Skip to main content

Advertisement

Log in

Profiling age-related muscle weakness and wasting: neuromuscular junction transmission as a driver of age-related physical decline

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

A Correction to this article was published on 13 October 2021

This article has been updated

Abstract

Pathological age-related loss of skeletal muscle strength and mass contribute to impaired physical function in older adults. Factors that promote the development of these conditions remain incompletely understood, impeding development of effective and specific diagnostic and therapeutic approaches. Inconclusive evidence across species suggests disruption of action potential signal transmission at the neuromuscular junction (NMJ), the crucial connection between the nervous and muscular systems, as a possible contributor to age-related muscle dysfunction. Here we investigated age-related loss of NMJ function using clinically relevant, electrophysiological measures (single-fiber electromyography (SFEMG) and repetitive nerve stimulation (RNS)) in aged (26 months) versus young (6 months) F344 rats. Measures of muscle function (e.g., grip strength, peak plantarflexion contractility torque) and mass were assessed for correlations with physiological measures (e.g., indices of NMJ transmission). Other outcomes also included plantarflexion muscle contractility tetanic torque fade during 1-s trains of stimulation as well as gastrocnemius motor unit size and number. Profiling NMJ function in aged rats identified significant declines in NMJ transmission stability and reliability. Further, NMJ deficits were tightly correlated with hindlimb grip strength, gastrocnemius muscle weight, loss of peak contractility torque, degree of tetanic fade, and motor unit loss. Thus, these findings provide direct evidence for NMJ dysfunction as a potential mechanism of age-related muscle dysfunction pathogenesis and severity. These findings also suggest that NMJ transmission modulation may serve as a target for therapeutic development for age-related loss of physical function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data is available upon request from the corresponding author.

Change history

Abbreviations

CMAP:

Compound muscle action potential

MUNE:

Motor unit number estimation

NMJ:

Neuromuscular junction

RNS:

Repetitive nerve stimulation

SFAP:

Single-fiber action potential

SFEMG:

Single-fiber electromyography

SMUP:

Single motor unit potential

References

  1. Hall KS, Cohen HJ, Pieper CF, Fillenbaum GG, Kraus WE, Huffman KM, et al. Physical performance across the adult life span: correlates with Age and physical activity. J Gerontol A Biol Sci Med Sci. 2017;72(4):572–8. https://doi.org/10.1093/gerona/glw120.

    Article  PubMed  Google Scholar 

  2. Newman AB, Simonsick EM, Naydeck BL, Boudreau RM, Kritchevsky SB, Nevitt MC, et al. Association of long-distance corridor walk performance with mortality, cardiovascular disease, mobility limitation, and disability. Jama. 2006;295(17):2018–26. https://doi.org/10.1001/jama.295.17.2018.

    Article  CAS  PubMed  Google Scholar 

  3. Hairi NN, Cumming RG, Naganathan V, Handelsman DJ, Le Couteur DG, Creasey H, et al. Loss of muscle strength, mass (sarcopenia), and quality (specific force) and its relationship with functional limitation and physical disability: the Concord Health and Ageing in Men Project. J Am Geriatr Soc. 2010;58(11):2055–62. https://doi.org/10.1111/j.1532-5415.2010.03145.x.

    Article  PubMed  Google Scholar 

  4. Robinson S, Granic A, Sayer AA. Nutrition and muscle strength, as the key component of sarcopenia: an overview of current evidence. Nutrients. 2019;11(12). https://doi.org/10.3390/nu11122942.

  5. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(4):601. https://doi.org/10.1093/ageing/afz046.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Janssen I, Baumgartner RN, Ross R, Rosenberg IH, Roubenoff R. Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am J Epidemiol. 2004;159(4):413–21. https://doi.org/10.1093/aje/kwh058.

    Article  PubMed  Google Scholar 

  7. Visser M, Schaap LA. Consequences of sarcopenia. Clin Geriatr Med. 2011;27(3):387–99. https://doi.org/10.1016/j.cger.2011.03.006.

