Skip to main content
Log in

Sirtuins, aging, and cardiovascular risks

  • Published:
AGE Aims and scope Submit manuscript

Abstract

The sirtuins comprise a highly conserved family proteins present in virtually all species from bacteria to mammals. Sirtuins are members of the highly conserved class III histone deacetylases, and seven sirtuin genes (sirtuins 1–7) have been identified and characterized in mammals. Sirtuin activity is linked to metabolic control, apoptosis, cell survival, development, inflammation, and healthy aging. In this review, we summarize and discuss the potential mutual relations between each sirtuin and cardiovascular health and the impact of sirtuins on oxidative stress and so age-related cardiovascular disorders, underlining the possibility that sirtuins will be novel targets to contrast cardiovascular risks induced by aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

A. E. Pukhalskaia, I. M. Kvetnoy, … M. A. Paltsev

References

  • Ahuja N, Schwer B, Carobbio S, Waltregny D, North BJ, Castronovo V, Maechler P, Verdin E (2007) Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J Biol Chem 282(46):33583–33592

    Article  CAS  PubMed  Google Scholar 

  • Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, Tian B, Wagner T, Vatner SF, Sadoshima J (2007) Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res 100(10):1512–1521

    Article  CAS  PubMed  Google Scholar 

  • Alcendor RR, Kirshenbaum LA, Imai S, Vatner SF, Sadoshima J (2004) Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circ Res 95(10):971–980

    Article  CAS  PubMed  Google Scholar 

  • Banerjee KK, Ayyub C, Ali SZ, Mandot V, Prasad NG, Kolthur-Seetharam U (2012) dSir2 in the adult fat body, but not in muscles, regulates life span in a diet-dependent manner. Cell Rep 2(6):1485–1491

    Article  CAS  PubMed  Google Scholar 

  • Banerjee KK, Ayyub C, Sengupta S, Kolthur-Seetharam U (2013) Fat body dSir2 regulates muscle mitochondrial physiology and energy homeostasis nonautonomously and mimics the autonomous functions of dSir2 in muscles. Mol Cell Biol 33(2):252–264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barber MF, Michishita-Kioi E, Xi Y, Tasselli L, Kioi M, Moqtaderi Z, Tennen RI, Paredes S, Young NL, Chen K, Struhl K, Garcia BA, Gozani O, Li W, Chua KF (2012) SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487(7405):114–118

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bauer JH, Morris SN, Chang C, Flatt T, Wood JG, Helfand SL (2009) dSir2 and Dmp53 interact to mediate aspects of CR-dependent lifespan extension in D. melanogaster. Aging (Albany NY) 1(1):38-48

  • Baur JA, Ungvari Z, Minor RK, Le Couteur DG, de Cabo R (2012) Are sirtuins viable targets for improving healthspan and lifespan? Nat Rev Drug Discov 11(6):443–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becatti M, Taddei N, Cecchi C, Nassi N, Nassi PA, Fiorillo C (2012) SIRT1 modulates MAPK pathways in ischemic-reperfused cardiomyocytes. Cell Mol Life Sci 69(13):2245–2260

    Article  CAS  PubMed  Google Scholar 

  • Beher D, Wu J, Cumine S, Kim KW, Lu SC, Atangan L, Wang M (2009) Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des 74(6):619–624

    Article  CAS  PubMed  Google Scholar 

  • Bellizzi D, Dato S, Cavalcante P, Covello G, Di Cianni F, Passarino G, Rose G, De Benedictis G (2007) Characterization of a bidirectional promoter shared between two human genes related to aging: SIRT3 and PSMD13. Genomics 89(1):143–150

    Article  CAS  PubMed  Google Scholar 

  • Bellizzi D, Rose G, Cavalcante P, Covello G, Dato S, De Rango F, Greco V, Maggiolini M, Feraco E, Mari V, Franceschi C, Passarino G, De Benedictis G (2005) A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics 85(2):258–263

    Article  CAS  PubMed  Google Scholar 

  • Berdichevsky A, Viswanathan M, Horvitz HR, Guarente L (2006) C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 125(6):1165–1177

