Skip to main content
Log in

Coordinated transcriptional upregulation of oxidative metabolism proteins in long-lived endocrine mutant mice

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Caloric restriction (CR), which extends lifespan in rodents, leads to increased hepatic fatty acid β-oxidation and oxidative phosphorylation (OXPHOS), with parallel changes in proteins and their mRNAs. Genetic mutants that extend lifespan, including growth hormone receptor knockout (GHRKO) and Snell dwarf (SD) mice, have lower respiratory quotient, suggesting increased reliance on fatty acid oxidation, but the molecular mechanism(s) of this metabolic shift have not yet been worked out. Here we show that both GHRKO and SD mice have significantly higher mRNA and protein levels of enzymes involved in mitochondrial and peroxisomal fatty acid β-oxidation. In addition, multiple subunits of OXPHOS complexes I-IV are upregulated in GHRKO and SD livers, and Complex V subunit ATP5a is upregulated in liver of GHRKO mice. Expression of these genes is regulated by a group of nuclear receptors and transcription factors including peroxisome proliferator-activated receptors (PPARs) and estrogen-related receptors (ERRs). We found that levels of these nuclear receptors and their co-activator PGC-1α were unchanged or downregulated in liver of GHRKO and SD mice. In contrast, NCOR1, a co-repressor for the same receptors, was significantly downregulated in the two long-lived mouse models, suggesting a plausible mechanism for the changes in FAO and OXPHOS proteins. Hepatic levels of HDAC3, a co-factor for NCOR1 transcriptional repression, were also downregulated. The role of NCOR1 is well established in the contexts of cancer and metabolic disease, but may provide new mechanistic insights into metabolic control in long-lived mouse models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data supporting the findings of this study are included within this paper and its Supplementary Information.

References

  1. Rubio-Tomás T, Tavernarakis N. Lipid metabolism and ageing in Caenorhabditis elegans: a complex interplay. Biogerontology. 2022;23(5):541–57.

    Article  PubMed  Google Scholar 

  2. Bartke A, Westbrook R. Metabolic characteristics of long-lived mice. Front Genet. 2012;3:288–288.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Araki S, Okazaki M, Goto S. Impaired lipid metabolism in aged mice as revealed by fasting-induced expression of apolipoprotein mRNAs in the liver and changes in serum lipids. Gerontology. 2004;50(4):206–15.

    Article  CAS  PubMed  Google Scholar 

  4. Johnson AA, Stolzing A. The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell. 2019;18(6):e13048–e13048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dominguez LJ, Barbagallo M. The biology of the metabolic syndrome and aging. Curr Opin Clin Nutr Metab Care. 2016;19(1):5–11.

    Article  CAS  PubMed  Google Scholar 

  6. Wilson PW, et al. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation. 2005;112(20):3066–72.

    Article  CAS  PubMed  Google Scholar 

  7. Bruss MD, et al. Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates. Am J Physiol Endocrinol Metab. 2010;298(1):E108-16.

  8. Mezhnina V, et al. CR reprograms acetyl-CoA metabolism and induces long-chain acyl-CoA dehydrogenase and CrAT expression. Aging Cell. 2020;19(11):e13266–e13266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fletcher JA, et al. Fibroblast growth factor 21 increases hepatic oxidative capacity but not physical activity or energy expenditure in hepatic peroxisome proliferator-activated receptor γ coactivator-1α-deficient mice. Exp Physiol. 2018;103(3):408–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Potthoff MJ, et al. FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci USA. 2009;106(26):10853–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fu S, et al. Increase of fatty acid oxidation and VLDL assembly and secretion overexpression of PTEN in cultured hepatocytes of newborn calf. Cell Physiol Biochem. 2012;30(4):1005–13.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao B, et al. Knockdown of phosphatase and tensin homolog (PTEN) inhibits fatty acid oxidation and reduces very low density lipoprotein assembly and secretion in calf hepatocytes. J Dairy Sci. 2020;103(11):10728–41.

    Article  CAS  PubMed  Google Scholar 

  13. Brown NF, et al. The mammalian target of rapamycin regulates lipid metabolism in primary cultures of rat hepatocytes. Metabolism. 2007;56(11):1500–7.