    Article  PubMed  Google Scholar 

  8. Metter EJ, Talbot LA, Schrager M, Conwit R. Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J Gerontol A Biol Sci Med Sci. 2002;57(10):B359–65. https://doi.org/10.1093/gerona/57.10.b359.

    Article  PubMed  Google Scholar 

  9. Clark BC, Manini TM. Sarcopenia =/= dynapenia. J Gerontol A Biol Sci Med Sci. 2008;63(8):829–34.

    Article  PubMed  Google Scholar 

  10. Park KH. Mechanisms of muscle denervation in aging: insights from a mouse model of amyotrophic lateral sclerosis. Aging Dis. 2015;6(5):380–9. https://doi.org/10.14336/ad.2015.0506.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rosenberg IH. Sarcopenia: origins and clinical relevance. Clin Geriatr Med. 2011;27(3):337–9. https://doi.org/10.1016/j.cger.2011.03.003.

    Article  PubMed  Google Scholar 

  12. Correa-de-Araujo R, Hadley E. Skeletal muscle function deficit: a new terminology to embrace the evolving concepts of sarcopenia and age-related muscle dysfunction. J Gerontol A Biol Sci Med Sci. 2014;69(5):591–4. https://doi.org/10.1093/gerona/glt208.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dhillon RJ, Hasni S. Pathogenesis and management of sarcopenia. Clin Geriatr Med. 2017;33(1):17–26. https://doi.org/10.1016/j.cger.2016.08.002.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Arnold WD, Padilla Colón CJ. Maintaining muscle function across the lifespan: the state of science. Am J Phys Med Rehab. 2020;Publish Ahead of Print.

  15. Bhasin S, Travison TG, Manini TM, Patel S, Pencina KM, Fielding RA, et al. Sarcopenia definition: the position statements of the sarcopenia definition and outcomes consortium. J Am Geriatr Soc. 2020;68:1410–8. https://doi.org/10.1111/jgs.16372.

    Article  PubMed  Google Scholar 

  16. Clark BC, Manini TM. Functional consequences of sarcopenia and dynapenia in the elderly. Curr Opin Clin Nutr Metab Care. 2010;13(3):271–6. https://doi.org/10.1097/MCO.0b013e328337819e.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Weisleder N, Brotto M, Komazaki S, Pan Z, Zhao X, Nosek T, et al. Muscle aging is associated with compromised Ca2+ spark signaling and segregated intracellular Ca2+ release. J Cell Biol. 2006;174(5):639–45. https://doi.org/10.1083/jcb.200604166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Seene T, Kaasik P. Muscle weakness in the elderly: role of sarcopenia, dynapenia, and possibilities for rehabilitation. Eur Rev Aging Phys Act. 2012;9(2):109–17. https://doi.org/10.1007/s11556-012-0102-8.

    Article  Google Scholar 

  19. Taetzsch T, Valdez G. NMJ maintenance and repair in aging. Curr Opin Physiol. 2018;4:57–64. https://doi.org/10.1016/j.cophys.2018.05.007.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kwon YN, Yoon SS. Sarcopenia: neurological point of view. J Bone Metab. 2017;24(2):83–9. https://doi.org/10.11005/jbm.2017.24.2.83.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hepple RT, Rice CL. Innervation and neuromuscular control in ageing skeletal muscle. J Physiol. 2016;594(8):1965–78. https://doi.org/10.1113/JP270561.

    Article  CAS  PubMed  Google Scholar 

  22. Badawi Y, Nishimune H. Impairment mechanisms and intervention approaches for aged human neuromuscular junctions. Front Mol Neurosci. 2020;13:568426. https://doi.org/10.3389/fnmol.2020.568426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Castets P, Ham DJ, Rüegg MA. The TOR pathway at the neuromuscular junction: more than a metabolic player? Front Mol Neurosci. 2020;13:162. https://doi.org/10.3389/fnmol.2020.00162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lepore E, Casola I, Dobrowolny G, Musarò A. Neuromuscular Junction as an Entity of Nerve-Muscle Communication. Cells. 2019;8(8). https://doi.org/10.3390/cells8080906.