    Article  CAS  PubMed  Google Scholar 

  • Bolli R (2007) Preconditioning: a paradigm shift in the biology of myocardial ischemia. Am J Physiol Heart Circ Physiol 292(1):H19–H27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Borradaile NM, Pickering JG (2009) NAD(+), sirtuins, and cardiovascular disease. Curr Pharm Des 15(1):110–117

    Article  CAS  PubMed  Google Scholar 

  • Breitenstein A, Stein S, Holy EW, Camici GG, Lohmann C, Akhmedov A, Spescha R, Elliott PJ, Westphal CH, Matter CM, Lüscher TF, Tanner FC (2011) Sirt1 inhibition promotes in vivo arterial thrombosis and tissue factor expression in stimulated cells. Cardiovasc Res 89(2):464–472

    Article  CAS  PubMed  Google Scholar 

  • Bronze-da-Rocha E (2014) MicroRNAs expression profiles in cardiovascular diseases. Biomed Res Int 985408-985431

  • Brunelle JK, Letai A (2009) Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci 122(Pt 4):437–441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bubenik GA, Konturek SJ (2011) Melatonin and aging: prospects for human treatment. J Physiol Pharmacol 62(1):13–19

    CAS  PubMed  Google Scholar 

  • Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvári M, Piper MD, Hoddinott M, Sutphin GL, Leko V, McElwee JJ, Vazquez-Manrique RP, Orfila AM, Ackerman D, Au C, Vinti G, Riesen M, Howard K, Neri C, Bedalov A, Kaeberlein M, Soti C, Partridge L, Gems D (2011) Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477(7365):482–485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cardellini M, Menghini R, Martelli E, Casagrande V, Marino A, Rizza S, Porzio O, Mauriello A, Solini A, Ippoliti A, Lauro R, Folli F, Federici M (2009) TIMP3 is reduced in atherosclerotic plaques from subjects with type 2 diabetes and increased by SirT1. Diabetes 58(10):2396–2401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cardus A, Uryga AK, Walters G, Erusalimsky JD (2013) SIRT6 protects human endothelial cells from DNA damage, telomere dysfunction, and senescence. Cardiovasc Res 97(3):571–579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cencioni C, Spallotta F, Mai A, Martelli F, Farsetti A, Zeiher AM, Gaetano C (2015) Sirtuin function in aging heart and vessels. J Mol Cell Cardiol.

  • Cha YI, Kim HS (2013) Emerging role of sirtuins on tumorigenesis: possible link between aging and cancer. BMB Rep 46(9):429–438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen CJ, Fu YC, Yu W, Wang W (2013) SIRT3 protects cardiomyocytes from oxidative stress-mediated cell death by activating NF-κB. Biochem Biophys Res Commun 430(2):798–803

    Article  CAS  PubMed  Google Scholar 

  • Chen CJ, Yu W, Fu YC, Wang X, Li JL, Wang W (2009) Resveratrol protects cardiomyocytes from hypoxia-induced apoptosis through the SIRT1-FoxO1 pathway. Biochem Biophys Res Commun 378(3):389–393

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Xavier S, Moskowitz-Kassai E, Chen R, Lu CY, Sanduski K, Špes A, Turk B, Goligorsky MS (2012) Cathepsin cleavage of sirtuin 1 in endothelial progenitor cells mediates stress-induced premature senescence. Am J Pathol 180(3):973–983

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P, Bronson R, Appella E, Alt FW, Chua KF (2003) Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci U S A 100(19):10794–10799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheung KG, Cole LK, Xiang B, Chen K, Ma X, Myal Y, Hatch GM, Tong Q, Dolinsky VW (2015) Sirtuin-3 (SIRT3) protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes. J Biol Chem 290(17):10981–10993

    Article  CAS  PubMed  Google Scholar 

  • Choi JE, Mostoslavsky R (2014) Sirtuins, metabolism, and DNA repair. Curr Opin Genet Dev 26C:24–32

