Skip to main content

Advertisement

Log in

Effects of a brief HIIT intervention on cognitive performance in older women

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Cardiorespiratory fitness (CRF) mitigates age-related decline in cognition and brain volume. Little is known, however, about the effects of high-intensity interval training (HIIT) on cognitive aging and the relationship between HIIT, cognition, hippocampal subfield volumes, and cerebral oxygen extraction fraction (OEF). Older sedentary women participated in an 8-week HIIT intervention. We conducted cognitive assessments, fitness assessments (VO2max), MRI scans: asymmetric spin echo oxygen extraction fraction (ASE-OEF), high-resolution multiple image co-registration and averaging (HR-MICRA) imaging, and transcranial Doppler ultrasonography before and after the intervention. VO2max increased from baseline (M = 19.36, SD = 2.84) to follow-up (M = 23.25, SD = 3.61), Z =  − 2.93, p < .001, r = 0.63. Composite cognitive (Z =  − 2.05, p = 0.041), language (Z =  − 2.19, p = 0.028), and visuospatial memory (Z =  − 2.22, p = 0.026), z-scores increased significantly. Hippocampal subfield volumes CA1 and CA3 dentate gyrus and subiculum decreased non-significantly (all p > 0.05); whereas a significant decrease in CA2 (Z =  − 2.045, p = 0.041, r = 0.436) from baseline (M = 29.51; SD = 24.50) to follow-up (M = 24.50; SD = 13.38) was observed. Right hemisphere gray matter was correlated with language z-scores (p = 0.025; r = 0.679). The subiculum was correlated with attention (p = 0.047; r = 0.618) and verbal memory (p = 0.020; r = 0.700). The OEF and CBF were unchanged at follow-up (all p > .05). Although we observed cognitive improvements following 8 weeks of our HIIT intervention, they were not explained by hippocampal, OEF, or CBF changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Salthouse TA. Independence of age-related influences on cognitive abilities across the life span. Dev Psychol. 1998;34(5):851.

    Article  CAS  PubMed  Google Scholar 

  2. Salthouse TA. Selective review of cognitive aging. J Int Neuropsychol Soc. 2010;16(5):754–60.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dixon RA, et al. Episodic memory change in late adulthood: generalizability across samples and performance indices. Mem Cognit. 2004;32(5):768–78.

    Article  PubMed  Google Scholar 

  4. Fjell AM, Walhovd KB. Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci. 2010;21(3):187–222.

    Article  PubMed  Google Scholar 

  5. Colcombe SJ, Kramer AF. Fitness effects on the cognitive function of older adults- a meta-analytic study. Psychol Sci. 2003;14(2):125–30.

    Article  PubMed  Google Scholar 

  6. Hedden T, Gabrieli JD. Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci. 2004;5(2):87.

    Article  CAS  PubMed  Google Scholar 

  7. Downey A, et al. Health and medicine division; board on health sciences policy; committee on preventing dementia and cognitive impairment. Preventing cognitive decline and dementia: A way forward. Washington. DC: The National Academies Press; 2017.

  8. Ruitenberg A, et al. Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam study. Ann Neurol. 2005;57(6):789–94. https://doi.org/10.1002/ana.20493.

    Article  PubMed  Google Scholar 

  9. Beason-Held LL, et al. Longitudinal changes in cerebral blood flow in the older hypertensive brain. Stroke. 2007;38(6):1766–73.

    Article  PubMed  Google Scholar 

  10. Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. 2011;12(12):723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Erickson KI, et al. Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. J Neurosci. 2010;30(15):5368–75. https://doi.org/10.1523/JNEUROSCI.6251-09.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ainslie PN, et al. Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing. J Physiol. 2008;586(16):4005–10. https://doi.org/10.1113/jphysiol.2008.158279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Poels MM, et al. Total cerebral blood flow in relation to cognitive function: the Rotterdam Scan Study. J Cereb Blood Flow Metab. 2008;28(10):1652–5. https://doi.org/10.1038/jcbfm.2008.62.

  14. Erickson KI, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108(7):3017–22. https://doi.org/10.1073/pnas.1015950108.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bherer L, Erickson KI, Liu-Ambrose T. A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. J Aging Res. 2013;2013:657508. https://doi.org/10.1155/2013/657508.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Erickson KI, et al. The brain-derived neurotrophic factor Val66Met polymorphism moderates an effect of physical activity on working memory performance. Psychol Sci. 2013;24(9):1770–9. https://doi.org/10.1177/0956797613480367.

    Article  PubMed  Google Scholar 

  17. Ruscheweyh R, et al. Physical activity and memory functions: an interventional study. Neurobiol Aging. 2011;32(7):1304–19. https://doi.org/10.1016/j.neurobiolaging.2009.08.001.