  25. Khosa S, Trikamji B, Khosa GS, Khanli HM, Mishra SK. An overview of neuromuscular junction aging findings in human and animal studies. Curr Aging Sci. 2019;12(1):28–34. https://doi.org/10.2174/1874609812666190603165746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li L, Xiong WC, Mei L. Neuromuscular junction formation, aging, and disorders. Annu Rev Physiol. 2018;80:159–88. https://doi.org/10.1146/annurev-physiol-022516-034255.

    Article  CAS  PubMed  Google Scholar 

  27. Gonzalez-Freire M, de Cabo R, Studenski SA, Ferrucci L. The neuromuscular junction: aging at the crossroad between nerves and muscle. Front Aging Neurosci. 2014;6:208. https://doi.org/10.3389/fnagi.2014.00208.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rudolf R, Khan MM, Labeit S, Deschenes MR. Degeneration of neuromuscular junction in age and dystrophy. Front Aging Neurosci. 2014;6:99. https://doi.org/10.3389/fnagi.2014.00099.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Deschenes MR. Motor unit and neuromuscular junction remodeling with aging. Curr Aging Sci. 2011;4(3):209–20. https://doi.org/10.2174/1874609811104030209.

    Article  CAS  PubMed  Google Scholar 

  30. Willadt S, Nash M, Slater C. Age-related changes in the structure and function of mammalian neuromuscular junctions. Ann N Y Acad Sci. 2018;1412(1):41–53. https://doi.org/10.1111/nyas.13521.

    Article  PubMed  Google Scholar 

  31. Chai RJ, Vukovic J, Dunlop S, Grounds MD, Shavlakadze T. Striking denervation of neuromuscular junctions without lumbar motoneuron loss in geriatric mouse muscle. PLoS One. 2011;6(12):e28090. https://doi.org/10.1371/journal.pone.0028090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Valdez G, Tapia JC, Lichtman JW, Fox MA, Sanes JR. Shared resistance to aging and ALS in neuromuscular junctions of specific muscles. PLoS One. 2012;7(4):e34640. https://doi.org/10.1371/journal.pone.0034640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Valdez G, Tapia JC, Kang H, Clemenson GD Jr, Gage FH, Lichtman JW, et al. Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. Proc Natl Acad Sci U S A. 2010;107(33):14863–8. https://doi.org/10.1073/pnas.1002220107.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Deschenes MR. Adaptations of the neuromuscular junction to exercise training. Curr Opin Physiol. 2019;10:10–6. https://doi.org/10.1016/j.cophys.2019.02.004.

    Article  Google Scholar 

  35. Pannérec A, Springer M, Migliavacca E, Ireland A, Piasecki M, Karaz S et al. A robust neuromuscular system protects rat and human skeletal muscle from sarcopenia. Aging (Albany NY). 2016;8(4):712-29. https://doi.org/10.18632/aging.100926.

  36. Gutmann E, Hanzlíková V. Age changes of motor endplates in muscle fibres of the rat. Gerontology. 1965;11(1-2):12–24. https://doi.org/10.1159/000211462.

    Article  Google Scholar 

  37. Willadt S, Nash M, Slater CR. Age-related fragmentation of the motor endplate is not associated with impaired neuromuscular transmission in the mouse diaphragm. Sci Rep. 2016;6:24849. https://doi.org/10.1038/srep24849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Banker BQ, Kelly SS, Robbins N. Neuromuscular transmission and correlative morphology in young and old mice. J Physiol. 1983;339:355–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fahim MA. Morphological correlates of physiological responses in partially denervated mouse muscle during aging. Int J Dev Neurosci. 1993;11(3):303–10. https://doi.org/10.1016/0736-5748(93)90002-U.

    Article  CAS  PubMed  Google Scholar 

  40. Chugh D, Iyer CC, Wang XY, Bobbili P, Rich MM, Arnold WD. Neuromuscular junction transmission failure is a late phenotype in aging mice. Neurobiol Aging. 2020;86:182–90. https://doi.org/10.1016/j.neurobiolaging.2019.10.022.