    Article  CAS  Google Scholar 

  • Chong ZZ, Wang S, Shang YC, Maiese K (2012) Targeting cardiovascular disease with novel SIRT1 pathways. Future Cardiol 8(1):89–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chung S, Yao H, Caito S, Hwang JW, Arunachalam G, Rahman I (2010) Regulation of SIRT1 in cellular functions: role of polyphenols. Arch Biochem Biophys 501(1):79–90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Conti V, Corbi G, Simeon V, Russomanno G, Manzo V, Ferrara N, Filippelli A (2015) Aging-related changes in oxidative stress response of human endothelial cells. Aging Clin Exp Res

  • Corbi G, Conti V, Russomanno G, Longobardi G, Furgi G, Filippelli A, Ferrara N (2013) Adrenergic signaling and oxidative stress: a role for sirtuins? Front Physiol 4:324–332

    Article  PubMed Central  PubMed  Google Scholar 

  • Corbi G, Conti V, Scapagnini G, Filippelli A, Ferrara N (2012) Role of sirtuins, calorie restriction and physical activity in aging. Front Biosci (Elite Ed) 4:768–778

    Article  Google Scholar 

  • Csiszar A, Labinskyy N, Pinto JT, Ballabh P, Zhang H, Losonczy G, Pearson K, de Cabo R, Pacher P, Zhang C, Ungvari Z (2009) Resveratrol induces mitochondrial biogenesis in endothelial cells. Am J Physiol Heart Circ Physiol 297(1):H13–H20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Csiszar A, Ungvari Z, Edwards JG, Kaminski P, Wolin MS, Koller A, Kaley G (2002) Aging-induced phenotypic changes and oxidative stress impair coronary arteriolar function. Circ Res 90(11):1159–1166

    Article  CAS  PubMed  Google Scholar 

  • Danz ED, Skramsted J, Henry N, Bennett JA, Keller RS (2009) Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirt1 pathway. Free Radic Biol Med 46(12):1589–1597

    Article  PubMed  CAS  Google Scholar 

  • Della-Morte D, Dave KR, DeFazio RA, Bao YC, Raval AP, Perez-Pinzon MA (2009) Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience 159(3):993–1002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dimmeler S, Leri A (2008) Aging and disease as modifiers of efficacy of cell therapy. Circ Res 102(11):1319–1330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Donato AJ, Magerko KA, Lawson BR, Durrant JR, Lesniewski LA, Seals DR (2011) SIRT-1 and vascular endothelial dysfunction with ageing in mice and humans. J Physiol 589(Pt 18):4545–4554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dong C, Della-Morte D, Wang L, Cabral D, Beecham A, McClendon MS, Luca CC, Blanton SH, Sacco RL, Rundek T (2011) Association of the sirtuin and mitochondrial uncoupling protein genes with carotid plaque. PLoS One 6(11):27157–27163

    Article  CAS  Google Scholar 

  • D'Onofrio N, Vitiello M, Casale R, Servillo L, Giovane A, Balestrieri ML (2015) Sirtuins in vascular diseases: emerging roles and therapeutic potential. Biochim Biophys Acta 1852(7):1311–1322

    Article  PubMed  CAS  Google Scholar 

  • Du J, Zhou Y, Su X, Yu JJ, Khan S, Jiang H, Kim J, Woo J, Kim JH, Choi BH, He B, Chen W, Zhang S, Cerione RA, Auwerx J, Hao Q, Lin H (2011) Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334(6057):806–809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Du Q, Jovanović S, Clelland A, Sukhodub A, Budas G, Phelan K, Murray-Tait V, Malone L, Jovanović A (2006) Overexpression of SUR2A generates a cardiac phenotype resistant to ischemia. FASEB J 20(8):1131–1141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • El-Mowafy AM, Alkhalaf M, El-Kashef HA (2008) Resveratrol reverses hydrogen peroxide-induced proliferative effects in human coronary smooth muscle cells: a novel signaling mechanism. Arch Med Res 39(2):155–161

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N, Rinaldi B, Corbi G, Conti V, Stiuso P, Boccuti S, Rengo G, Rossi F, Filippelli A (2008) Exercise training promotes SIRT1 activity in aged rats. Rejuvenation Res 11(1):139–150

    Article  CAS  PubMed  Google Scholar 

  • Ferrari AU, Radaelli A, Centola M (2003) Invited review: aging and the cardiovascular system. J Appl Physiol (1985);95(6):2591-2597.