    Article  CAS  PubMed  Google Scholar 

  14. Sipula IJ, Brown NF, Perdomo G. Rapamycin-mediated inhibition of mammalian target of rapamycin in skeletal muscle cells reduces glucose utilization and increases fatty acid oxidation. Metabolism. 2006;55(12):1637–44.

    Article  CAS  PubMed  Google Scholar 

  15. List EO, et al. Endocrine parameters and phenotypes of the growth hormone receptor gene disrupted (GHR-/-) mouse. Endocr Rev. 2011;32(3):356–86.

    Article  CAS  PubMed  Google Scholar 

  16. Berryman DE, et al. Effect of growth hormone on susceptibility to diet-induced obesity. Endocrinology. 2006;147(6):2801–8.

    Article  CAS  PubMed  Google Scholar 

  17. Westbrook R, et al. Alterations in oxygen consumption, respiratory quotient, and heat production in long-lived GHRKO and Ames dwarf mice, and short-lived bGH transgenic mice. J Gerontol A Biol Sci Med Sci. 2009;64(4):443–51.

    Article  PubMed  Google Scholar 

  18. Wang Y, et al. Mitochondrial fatty acid oxidation and the electron transport chain comprise a multifunctional mitochondrial protein complex. J Biol Chem. 2019;294(33):12380–91.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Frerman FE. Reaction of electron-transfer flavoprotein ubiquinone oxidoreductase with the mitochondrial respiratory chain. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1987;893(2):161–9.

    Article  CAS  PubMed  Google Scholar 

  20. Wang⁎ Y, et al. Evidence for the physical association of mitochondrial fatty acid oxidation and oxidative phosphorylation complexes. Mitochondrion. 2011;11(4):644.

  21. Bjørndal B, et al. Associations between fatty acid oxidation, hepatic mitochondrial function, and plasma acylcarnitine levels in mice. Nutr Metab. 2018;15:10–10.

    Article  Google Scholar 

  22. Venizelos N, von Döbeln U, Hagenfeldt L. Fatty acid oxidation in fibroblasts from patients with defects in β-oxidation and in the respiratory chain. J Inherit Metab Dis. 1998;21(4):409–15.

    Article  CAS  PubMed  Google Scholar 

  23. Lim SC, et al. Loss of the mitochondrial fatty Acid β-Oxidation protein Medium-Chain Acyl-Coenzyme A dehydrogenase disrupts oxidative phosphorylation protein complex stability and function. Sci Rep. 2018;8(1):153–153.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tyshkovskiy A, et al. Identification and application of gene expression signatures associated with lifespan extension. Cell Metab. 2019;30(3):573-593.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barger JL, et al. A conserved transcriptional signature of delayed aging and reduced disease vulnerability is partially mediated by SIRT3. PLoS ONE. 2015;10(4):e0120738–e0120738.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Staels B. PPARS: Fatty acid-activated receptors controlling lipid metabolism and inflammation. Atherosclerosis. 2000;151(1):86.

    Article  Google Scholar 

  27. Burkart EM, et al. Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Investig. 2007;117(12):3930–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Barberá MJ, et al. Peroxisome proliferator-activated receptor α activates transcription of the brown fat uncoupling Protein-1 gene. J Biol Chem. 2001;276(2):1486–93.

    Article  PubMed  Google Scholar 

  29. Alaynick WA, et al. ERRγ directs and maintains the transition to oxidative metabolism in the postnatal heart. Cell Metab. 2007;6(1):13–24.

    Article  CAS  PubMed  Google Scholar 

  30. Dufour CR, et al. Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRα and γ. Cell Metab. 2007;5(5):345–56.

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y-X, et al. Peroxisome-Proliferator-Activated receptor δ activates fat metabolism to prevent obesity. Cell. 2003;113(2):159–70.

    Article  CAS  PubMed  Google Scholar 

  32. Masternak MM, et al. Caloric restriction results in decreased expression of peroxisome proliferator-activated receptor superfamily in muscle of normal and long-lived growth hormone receptor/binding protein knockout mice. J Gerontol A Biol Sci Med Sci. 2005;60(10):1238–45.