    Article  CAS  PubMed  Google Scholar 

  18. Floel A, et al. Physical activity and memory functions: are neurotrophins and cerebral gray matter volume the missing link? Neuroimage. 2010;49(3):2756–63. https://doi.org/10.1016/j.neuroimage.2009.10.043.

    Article  CAS  PubMed  Google Scholar 

  19. Bailey DM, et al. Elevated aerobic fitness sustained throughout the adult lifespan is associated with improved cerebral hemodynamics. Stroke. 2013;44(11):3235–8.

    Article  PubMed  Google Scholar 

  20. Lucas SJ, et al. Effect of age on exercise-induced alterations in cognitive executive function: relationship to cerebral perfusion. Exp Gerontol. 2012;47(8):541–51. https://doi.org/10.1016/j.exger.2011.12.002.

    Article  PubMed  Google Scholar 

  21. Becker L, Kutz DF, Voelcker-Rehage C. Exercise-induced changes in basal ganglia volume and their relation to cognitive performance. J Neurol Neuromed. 2016;1(5):19–24. https://doi.org/10.29245/2572.942X/2016/5.1044.

    Article  Google Scholar 

  22. Verstynen TD, et al. Caudate nucleus volume mediates the link between cardiorespiratory fitness and cognitive flexibility in older adults. J Aging Res. 2012;2012:939285. https://doi.org/10.1155/2012/939285.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Boraxbekk CJ, et al. Physical activity over a decade modifies age-related decline in perfusion, gray matter volume, and functional connectivity of the posterior default-mode network-a multimodal approach. Neuroimage. 2016;131:133–41. https://doi.org/10.1016/j.neuroimage.2015.12.010.

    Article  PubMed  Google Scholar 

  24. Killgore WD, Olson EA, Weber M. Physical exercise habits correlate with gray matter volume of the hippocampus in healthy adult humans. Sci Rep. 2013;3:3457. https://doi.org/10.1038/srep03457.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Maass A, et al. Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults. Neuroimage. 2016;131:142–54. https://doi.org/10.1016/j.neuroimage.2015.10.084.

    Article  CAS  PubMed  Google Scholar 

  26. Thomas AG, et al. Multi-modal characterization of rapid anterior hippocampal volume increase associated with aerobic exercise. Neuroimage. 2016;131:162–70. https://doi.org/10.1016/j.neuroimage.2015.10.090.

    Article  PubMed  Google Scholar 

  27. Weinstein AM, et al. The association between aerobic fitness and executive function is mediated by prefrontal cortex volume. Brain Behav Immun. 2012;26(5):811–9.

    Article  PubMed  Google Scholar 

  28. Zhao E, et al. Chronic exercise preserves brain function in masters athletes when compared to sedentary counterparts. Phys Sportsmed. 2016;44(1):8–13. https://doi.org/10.1080/00913847.2016.1103641.

    Article  CAS  PubMed  Google Scholar 

  29. Angevaren M, et al. Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane database of systematic reviews, 2008;(2).

  30. Barha CK, et al. Sex differences in exercise efficacy to improve cognition: a systematic review and meta-analysis of randomized controlled trials in older humans. Front Neuroendocrinol. 2017;46:71–85.

    Article  PubMed  Google Scholar 

  31. Gates N, et al. The effect of exercise training on cognitive function in older adults with mild cognitive impairment: a meta-analysis of randomized controlled trials. Am J Geriatr Psychiatry. 2013;21(11):1086–97.

    Article  PubMed  Google Scholar 

  32. Heyn P, Abreu BC, Ottenbacher KJ. The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis. Arch Phys Med Rehabil. 2004;85(10):1694–704.

    Article  PubMed  Google Scholar 

  33. Kramer AF, et al. Fitness, aging and neurocognitive function. Neurobiol Aging. 2005;26(Suppl 1):124–7. https://doi.org/10.1016/j.neurobiolaging.2005.09.009.

    Article  PubMed  Google Scholar 

  34. Kramer AF, et al. Ageing, fitness and neurocognitive function. Nature. 1999;400:418. https://doi.org/10.1038/22682.

    Article  CAS  PubMed  Google Scholar 

  35. Derdeyn CP. Hemodynamics and oxygen extraction in chronic large artery steno-occlusive disease: clinical applications for predicting stroke risk. J Cereb Blood Flow Metab. 2017; 271678X17732884. https://doi.org/10.1177/0271678X17732884.

  36. Derdeyn CP, et al. Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain. 2002;125(3):595–607.

    Article  PubMed  Google Scholar 

  37. Catchlove SJ, et al. An investigation of cerebral oxygen utilization, blood flow and cognition in healthy aging. PLoS One. 2018;13(5):e0197055.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jiang D, et al. Brain oxygen extraction is differentially altered by Alzheimer’s and vascular diseases. J Magn Reson Imaging. 2020;52(6):1829–37.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kang P, et al. Oxygen metabolic stress and white matter injury in patients with cerebral small vessel disease. Stroke. 2022;53(5):1570–9. https://doi.org/10.1161/STROKEAHA.121.035674.