  • Finkel T, Deng CX, Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460(7255):587–591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L (2006) Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev 20(9):1075–1080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frye RA (1999) Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 260(1):273–279

    Article  CAS  PubMed  Google Scholar 

  • Frye RA (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273(2):793–798

    Article  CAS  PubMed  Google Scholar 

  • Funk JA, Odejinmi S, Schnellmann RG (2010) SRT1720 induces mitochondrial biogenesis and rescues mitochondrial function after oxidant injury in renal proximal tubule cells. J Pharmacol Exp Ther 333(2):593–601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galindo CL, Skinner MA, Errami M, Olson LD, Watson DA, Li J, McCormick JF, McIver LJ, Kumar NM, Pham TQ, Garner HR (2009) Transcriptional profile of isoproterenol-induced cardiomyopathy and comparison to exercise-induced cardiac hypertrophy and human cardiac failure. BMC Physiol 9:23–45

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gano LB, Donato AJ, Pasha HM, Hearon Jr CM, Sindler AL, Seals DR (2014) The SIRT1 activator SRT1720 reverses vascular endothelial dysfunction, excessive superoxide production, and inflammation with aging in mice. Am J Physiol Heart Circ Physiol 307(12):H1754–H1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao P, Xu TT, Lu J, Li L, Xu J, Hao DL, Chen HZ, Liu DP (2014) Overexpression of SIRT1 in vascular smooth muscle cells attenuates angiotensin II-induced vascular remodeling and hypertension in mice. J Mol Med (Berl)92(4):347-357.

  • Gorenne I, Kumar S, Gray K, Figg N, Yu H, Mercer J, Bennett M (2013) Vascular smooth muscle cell sirtuin 1 protects against DNA damage and inhibits atherosclerosis. Circulation 127(3):386–396

    Article  CAS  PubMed  Google Scholar 

  • Gu C, Xing Y, Jiang L, Chen M, Xu M, Yin Y, Li C, Yang Z, Yu L, Ma H (2013) Impaired cardiac SIRT1 activity by carbonyl stress contributes to aging-related ischemic intolerance. PLoS One 8(9):e74050

  • Guarani V, Deflorian G, Franco CA, Krüger M, Phng LK, Bentley K, Toussaint L, Dequiedt F, Mostoslavsky R, Schmidt MH, Zimmermann B, Brandes RP, Mione M, Westphal CH, Braun T, Zeiher AM, Gerhardt H, Dimmeler S, Potente M (2011) Acetylation-dependent regulation of endothelial notch signalling by the SIRT1 deacetylase. Nature 473(7346):234–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guarani V, Potente M (2010) SIRT1—a metabolic sensor that controls blood vessel growth. Curr Opin Pharmacol 10(2):139–145

    Article  CAS  PubMed  Google Scholar 

  • Guarente L (2011) Sirtuins, aging, and metabolism. Cold Spring Harb Symp Quant Biol 76:81–90

    Article  CAS  PubMed  Google Scholar 

  • Hafner AV, Dai J, Gomes AP, Xiao CY, Palmeira CM, Rosenzweig A, Sinclair DA (2010) Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy Aging (Albany NY) 2(12):914-923

  • Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, Valenzuela DM, Yancopoulos GD, Karow M, Blander G, Wolberger C, Prolla TA, Weindruch R, Alt FW, Guarente L (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126(5):941–954

    Article  CAS  PubMed  Google Scholar 

  • Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hall JA, Dominy JE, Lee Y, Puigserver P (2013) The sirtuin family’s role in aging and age-associated pathologies. J Clin Invest 123(3):973–979

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Harman D (1992) Free radical theory of aging. Mutat Res 275(3-6):257–266

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto-Komatsu A, Hirase T, Asaka M, Node K (2011) Angiotensin II induces microtubule reorganization mediated by a deacetylase SIRT2 in endothelial cells. Hypertens Res 8:949–956