    Article  PubMed  Google Scholar 

  33. Masternak MM, et al. Effects of caloric restriction and growth hormone resistance on the expression level of peroxisome proliferator-activated receptors superfamily in liver of normal and long-lived growth hormone receptor/binding protein knockout mice. J Gerontol A Biol Sci Med Sci. 2005;60(11):1394–8.

    Article  PubMed  Google Scholar 

  34. Nisoli E, et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science. 2005;310(5746):314–7.

    Article  CAS  PubMed  Google Scholar 

  35. Anderson RM, et al. Dynamic regulation of PGC-1alpha localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response. Aging Cell. 2008;7(1):101–11.

    Article  CAS  PubMed  Google Scholar 

  36. Corton JC, et al. Mimetics of caloric restriction include agonists of lipid-activated nuclear receptors. J Biol Chem. 2004;279(44):46204–12.

    Article  CAS  PubMed  Google Scholar 

  37. Fujii N, et al. Sterol regulatory element-binding protein-1c orchestrates metabolic remodeling of white adipose tissue by caloric restriction. Aging Cell. 2017;16(3):508–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ozkurede U, et al. Cap-independent mRNA translation is upregulated in long-lived endocrine mutant mice. J Mol Endocrinol. 2019;63(2):123–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Green CL, Lamming DW. Regulation of metabolic health by essential dietary amino acids. Mech Ageing Dev. 2019;177:186–200.

    Article  CAS  PubMed  Google Scholar 

  40. Hill CM, et al. Low protein-induced increases in FGF21 drive UCP1-dependent metabolic but not thermoregulatory endpoints. Sci Rep. 2017;7(1):8209–8209.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Laeger T, et al. FGF21 is an endocrine signal of protein restriction. J Clin Investig. 2014;124(9):3913–22.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Maida A, et al. A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution. J Clin Investig. 2016;126(9):3263–78.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pezeshki A, et al. Low protein diets produce divergent effects on energy balance. Sci Rep. 2016;6:25145–25145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Miller KN, et al. PGC-1a integrates a metabolism and growth network linked to caloric restriction. Aging Cell. 2019;18(5):e12999–e12999.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pérez-Schindler J, et al. The corepressor NCoR1 antagonizes PGC-1α and estrogen-related receptor α in the regulation of skeletal muscle function and oxidative metabolism. Mol Cell Biol. 2012;32(24):4913–24.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lima TI, et al. Role of NCoR1 in mitochondrial function and energy metabolism. Cell Biol Int. 2018;42(6):734–41.

    Article  CAS  PubMed  Google Scholar 

  47. Mottis A, Mouchiroud L, Auwerx J. Emerging roles of the corepressors NCoR1 and SMRT in homeostasis. Genes Dev. 2013;27(8):819–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ritter MJ, et al. Nuclear receptor CoRepressors, NCOR1 and SMRT, are required for maintaining systemic metabolic homeostasis. Mol Metab. 2021;53:101315–101315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sen K, et al. NCoR1 controls immune tolerance in conventional dendritic cells by fine-tuning glycolysis and fatty acid oxidation. Redox Biol. 2023;59:102575–102575.

    Article  CAS  PubMed  Google Scholar 

  50. Yamamoto H, et al. NCoR1 is a conserved physiological modulator of muscle mass and oxidative function. Cell. 2011;147(4):827–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhou Y, et al. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse). Proc Natl Acad Sci U S A. 1997;94(24):13215–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Coschigano KT, et al. Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology. 2000;141(7):2608–13.

    Article  CAS  PubMed  Google Scholar 

  53. Flurkey K, et al. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci U S A. 2001;98(12):6736–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Endicott SJ, et al. Lysosomal targetomics of ghr KO mice shows chaperone-mediated autophagy degrades nucleocytosolic acetyl-coA enzymes. Autophagy. 2022;18(7):1551–71.

    Article  CAS  PubMed  Google Scholar 

  55. Stauber AJ, et al. Constitutive expression of peroxisome proliferator-activated receptor alpha-regulated genes in dwarf mice. Mol Pharmacol. 2005;67(3):681–94.