    Article  CAS  PubMed  Google Scholar 

  40. Callahan CM, et al. Six-item screener to identify cognitive impairment among potential subjects for clinical research. Med Care. 2002;771–781.

  41. Stewart AL, et al. CHAMPS physical activity questionnaire for older adults: outcomes for interventions. Med Sci Sports Exerc. 2001;33(7):1126–41.

    Article  CAS  PubMed  Google Scholar 

  42. Storen O, et al. The effect of age on the VO2max response to high-intensity interval training. Med Sci Sports Exerc. 2017;49(1):78–85. https://doi.org/10.1249/MSS.0000000000001070.

    Article  PubMed  Google Scholar 

  43. Borg G. Borg's perceived exertion and pain scales. Human kinetics; 1998.

  44. Lezak MD. Neuropsychological assessment. Oxford University Press USA; 2004.

  45. Maass A, et al. Vascular hippocampal plasticity after aerobic exercise in older adults. Mol Psychiatry. 2015;20(5):585–93. https://doi.org/10.1038/mp.2014.114.

    Article  CAS  PubMed  Google Scholar 

  46. Lewinsohn PM, et al. Center for Epidemiologic Studies Depression Scale (CES-D) as a screening instrument for depression among community-residing older adults. Psychol Aging. 1997;12(2):277.

    Article  CAS  PubMed  Google Scholar 

  47. Benedict RH, et al. Hopkins verbal learning test–revised: normative data and analysis of inter-form and test-retest reliability. Clin Neuropsychol. 1998;12(1):43–55.

    Article  Google Scholar 

  48. Benedict RH. Brief visuospatial memory test--revised. PAR; 1997.

  49. Benton A. Development of a multilingual aphasia battery: progress and problems. J Neurol Sci. 1969;9(1):39–48.

    Article  CAS  PubMed  Google Scholar 

  50. Williams BW, Mack W, Henderson VW. Boston naming test in Alzheimer’s disease. Neuropsychologia. 1989;27(8):1073–9.

    Article  CAS  PubMed  Google Scholar 

  51. Meyers JE, Meyers KR. Rey complex figure test under four different administration procedures. Clin Neuropsychol. 1995;9(1):63–7.

    Article  Google Scholar 

  52. Wechsler D. WAIS-3., WMS-3: Wechsler adult intelligence scale, Wechsler memory scale: Technical manual. Psychol Corp; 1997.

  53. Army U. Army individual test battery. Manual Dir Scoring; 1944.

  54. Norman GR, Sloan JA, Wyrwich KW. Interpretation of changes in health-related quality of life: the remarkable universality of half a standard deviation. Med Care. 2003:582–592.

  55. Jenkinson M, et al. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17(2):825–41.

    Article  PubMed  Google Scholar 

  56. Ver Hoef L, et al. Clear and consistent imaging of hippocampal internal architecture with high resolution multiple image co-registration and averaging (HR-MICRA). Front Neurosci. 2021;15:546312.

    Article  PubMed  PubMed Central  Google Scholar 

  57. An H, Lin W. Impact of intravascular signal on quantitative measures of cerebral oxygen extraction and blood volume under normo-and hypercapnic conditions using an asymmetric spin echo approach. Magn Reson Med: Off J Int Soc Magn Reson Med. 2003;50(4):708–16.

    Article  Google Scholar 

  58. Guilliams KP, et al. Red cell exchange transfusions lower cerebral blood flow and oxygen extraction fraction in pediatric sickle cell anemia. Blood, J Am Soc Hematol. 2018;131(9):1012–21.

    CAS  Google Scholar 

  59. Weisskoff RM, Kiihne S. MRI susceptometry: image-based measurement of absolute susceptibility of MR contrast agents and human blood. Magn Reson Med. 1992;24(2):375–83.

    Article  CAS  PubMed  Google Scholar 

  60. Eichling JO, et al. In vivo determination of cerebral blood volume with radioactive oxygen-15 in the monkey. Circ Res. 1975;37(6):707–14.

    Article  CAS  PubMed  Google Scholar 

  61. Yushkevich PA, et al. Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment. Hum Brain Mapp. 2015;36(1):258–87.

    Article  PubMed  Google Scholar 

  62. Berron D, et al. A protocol for manual segmentation of medial temporal lobe subregions in 7 Tesla MRI. NeuroImage: Clin. 2017;15:466–82.

    Article  CAS  PubMed  Google Scholar 

  63. Hadar PN, et al. Novel Multi-Slice Glutamate Imaging (GluCEST) of the Hippocampus in MRI-Negative Temporal Lobe Epilepsy. In ANNALS OF NEUROLOGY 2017 Oct 1 (Vol. 82, pp. S69-S69). 111 RIVER ST, HOBOKEN 07030-5774, NJ USA: WILEY.