    Article  PubMed  Google Scholar 

  41. Metzger S, Dupont C, Voss AA, Rich MM. Central role of subthreshold currents in myotonia. Ann Neurol. 2020;87(2):175–83. https://doi.org/10.1002/ana.25646.

    Article  PubMed  Google Scholar 

  42. Chugh D, Iyer CC, Bobbili P, Blatnik III AJ, Kaspar BK, Meyer K, Burghes A HM, Clark BC, Arnold WD Voluntary wheel running with and without follistatin overexpression improves NMJ transmission but not motor unit loss in late life of C57BL/6J mice. Neurobiol Aging. 2020;(Submitted for review).

  43. Selvan VA. Single-fiber EMG: a review. Ann Indian Acad Neurol. 2011;14(1):64–7. https://doi.org/10.4103/0972-2327.78058.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Stalberg E, Trontelj JV. The study of normal and abnormal neuromuscular transmission with single fibre electromyography. J Neurosci Methods. 1997;74(2):145–54.

    Article  CAS  PubMed  Google Scholar 

  45. Andreollo N, Santos EF, Arajo MR, Lopes L. Rat's age versus human's age: what is the relationship? Arq Bras Cir Dig: ABCD Braz Arch Dig Surg. 2012;25(1):49–51.

    Article  Google Scholar 

  46. Juel VC. Evaluation of neuromuscular junction disorders in the electromyography laboratory. Neurol Clin. 2012;30(2):621–39. https://doi.org/10.1016/j.ncl.2011.12.012.

    Article  PubMed  Google Scholar 

  47. Chugh D, Iyer CC, Wang X, Bobbili P, Rich MM, Arnold WD. Neuromuscular junction transmission failure is a late phenotype in aging mice. Neurobiol Aging. 2019;86:182–90. https://doi.org/10.1016/j.neurobiolaging.2019.10.022.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Meekins GD, Carter GT, Emery MJ, Weiss MD. Axonal degeneration in the Trembler-j mouse demonstrated by stimulated single-fiber electromyography. Muscle Nerve. 2007;36(1):81–6. https://doi.org/10.1002/mus.20786.

    Article  CAS  PubMed  Google Scholar 

  49. Harrigan ME, Filous AR, Tosolini AP, Morris R, Schwab JM, Arnold WD. Assessing rat forelimb and hindlimb motor unit connectivity as objective and robust biomarkers of spinal motor neuron function. Sci Rep. 2019;9(1):16699. https://doi.org/10.1038/s41598-019-53235-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sheth KA, Iyer CC, Wier CG, Crum AE, Bratasz A, Kolb SJ, et al. Muscle strength and size are associated with motor unit connectivity in aged mice. Neurobiol Aging. 2018;67:128–36. https://doi.org/10.1016/j.neurobiolaging.2018.03.016.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wier CG, Crum AE, Reynolds AB, Iyer CC, Chugh D, Palettas MS, et al. Muscle contractility dysfunction precedes loss of motor unit connectivity in SOD1(G93A) mice. Muscle Nerve. 2019;59(2):254–62. https://doi.org/10.1002/mus.26365.

    Article  CAS  PubMed  Google Scholar 

  52. Fogarty MJ, Porras MAG, Mantilla CB, Sieck GC. Diaphragm neuromuscular transmission failure in aged rats. J Neurophysiol. 2019;122(1):93–104. https://doi.org/10.1152/jn.00061.2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Howard JF Jr. Electrodiagnosis of disorders of neuromuscular transmission. Phys Med Rehabil Clin N Am. 2013;24(1):169–92. https://doi.org/10.1016/j.pmr.2012.08.013.

    Article  PubMed  Google Scholar 

  54. Manini TM, Visser M, Won-Park S, Patel KV, Strotmeyer ES, Chen H, et al. Knee extension strength cutpoints for maintaining mobility. J Am Geriatr Soc. 2007;55(3):451–7. https://doi.org/10.1111/j.1532-5415.2007.01087.x.

