ. The microbiome and disease: reviewing the links between the oral microbiome, aging, and Alzheimer's disease. J Alzheimers Dis. 2015;43(3):725–38. https://doi.org/10.3233/JAD-141170.

    Article  CAS  PubMed  Google Scholar 

  51. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG. The human oral microbiome. J Bacteriol. 2010;192(19):5002–17. https://doi.org/10.1128/JB.00542-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sturgeon A, Stull JW, Costa MC, Weese JS. Metagenomic analysis of the canine oral cavity as revealed by high-throughput pyrosequencing of the 16S rRNA gene. Vet Microbiol. 2013;162(2-4):891–8. https://doi.org/10.1016/j.vetmic.2012.11.018.

    Article  CAS  PubMed  Google Scholar 

  53. Adler CJ, Malik R, Browne GV, Norris JM. Diet may influence the oral microbiome composition in cats. Microbiome. 2016;4(1):23. https://doi.org/10.1186/s40168-016-0169-y.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chen Z, Yeoh YK, Hui M, Wong PY, Chan MCW, Ip M, Yu J, Burk RD, Chan FKL, Chan PKS. Diversity of macaque microbiota compared to the human counterparts. Sci Rep. 2018;8(1):15573. https://doi.org/10.1038/s41598-018-33950-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome. Arch Microbiol. 2018;200(4):525–40. https://doi.org/10.1007/s00203-018-1505-3.

    Article  CAS  PubMed  Google Scholar 

  56. Takehara S, Zeredo JL, Kumei Y, Kagiyama K, Fukasawa K, Oshiro A, Ueno M, Kojimahara N, Minakuchi S, Kawaguchi Y. Characterization of oral microbiota in marmosets: Feasibility of using the marmoset as a human oral disease model. PLoS One. 2019;14(2):e0207560. https://doi.org/10.1371/journal.pone.0207560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Belibasakis GN. Microbiological changes of the ageing oral cavity. Arch Oral Biol. 2018;96:230–2. https://doi.org/10.1016/j.archoralbio.2018.10.001.

    Article  PubMed  Google Scholar 

  58. Lenartova M, Tesinska B, Janatova T, Hrebicek O, Mysak J, Janata J, Najmanova L. The oral microbiome in periodontal health. Front Cell Infect Microbiol. 2021;11:629723. https://doi.org/10.3389/fcimb.2021.629723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Paster BJ, Boches SK, Galvin JL, Ericson RE, Lau CN, Levanos VA, Sahasrabudhe A, Dewhirst FE. Bacterial diversity in human subgingival plaque. J Bacteriol. 2001 Jun;183(12):3770–83. https://doi.org/10.1128/JB.183.12.3770-3783.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lynch DB, Jeffery IB, O'Toole PW. The role of the microbiota in ageing: current state and perspectives. Wiley Interdiscip Rev Syst Biol Med. 2015;7(3):131–8. https://doi.org/10.1002/wsbm.1293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jeffery IB, Lynch DB, O'Toole PW. Composition and temporal stability of the gut microbiota in older persons. ISME J. 2016;10(1):170–82. https://doi.org/10.1038/ismej.2015.88.

    Article  CAS  PubMed  Google Scholar 

  62. Preza D, Olsen I, Aas JA, Willumsen T, Grinde B, Paster BJ. Bacterial profiles of root caries in elderly patients. J Clin Microbiol. 2008;46(6):2015–21. https://doi.org/10.1128/JCM.02411-07.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Abusleme L, Dupuy AK, Dutzan N, Silva N, Burleson JA, Strausbaugh LD, Gamonal J, Diaz PI. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 2013;7(5):1016–25. https://doi.org/10.1038/ismej.2012.174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, et al. Human gut microbiome viewed across age and geography. Nature. 2012 May 9;486(7402):222–7. https://doi.org/10.1038/nature11053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li Y, Ku CY, Xu J, Saxena D, Caufield PW. Survey of oral microbial diversity using PCR-based denaturing gradient gel electrophoresis. J Dent Res. 2005;84(6):559–64. https://doi.org/10.1177/154405910508400614.

    Article  CAS  PubMed  Google Scholar 

  66. Xiao C, Ran S, Huang Z, Liang J. Bacterial diversity and community structure of supragingival plaques in adults with dental health or caries revealed by 16s pyrosequencing. Front Microbiol. 2016;7:1145. https://doi.org/10.3389/fmicb.2016.01145.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kato I, Vasquez A, Moyerbrailean G, Land S, Djuric Z, Sun J, Lin HS, Ram JL. Nutritional correlates of human oral microbiome. J Am Coll Nutr. 2017;36(2):88–98. https://doi.org/10.1080/07315724.2016.1185386.

    Article  CAS  PubMed  Google Scholar 

  68. Poeta P, Igrejas G, Gonçalves A, Martins E, Araújo C, Carvalho C, Rodrigues J, Vinué L, López M, Torres C. Influence of oral hygiene in patients with fixed appliances in the oral carriage of antimicrobial-resistant Escherichia coli and Enterococcus isolates. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(4):557–64. https://doi.org/10.1016/j.tripleo.2009.06.002.

    Article  PubMed  Google Scholar 

Download references

Funding

This research was supported by the NIH grants from the NIDCR (R21-DE028271A and R01-DE025286) and NIA (R01-AG050797, U34-AG068482, P30-AG013319, and P30-AG044271).

Author information

Authors and Affiliations

Authors

Contributions

PAAA and HW carried out the experiments, processed the experimental data and performed the analyses, drafted the manuscript, and designed the figures. YPC, JP, KRR, and MM processed the experimental data, verified the analytical method, validated the data curation, interpreted the results, and performed a critical review of the manuscript. DDD and XDC aided in interpretation of the results, validated the data curation, provided administrative support, and reviewed/edited the manuscript. CKY and ABS conceived the concept and design the study, supervised the project, obtained financial support, performed the data analysis and interpretation, manuscript writing, and final approval of the manuscript. All authors provided critical feedback, helped shape the research, conducted the analysis, and reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Chih-Ko Yeh.

Ethics declarations

Procedures in this study were conducted in compliance with the approval of UTHSCSA Institutional Animal Care and Use Committee (IACUC), US Public Health Service’s Policy on Humane Care and Use of Laboratory Animals, and American Society of Primatologists (ASP) regarding the use of experimental animals.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdul-Azees, P.A., Wang, H., Chun, YH.P. et al. Changes in oral health during aging in a novel non-human primate model. GeroScience 46, 1909–1926 (2024). https://doi.org/10.1007/s11357-023-00939-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-00939-7

Keywords

Navigation