    Article  CAS  Google Scholar 

  • Higashi Y, Noma K, Yoshizumi M, Kihara Y (2009) Endothelial function and oxidative stress in cardiovascular diseases. Circ J 73(3):411–418

    Article  CAS  PubMed  Google Scholar 

  • Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank GD, Eguchi S (2007) Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci (Lond) 112(8):417–428

    Article  CAS  Google Scholar 

  • Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425(6954):191–196

    Article  CAS  PubMed  Google Scholar 

  • Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, Hariharan N, Shao D, Takagi H, Oka S, Sadoshima J (2010) Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 122(21):2170–2182

    Article  PubMed Central  PubMed  Google Scholar 

  • Hubbard BP, Gomes AP, Dai H, Li J, Case AW, Considine T, Riera TV, Lee JE, SY E, Lamming DW, Pentelute BL, Schuman ER, Stevens LA, Ling AJ, Armour SM, Michan S, Zhao H, Jiang Y, Sweitzer SM, Blum CA, Disch JS, Ng PY, Howitz KT, Rolo AP, Hamuro Y, Moss J, Perni RB, Ellis JL, Vlasuk GP, Sinclair DA (2013) Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 339(6124):1216–1219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403(6771):795–800

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa S, Li G, Takemitsu H, Fujiwara M, Mori N, Yamamoto I, Arai T (2013) Change in mRNA expression of sirtuin 1 and sirtuin 3 in cats fed on high fat diet. BMC Vet Res 9:187–195

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ito T, Yagi S, Yamakuchi M (2010) MicroRNA-34a regulation of endothelial senescence. Biochem Biophys Res Commun 398(4):735–740

    Article  CAS  PubMed  Google Scholar 

  • Ivey ME, Osman N, Little PJ (2008) Endothelin-1 signalling in vascular smooth muscle: pathways controlling cellular functions associated with atherosclerosis. Atherosclerosis 199(2):237–247

    Article  CAS  PubMed  Google Scholar 

  • Jamal J, Mustafa MR, Wong PF (2014) Paeonol protects against premature senescence in endothelial cells by modulating sirtuin 1 pathway. J Ethnopharmacol 154(2):428–436

    Article  CAS  PubMed  Google Scholar 

  • Jeong SM, Xiao C, Finley LW, Lahusen T, Souza AL, Pierce K, Li YH, Wang X, Laurent G, German NJ, Xu X, Li C, Wang RH, Lee J, Csibi A, Cerione R, Blenis J, Clish CB, Kimmelman A, Deng CX, Haigis MC (2013) SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 23(4):450–463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jia G, Su L, Singhal S, Liu X (2012) Emerging roles of SIRT6 on telomere maintenance, DNA repair, metabolism and mammalian aging. Mol Cell Biochem 364(1-2):345–350

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Khan S, Wang Y, Charron G, He B, Sebastian C, Du J, Kim R, Ge E, Mostoslavsky R, Hang HC, Hao Q, Lin H (2013) SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496(7443):110–113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13(19):2570–2580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kanfi Y, Peshti V, Gil R, Naiman S, Nahum L, Levin E, Kronfeld-Schor N, Cohen HY (2010) SIRT6 protects against pathological damage caused by diet-induced obesity. Aging Cell 9(2):162–173

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns N, Pennington JD, van der Meer R, Nguyen P, Savage J, Owens KM, Vassilopoulos A, Ozden O, Park SH, Singh KK, Abdulkadir SA, Spitz DR, Deng CX, Gius D (2010) SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17(1):41–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klishadi MS, Zarei F, Hejazian SH, Moradi A, Hemati M, Safari F (2015) Losartan protects the heart against ischemia reperfusion injury: sirtuin3 involvement. J Pharm Pharm Sci 18(1):112–123

    PubMed  Google Scholar 

  • Köhler R, Hoyer J (2007) Role of TRPV4 in the mechanotransduction of shear stress in endothelial cells. In: Liedtke WB, Heller S (eds) TRP ion channel function in sensory transduction and cellular signaling cascades. CRC Press, Boca Raton, FL