    Article  PubMed  Google Scholar 

  55. McGrath R, Erlandson KM, Vincent BM, Hackney KJ, Herrmann SD, Clark BC. Decreased handgrip strength is associated with impairments in each autonomous living task for aging adults in the United States. J Frailty Aging. 2019;8(3):141–5. https://doi.org/10.14283/jfa.2018.47.

    Article  CAS  PubMed  Google Scholar 

  56. Duchowny K. Do nationally representative cutpoints for clinical muscle weakness predict mortality? Results from 9 years of follow-up in the health and retirement study. J Gerontol A Biol Sci Med Sci. 2019;74(7):1070–5. https://doi.org/10.1093/gerona/gly169.

    Article  PubMed  Google Scholar 

  57. Leong DP, Teo KK, Rangarajan S, Lopez-Jaramillo P, Avezum A Jr, Orlandini A, et al. Prognostic value of grip strength: findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet. 2015;386(9990):266–73. https://doi.org/10.1016/S0140-6736(14)62000-6.

    Article  PubMed  Google Scholar 

  58. Syddall H, Cooper C, Martin F, Briggs R, Aihie SA. Is grip strength a useful single marker of frailty? Age Ageing. 2003;32(6):650–6. https://doi.org/10.1093/ageing/afg111.

    Article  PubMed  Google Scholar 

  59. Cawthon PM, Manini T, Patel SM, Newman A, Travison T, Kiel DP, et al. Putative cut-points in sarcopenia components and incident adverse health outcomes: an SDOC analysis. J Am Geriatr Soc. 2020;68(7):1429–37. https://doi.org/10.1111/jgs.16517.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Smith DO. Acetylcholine storage, release and leakage at the neuromuscular junction of mature adult and aged rats. J Physiol. 1984;347(1):161–76. https://doi.org/10.1113/jphysiol.1984.sp015059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Reid KF, Fielding RA. Skeletal muscle power: a critical determinant of physical functioning in older adults. Exerc Sport Sci Rev. 2012;40(1):4–12. https://doi.org/10.1097/JES.0b013e31823b5f13.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Foldvari M, Clark M, Laviolette LC, Bernstein MA, Kaliton D, Castaneda C, et al. Association of muscle power with functional status in community-dwelling elderly women. J Gerontol Ser A. 2000;55(4):M192–M9. https://doi.org/10.1093/gerona/55.4.M192.

    Article  CAS  Google Scholar 

  63. Bean JF, Kiely DK, LaRose S, Goldstein R, Frontera WR, Leveille SG. Are changes in leg power responsible for clinically meaningful improvements in mobility in older adults? J Am Geriatr Soc. 2010;58(12):2363–8. https://doi.org/10.1111/j.1532-5415.2010.03155.x.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rich MM. The control of neuromuscular transmission in health and disease. Neuroscientist. 2006;12(2):134–42. https://doi.org/10.1177/1073858405281898.

    Article  PubMed  Google Scholar 

  65. Lexell J, Taylor CC, Sjostrom M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci. 1988;84(2-3):275–94.

    Article  CAS  PubMed  Google Scholar 

  66. Messi ML, Delbono O. Target-derived trophic effect on skeletal muscle innervation in senescent mice. J Neurosci. 2003;23(4):1351–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Delbono O. Neural control of aging skeletal muscle. Aging Cell. 2003;2(1):21–9. https://doi.org/10.1046/j.1474-9728.2003.00011.x.

    Article  CAS  PubMed  Google Scholar 

  68. Larsson L. Motor units: remodeling in aged animals. J Gerontol A Biol Sci Med Sci. 1995;50 Spec No:91-5.

  69. Kung TA, Cederna PS, van der Meulen JH, Urbanchek MG, Kuzon WM, Faulkner JA. Motor unit changes seen with skeletal muscle sarcopenia in oldest Old rats. J Gerontol Ser A Biol Med Sci. 2013;69:657–65. https://doi.org/10.1093/gerona/glt135.