    Article  CAS  PubMed  Google Scholar 

  56. Herrera JJ, et al. Acarbose has sex-dependent and -independent effects on age-related physical function, cardiac health, and lipid biology. JCI insight. 2020;5(21):e137474.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vernia S, et al. The PPARα-FGF21 hormone axis contributes to metabolic regulation by the hepatic JNK signaling pathway. Cell Metab. 2014;20(3):512–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim K, Pyo S, Um SH. S6 kinase 2 deficiency enhances ketone body production and increases peroxisome proliferator-activated receptor alpha activity in the liver. Hepatology. 2012;55(6):1727–37.

    Article  CAS  PubMed  Google Scholar 

  59. Liu C, et al. Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism. Nature. 2007;447(7143):477–81.

    Article  CAS  PubMed  Google Scholar 

  60. Ou-Yang Q, et al. Distinct role of nuclear receptor corepressor 1 regulated de novo fatty acids synthesis in liver regeneration and hepatocarcinogenesis in mice. Hepatology (Baltimore, Md). 2018;67(3):1071–87.

    Article  CAS  PubMed  Google Scholar 

  61. Sun Z, et al. Deacetylase-independent function of HDAC3 in transcription and metabolism requires nuclear receptor corepressor. Mol Cell. 2013;52(6):769–82.

    Article  CAS  PubMed  Google Scholar 

  62. Armour SM, et al. An HDAC3-PROX1 corepressor module acts on HNF4α to control hepatic triglycerides. Nat Commun. 2017;8(1):549–549.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Shen Z, et al. Cap-independent translation: A shared mechanism for lifespan extension by rapamycin, acarbose, and 17α-estradiol. Aging Cell. 2021;20(5):e13345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sun L, et al. Life-span extension in mice by preweaning food restriction and by methionine restriction in middle age. J Gerontol A Biol Sci Med Sci. 2009;64(7):711–22.

    Article  PubMed  Google Scholar 

  65. Miller RA, et al. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell. 2005;4(3):119–25.

    Article  CAS  PubMed  Google Scholar 

  66. Shindyapina AV, et al. Rapamycin treatment during development extends life span and health span of male mice and Daphnia magna. Sci Adv. 2022;8(37):eabo5482–eabo5482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Endicott SJ, et al. Long-lived mice with reduced growth hormone signaling have a constitutive upregulation of hepatic chaperone-mediated autophagy. Autophagy. 2021;17(3):612–25.

    Article  CAS  PubMed  Google Scholar 

  68. Gerdes Gyuricza I, et al. Genome-wide transcript and protein analysis highlights the role of protein homeostasis in the aging mouse heart. Genome Res. 2022;32(5):838–52.

    PubMed  PubMed Central  Google Scholar 

  69. Takemon Y, et al. Proteomic and transcriptomic profiling reveal different aspects of aging in the kidney. Elife. 2021;10:e62585.

  70. Park SH, Choi WH, Lee MJ. Effects of mTORC1 inhibition on proteasome activity and levels. BMB Rep. 2022;55(4):161–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yang L, et al. Ubiquitylome study identifies increased histone 2A ubiquitylation as an evolutionarily conserved aging biomarker. Nat Commun. 2019;10(1):2191.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hansen M, Rubinsztein DC, Walker DW. Autophagy as a promoter of longevity: insights from model organisms. Nat Rev Mol Cell Biol. 2018;19(9):579–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hebert AS, et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell. 2013;49(1):186–99.

    Article  CAS  PubMed  Google Scholar 

  74. Pougovkina O, et al. Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation. Hum Mol Genet. 2014;23(13):3513–22.

    Article  CAS  PubMed  Google Scholar 

  75. Schwer B, et al. Calorie restriction alters mitochondrial protein acetylation. Aging Cell. 2009;8(5):604–6.

    Article  CAS  PubMed  Google Scholar 

  76. Alenghat T, et al. Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology. Nature. 2008;456(7224):997–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mezhnina V, et al. Circadian clock controls rhythms in ketogenesis by interfering with PPARα transcriptional network. Proc Natl Acad Sci U S A. 2022;119(40):e2205755119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nautiyal J, Christian M, Parker MG. Distinct functions for RIP140 in development, inflammation, and metabolism. Trends Endocrinol Metab. 2013;24(9):451–9.