    Google Scholar 

  • Koka S, Aluri HS, Xi L, Lesnefsky EJ, Kukreja RC (2014) Chronic inhibition of phosphodiesterase 5 with tadalafil attenuates mitochondrial dysfunction in type 2 diabetic hearts: potential role of NO/SIRT1/PGC-1α signaling. Am J Physiol Heart Circ Physiol 306(11):H1558–H1568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kurz DJ, Decary S, Hong Y, Trivier E, Akhmedov A, Erusalimsky JD (2004) Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci 117(Pt 11):2417–2426

    Article  CAS  PubMed  Google Scholar 

  • Lai CH, Ho TJ, Kuo WW, Day CH, Pai PY, Chung LC, Liao PH, Lin FH, Wu ET, Huang CY (2014) Exercise training enhanced SIRT1 longevity signaling replaces the IGF1 survival pathway to attenuate aging-induced rat heart apoptosis. Age (Dordr) 36(5):9706–9970

    Article  CAS  Google Scholar 

  • Lakatta EG, Levy D (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part I: aging arteries: a “set up” for vascular disease. Circulation 107(1):139–146

    Article  PubMed  Google Scholar 

  • Li L, Gao P, Zhang H, Chen H, Zheng W, Lv X, Xu T, Wei Y, Liu D, Liang C (2011) SIRT1 inhibits angiotensin II-induced vascular smooth muscle cell hypertrophy. Acta Biochim Biophys Sin 43(2):103–109

    Article  CAS  PubMed  Google Scholar 

  • Li L, Wei W, Zhang Y, Tu G, Zhang Y, Yang J, Xing Y (2015) SirT1 and STAT3 protect retinal pigmented epithelium cells against oxidative stress. Mol Med Rep.

  • Liszt G, Ford E, Kurtev M, Guarente L (2005) Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem 280(22):21313–21320

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Che W, Xue J, Zheng C, Tang K, Zhang J, Wen J, Xu Y (2013a) SIRT4 prevents hypoxia-induced apoptosis in H9c2 cardiomyoblast cells. Cell Physiol Biochem 32(3):655–662

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Che W, Zheng C, Liu W, Wen J, Fu H, Tang K, Zhang J, Xu Y (2013b) SIRT5: a safeguard against oxidative stress-induced apoptosis in cardiomyocytes. Cell Physiol Biochem 32(4):1050–1059

    Article  CAS  PubMed  Google Scholar 

  • Loffredo FS, Nikolova AP, Pancoast JR, Lee RT (2014) Heart failure with preserved ejection fraction: molecular pathways of the aging myocardium. Circ Res 115(1):97–107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, Mostoslavsky R, Kim J, Yancopoulos G, Valenzuela D, Murphy A, Yang Y, Chen Y, Hirschey MD, Bronson RT, Haigis M, Guarente LP, Farese Jr RV, Weissman S, Verdin E, Schwer B (2007) Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol 27(24):8807–8814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Luo XY, Qu SL, Tang ZH, Zhang Y, Liu MH, Peng J, Tang H, Yu KL, Zhang C, Ren Z, Jiang ZS (2014) SIRT1 in cardiovascular aging. Clin Chim Acta 437:106–114

    Article  CAS  PubMed  Google Scholar 

  • Lynn EG, McLeod CJ, Gordon JP, Bao J, Sack MN (2008) SIRT2 is a negative regulator of anoxia-reoxygenation tolerance via regulation of 14-3-3 zeta and BAD in H9c2 cells. FEBS Lett 582(19):2857–2862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma H, Yu L, Byra EA, Hu N, Kitagawa K, Nakayama KI, Kawamoto T, Ren J (2010) Aldehyde dehydrogenase 2 knockout accentuates ethanol-induced cardiac depression: role of protein phosphatases. J Mol Cell Cardiol 49(2):322–329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matsushita N, Yonashiro R, Ogata Y, Sugiura A, Nagashima S, Fukuda T, Inatome R, Yanagi S (2011) Distinct regulation of mitochondrial localization and stability of two human Sirt5 isoforms. Genes Cells 16(2):190–202