    Article  Google Scholar 

  70. Tavoian D, Arnold WD, Mort SC, de Lacalle S. Sex differences in body composition but not neuromuscular function following long-term, doxycycline-induced reduction in circulating levels of myostatin in mice. PLoS One. 2019;14(11):e0225283. https://doi.org/10.1371/journal.pone.0225283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gooch CL, Doherty TJ, Chan KM, Bromberg MB, Lewis RA, Stashuk DW, et al. Motor unit number estimation: a technology and literature review. Muscle Nerve. 2014;50(6):884–93. https://doi.org/10.1002/mus.24442.

    Article  PubMed  Google Scholar 

  72. Doherty TJ, Stashuk DW. Decomposition-based quantitative electromyography: methods and initial normative data in five muscles. Muscle Nerve. 2003;28(2):204–11. https://doi.org/10.1002/mus.10427.

    Article  PubMed  Google Scholar 

  73. Chung T, Tian Y, Walston J, Hoke A. Increased single fiber jitter level is associated with reduction in motor function with aging. Am J Phys Med Rehab / Assoc Acad Phys. 2018;97:551–6. https://doi.org/10.1097/PHM.0000000000000915.

    Article  Google Scholar 

  74. Gilmore KJ, Morat T, Doherty TJ, Rice CL. Motor unit number estimation and neuromuscular fidelity in 3 stages of sarcopenia. Muscle Nerve. 2017;55(5):676–84. https://doi.org/10.1002/mus.25394.

    Article  PubMed  Google Scholar 

  75. Mosole S, Carraro U, Kern H, Loefler S, Fruhmann H, Vogelauer M, et al. Long-term high-level exercise promotes muscle reinnervation with age. J Neuropathol Exp Neurol. 2014;73(4):284–94. https://doi.org/10.1097/nen.0000000000000032.

    Article  CAS  PubMed  Google Scholar 

  76. Piasecki M, Ireland A, Piasecki J, Degens H, Stashuk DW, Swiecicka A et al. Long-term endurance and power training may facilitate motor unit size expansion to compensate for declining motor unit numbers in older Age. Front Physiol. 2019;10(449). https://doi.org/10.3389/fphys.2019.00449.

  77. Sonjak V, Jacob K, Morais JA, Rivera-Zengotita M, Spendiff S, Spake C, et al. Fidelity of muscle fibre reinnervation modulates ageing muscle impact in elderly women. J Physiol. 2019;597(19):5009–23. https://doi.org/10.1113/jp278261.

    Article  CAS  PubMed  Google Scholar 

  78. Sengupta P. The laboratory rat: relating its age with human's. Int J Prev Med. 2013;4(6):624–30.

    PubMed  PubMed Central  Google Scholar 

  79. Dutta S, Sengupta P. Men and mice: relating their ages. Life Sci. 2016;152(Supplement C):244–8. https://doi.org/10.1016/j.lfs.2015.10.025.

    Article  CAS  PubMed  Google Scholar 

  80. Ellenbroek B, Youn J. Rodent models in neuroscience research: is it a rat race? Dis Model Mech. 2016;9(10):1079–87. https://doi.org/10.1242/dmm.026120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Baek K-W, Jung Y-K, Kim J-S, Park JS, Hah Y-S, Kim S-J, et al. Rodent model of muscular atrophy for sarcopenia study. J Bone Metab. 2020;27(2):97–110. https://doi.org/10.11005/jbm.2020.27.2.97.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011;91(4):1447–531. https://doi.org/10.1152/physrev.00031.2010.

    Article  CAS  PubMed  Google Scholar 

  83. Ad Hoc Committee of The ASIGoSFEMG, Gilchrist JM. Single fiber EMG reference values: a collaborative effort. Muscle Nerve. 1992;15(2):151–61. https://doi.org/10.1002/mus.880150205.

    Article  Google Scholar 

  84. Sanders DB, Arimura K, Cui L, Ertaş M, Farrugia ME, Gilchrist J, et al. Guidelines for single fiber EMG. Clin Neurophysiol. 2019;130(8):1417–39. https://doi.org/10.1016/j.clinph.2019.04.005.