  64. Yushkevich PA, et al. Nearly automatic segmentation of hippocampal subfields in in vivo focal T2-weighted MRI. Neuroimage. 2010;53(4):1208–24.

    Article  PubMed  Google Scholar 

  65. Østerås H, Hoff J, Helgerud J. Effects of high-intensity endurance training on maximal oxygen consumption in healthy elderly people. J Appl Gerontol. 2016;24(5):377–87. https://doi.org/10.1177/0733464804273185.

    Article  Google Scholar 

  66. Baker LD, et al. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol. 2010;67(1):71–9.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hillman CH, Erickson KI, Kramer AF. Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci. 2008;9(1):58–65.

    Article  CAS  PubMed  Google Scholar 

  68. Langlois F, et al. Benefits of physical exercise training on cognition and quality of life in frail older adults. J Gerontol B Psychol Sci Soc Sci. 2013;68(3):400–4.

    Article  PubMed  Google Scholar 

  69. Wagner G, et al. Hippocampal structure, metabolism, and inflammatory response after a 6-week intense aerobic exercise in healthy young adults: a controlled trial. J Cereb Blood Flow Metab. 2015;35(10):1570–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kaiser A, et al. A randomized controlled trial on the effects of a 12-week high-vs. low-intensity exercise intervention on hippocampal structure and function in healthy, young adults. Front Psychiatry. 2022;12:780095.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Jonasson LS, et al. Aerobic exercise intervention, cognitive performance, and brain structure: results from the physical influences on brain in aging (PHIBRA) study. Front Aging Neurosci. 2017;8:336.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Böhm C, et al. Routes to, from and within the subiculum. Cell Tissue Res. 2018;373(3):557–63.

    Article  PubMed  Google Scholar 

  73. Vicente-Campos D, et al. Impact of a physical activity program on cerebral vasoreactivity in sedentary elderly people. J Sports Med Phys Fitness. 2012;52(5):537.

    CAS  PubMed  Google Scholar 

  74. Murrell CJ, et al. Cerebral blood flow and cerebrovascular reactivity at rest and during sub-maximal exercise: effect of age and 12-week exercise training. Age. 2013;35(3):905–20.

    Article  PubMed  Google Scholar 

  75. Kleinloog JP, et al. Aerobic exercise training improves cerebral blood flow and executive function: a randomized, controlled cross-over trial in sedentary older men. Front Aging Neurosci. 2019;11:333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bao D, et al. The effects of fatiguing aerobic exercise on the cerebral blood flow and oxygen extraction in the brain: a piloting neuroimaging study. Front Neurol. 2019;10:654.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kelley WM, et al. Hemispheric specialization in human dorsal frontal cortex and medial temporal lobe for verbal and nonverbal memory encoding. Neuron. 1998;20(5):927–36.

    Article  CAS  PubMed  Google Scholar 

  78. Riès SK, Dronkers NF, Knight RT. Choosing words: left hemisphere, right hemisphere, or both? Perspective on the lateralization of word retrieval. Ann N Y Acad Sci. 2016;1369(1):111–31.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lazar RM, et al. Baseline cognitive impairment in patients with asymptomatic carotid stenosis in the CREST-2 trial. Stroke. 2021;52(12):3855–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Alosco ML, et al. The impact of hypertension on cerebral perfusion and cortical thickness in older adults. J Am Soc Hypertens. 2014;8(8):561–70. https://doi.org/10.1016/j.jash.2014.04.002.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Novak V, Hajjar I. The relationship between blood pressure and cognitive function. Nat Rev Cardiol. 2010;7(12):686–98. https://doi.org/10.1038/nrcardio.2010.161.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Becker L, Kutz DF, Voelcker-Rehage C. Exercise-induced changes in basal ganglia volume and their relation to cognitive performance. J Neurol Neuromed. 2016;1(5):19–24. https://doi.org/10.29245/2572.942X/2016/5.1044.

    Article  Google Scholar 

Download references

Funding

This manuscript was funded in part by the National Institute of General Medical Sciences (NIGMS) 5 T32 GM109780-4 (AMN), NIHR01NS082561 (HA), NIHRF1NS116565 (HA), and The Evelyn F. McKnight Brain Institute at the University of Alabama at Birmingham (RML).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amani M. Norling.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

We certify that the submission is original work and is not under review at any other publication.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norling, A.M., Gerstenecker, A., Bolding, M.S. et al. Effects of a brief HIIT intervention on cognitive performance in older women. GeroScience 46, 1371–1384 (2024). https://doi.org/10.1007/s11357-023-00893-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-00893-4

Keywords

Navigation