    Article  CAS  PubMed  Google Scholar 

  • McBurney MW, Yang X, Jardine K, Hixon M, Boekelheide K, Webb JR, Lansdorp PM, Lemieux M (2003) The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol 23(1):38–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McCord RA, Michishita E, Hong T, Berber E, Boxer LD, Kusumoto R, Guan S, Shi X, Gozani O, Burlingame AL, Bohr VA, Chua KF (2009) SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging (Albany NY) 1(1):109-121

  • Merksamer PI, Liu Y, He W, Hirschey MD, Chen D, Verdin E (2013) The sirtuins, oxidative stress and aging: an emerging link. Aging (Albany NY) 5(3):144–150

    CAS  Google Scholar 

  • Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M, Cheung P, Kusumoto R, Kawahara TL, Barrett JC, Chang HY, Bohr VA, Ried T, Gozani O, Chua KF (2008) SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452(7186):492–496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16(10):4623–4635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, Bemis JE, Xie R, Disch JS, Ng PY, Nunes JJ, Lynch AV, Yang H, Galonek H, Israelian K, Choy W, Iffland A, Lavu S, Medvedik O, Sinclair DA, Olefsky JM, Jirousek MR, Elliott PJ, Westphal CH (2007) Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450(7170):712–716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miranda MX, van Tits LJ, Lohmann C, Arsiwala T, Winnik S, Tailleux A, Stein S, Gomes AP, Suri V, Ellis JL, Lutz TA, Hottiger MO, Sinclair DA, Auwerx J, Schoonjans K, Staels B, Lüscher TF, Matter CM (2015) The Sirt1 activator SRT3025 provides atheroprotection in Apoe−/− mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression. Eur Heart J 36(1):51–59

    Article  PubMed Central  PubMed  Google Scholar 

  • Mitchell SJ, Martin-Montalvo A, Mercken EM, Palacios HH, Ward TM, Abulwerdi G, Minor RK, Vlasuk GP, Ellis JL, Sinclair DA, Dawson J, Allison DB, Zhang Y, Becker KG, Bernier M, de Cabo R (2014) The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep 6(5):836–843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morris BJ (2013) Seven sirtuins for seven deadly diseases of aging. Free Radic Biol Med 56:133–171

    Article  CAS  PubMed  Google Scholar 

  • Mortuza R, Chen S, Feng B, Sen S, Chakrabarti S (2013) High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway. PLoS One 8(1):e54514

  • Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, Mills KD, Patel P, Hsu JT, Hong AL, Ford E, Cheng HL, Kennedy C, Nunez N, Bronson R, Frendewey D, Auerbach W, Valenzuela D, Karow M, Hottiger MO, Hursting S, Barrett JC, Guarente L, Mulligan R, Demple B, Yancopoulos GD, Alt FW (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124(2):315–329

    Article  CAS  PubMed  Google Scholar 

  • Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, McBurney M, Guarente L (2004) Mammalian SIRT1 represses forkhead transcription factors. Cell 116(4):551–563

    Article  CAS  PubMed  Google Scholar 

  • Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D, Cantó C, Mottis A, Jo YS, Viswanathan M, Schoonjans K, Guarente L, Auwerx J (2013) The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154(2):430–441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakagawa T, Lomb DJ, Haigis MC, Guarente L (2009) SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137(3):560–570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakamura Y, Ogura M, Tanaka D, Inagaki N (2008) Localization of mouse mitochondrial SIRT proteins: shift of SIRT3 to nucleus by co-expression with SIRT5. Biochem Biophys Res Commun 366(1):174–179

    Article  CAS  PubMed  Google Scholar 

  • Nasrin N, Wu X, Fortier E, Feng Y, Bare' OC, Chen S, Ren X, Wu Z, Streeper RS, Bordone L (2010) SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. J Biol Chem 285(42):31995-32002

  • North BJ, Marshall BL, Borra MT, Denu JM, Verdin E (2003) The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 11(2):437–444