    Article  PubMed  Google Scholar 

  85. McPhee JS, Cameron J, Maden-Wilkinson T, Piasecki M, Yap MH, Jones DA, et al. The contributions of fiber atrophy, fiber loss, in situ specific force, and voluntary activation to weakness in sarcopenia. J Gerontol Ser A. 2018;73(10):1287–94. https://doi.org/10.1093/gerona/gly040.

    Article  Google Scholar 

  86. Power GA, Allen MD, Gilmore KJ, Stashuk DW, Doherty TJ, Hepple RT, et al. Motor unit number and transmission stability in octogenarian world class athletes: Can age-related deficits be outrun? J Appl Physiol. 2016;121(4):1013–20. https://doi.org/10.1152/japplphysiol.00149.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Piasecki M, Ireland A, Jones DA, McPhee JS. Age-dependent motor unit remodelling in human limb muscles. Biogerontology. 2016;17(3):485–96. https://doi.org/10.1007/s10522-015-9627-3.

    Article  PubMed  Google Scholar 

  88. Piasecki M, Ireland A, Piasecki J, Stashuk DW, Swiecicka A, Rutter MK, et al. Failure to expand the motor unit size to compensate for declining motor unit numbers distinguishes sarcopenic from non-sarcopenic older men. J Physiol. 2018;596(9):1627–37. https://doi.org/10.1113/jp275520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Piasecki M, Ireland A, Coulson J, Stashuk DW, Hamilton-Wright A, Swiecicka A et al. Motor unit number estimates and neuromuscular transmission in the tibialis anterior of master athletes: evidence that athletic older people are not spared from age-related motor unit remodeling. Physiol Rep. 2016;4(19). https://doi.org/10.14814/phy2.12987.

Download references

Funding

WDA was funded by the National Institutes of Health (NIH) R56AG055795 (NIA). BCC was funded by NIH R01AG044424 (NIA). JMS is supported by the National Institute of Disability, Independent Living and Rehabilitation Research Grant 90SI5020, NIH R01 NS118200-01 (NINDS), the European Union Era Net – Neuron Program, SILENCE Grant 01EW170A, the Craig H Neilsen Foundation Grant 596764, the Wings for Life Spinal Cord Research Foundation, and the William E. Hunt and Charlotte M. Curtis endowment. JMS is also a Discovery Theme Initiative Scholar (Chronic Brain Injury) of The Ohio State University. MRR was funded by NIH R01 AR074985

Author information

Authors and Affiliations

Authors

Contributions

Study Design: CP, MH, HH, SR, BC, and WA. Data acquisition: CP, MH, HH, WA. Data analyses and interpretation: CP, MH, JS, SR, MR, BC, WA. Draft of the manuscript: CP, BC, WA. Editing of manuscript: CP, MH, HH, JS, SR, MR, BC, WA. Acquisition of funding: JS, MR, BC, WA.

Corresponding author

Correspondence to W. David Arnold.

Ethics declarations

Ethics approval

All procedures were approved and performed in accordance with the Institutional Animal Care and Use Committee of The Ohio State University.

Competing interests

SBR has equity in, and serves a consultant and scientific advisor to, Myolex Inc., a company that designs impedance devices for clinical and research use; he is also a member of the company’s Board of Directors. The company also has an option to license patented impedance technology for which SBR is named as an inventor. In the past 3 years, BCC and WDA have received research funding from NMD Pharma for aging muscle research; BCC has received funding from Astellas Pharma Global Development, Inc. for aging muscle research; and BCC has served as a consultant to Regeneron Pharmaceuticals for topics pertinent to aging muscle research.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padilla, C.J., Harrigan, M.E., Harris, H. et al. Profiling age-related muscle weakness and wasting: neuromuscular junction transmission as a driver of age-related physical decline. GeroScience 43, 1265–1281 (2021). https://doi.org/10.1007/s11357-021-00369-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00369-3

Keywords

Navigation