    Article  CAS  PubMed  Google Scholar 

  79. Li P, et al. Adipocyte NCoR knockout decreases PPARγ phosphorylation and enhances PPARγ activity and insulin sensitivity. Cell. 2011;147(4):815–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sengupta S, et al. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature. 2010;468(7327):1100–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by National Institutes of Health (NIH) grants AG024824, AG023122, AG064706 and National Institute on Aging (NIA) grant T32-AG000114

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Miller.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11357_2023_849_MOESM1_ESM.pdf

Supplementary file1 (PDF 3416 KB) Supplementary Figure 1: Fatty acid β-oxidation pathways in mitochondria and peroxisome. Created with BioRender.com. Supplementary Figure 2: Effect of Snell dwarf mutation (Pit1dw) on hepatic levels of mitochondrial fatty acid β-oxidation enzymes. (A) Representative images of western blot data for different mitochondrial FAO enzymes in liver lysates from female and male wild type (WT) and SD mice. (B-G) Scatter plots of CPT2 (B), ACADM (C), ACADL (D), ECHS1 (E), HADH (F), and ACAA2 (G). Data show mean ± S.E.M. Each symbol represents an individual mouse. n = 5-6 for each group. Two-way ANOVA was used for analysis of genotype effect, sex effect, and their interaction. Unpaired t-test was used when interaction was significant. ** P < 0.01, *** p < 0.001. Supplementary Figure 3: Hepatic levels of peroxisomal fatty acid β-oxidation enzymes in WT and SD livers. (A) Representative images of western blot data for different peroxisomal FAO enzymes in liver lysates from female and male WT and SD mice. (B-F) Scatter plots of ABCD2 (B), ACOX1 (C), ECH1 (D), EHHADH (E), and ACAA1 (F). Data show mean ± S.E.M. Each symbol represents an individual mouse. n = 5-6 for each group. Two-way ANOVA was used for analysis of genotype effect, sex effect, and their interaction. Supplementary Figure 4: Hepatic levels of OXPHOS subunit proteins in WT and SD livers. (A) Representative images of western blot data for different OXPHOS complexes subunits in liver lysates from female and male WT and SD mice. (B-J) Scatter plots of NDUFAB1 (B), NDUFAF7 (C), NDUFB11 (D), NDUFS1 (E), SDHA (F), UQCRB (G), UQCRC1 (H), COX IV (I), and ATP5a (J). Data show mean ± S.E.M. Each symbol represents an individual mouse. n = 5-6 for each group. Two-way ANOVA was used for analysis of genotype effect, sex effect, and their interaction. Supplementary Figure 5: Hepatic mRNA levels of FAO and OXPHOS genes in WT and SD livers. (A-K) Scatter plots of ACADM (A), ECHS1 (B), ACAA2 (C), ABCD2 (D), ECH1 (E), EHHADH (F), NDUFB11 (G), NDUFS1 (H), SDHA (I), UQCRB (J), and 18S (K). Data show mean ± S.E.M. Each symbol represents an individual mouse. n = 5-6 for each group. Two-way ANOVA was used for analysis of genotype effect, sex effect, and their interaction. Unpaired t-test was used when interaction was significant. *** p < 0.001, **** p < 0.0001. Supplementary Figure 6: Hepatic levels of PPAR signaling network proteins in WT and SD livers. (A) Representative images of western blot data for different nuclear receptors and their co-regulators in liver lysates from female and male WT and SD mice. (B-F) Scatter plots of PPARα (B), ERRα (C), PGC-1α (D), NCOR1 (E), and HDAC3 (F). Data show mean ± S.E.M. Each symbol represents an individual mouse. n = 5-6 for each group. Two-way ANOVA was used for analysis of genotype effect, sex effect, and their interaction

Supplementary file2 (DOCX 22 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmansi, A.M., Miller, R.A. Coordinated transcriptional upregulation of oxidative metabolism proteins in long-lived endocrine mutant mice. GeroScience 45, 2967–2981 (2023). https://doi.org/10.1007/s11357-023-00849-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-00849-8

Keywords

Navigation