    Article  CAS  PubMed  Google Scholar 

  • North BJ, Sinclair DA (2012) The intersection between aging and cardiovascular disease. Circ Res 110(8):1097–1108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • North BJ, Verdin E (2007) Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis. PLoS One 2(8):784–796

    Article  CAS  Google Scholar 

  • Ogura M, Nakamura Y, Tanaka D, Zhuang X, Fujita Y, Obara A, Hamasaki A, Hosokawa M, Inagaki N (2010) Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1. Biochem Biophys Res Commun 393(1):73–78

    Article  CAS  PubMed  Google Scholar 

  • Onyango P, Celic I, McCaffery JM, Boeke JD, Feinberg AP (2002) SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci U S A 99(21):13653–13658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ota H, Akishita M, Eto M, Iijima K, Kaneki M, Ouchi Y (2007) Sirt1 modulates premature senescence-like phenotype in human endothelial cells. J Mol Cell Cardiol 43(5):571–579

    Article  CAS  PubMed  Google Scholar 

  • Ota H, Eto M, Ogawa S, Iijima K, Akishita M, Ouchi Y (2010) SIRT1/eNOS axis as a potential target against vascular senescence, dysfunction and atherosclerosis. J Atheroscler Thromb 17(5):431–435

    Article  CAS  PubMed  Google Scholar 

  • Pacholec M, Bleasdale JE, Chrunyk B, Cunningham D, Flynn D, Garofalo RS, Griffith D, Griffor M, Loulakis P, Pabst B, Qiu X, Stockman B, Thanabal V, Varghese A, Ward J, Withka J, Ahn K (2010) SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem 285(11):8340–8351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pallàs M, Pizarro JG, Gutierrez-Cuesta J, Crespo-Biel N, Alvira D, Tajes M, Yeste-Velasco M, Folch J, Canudas AM, Sureda FX, Ferrer I, Camins A (2008) Modulation of SIRT1 expression in different neurodegenerative models and human pathologies. Neuroscience 154(4):1388–1397

    Article  PubMed  CAS  Google Scholar 

  • Pantazi E, Zaouali MA, Bejaoui M, Folch-Puy E, Ben Abdennebi H, Roselló-Catafau J (2013) Role of sirtuins in ischemia-reperfusion injury. World J Gastroenterol 19(43):7594–7602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, Xie Z, Zhang Y, Zwaans BM, Skinner ME, Lombard DB, Zhao Y (2013) SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell 50(6):919–930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown AL, Kim MK, Beaven MA, Burgin AB, Manganiello V, Chung JH (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148(3):421–433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pillai VB, Sundaresan NR, Gupta MP (2014) Regulation of Akt signaling by sirtuins: its implication in cardiac hypertrophy and aging. Circ Res 114(2):368–378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ponnappan S, Ponnappan U (2011) Aging and immune function: molecular mechanisms to interventions. Antioxid Redox Signal 14(8):1551–1585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Porter GA, Urciuoli WR, Brookes PS, Nadtochiy SM (2014) SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts. Am J Physiol Heart Circ Physiol 306(12):H1602–H1609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Potente M, Ghaeni L, Baldessari D, Mostoslavsky R, Rossig L, Dequiedt F, Haendeler J, Mione M, Dejana E, Alt FW, Zeiher AM, Dimmeler S (2007) SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev 21(20):2644–2658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qiu X, Brown K, Hirschey MD, Verdin E, Chen D (2010) Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 12(6):662–667

    Article  CAS  PubMed  Google Scholar 

  • Rahman I, Kinnula VL, Gorbunova V, Yao H (2012) SIRT1 as a therapeutic target in inflammaging of the pulmonary disease. Prev Med 54(Suppl):20–28

    Article  CAS  Google Scholar 

  • Reiter RJ, Tan DX, Mayo JC, Sainz RM, Lopez-Burillo S (2002) Melatonin, longevity and health in the aged: an assessment. Free Radic Res 36(12):1323–1329

    Article  CAS  PubMed  Google Scholar 

  • Rivard A, Fabre JE, Silver M, Chen D, Murohara T, Kearney M, Magner M, Asahara T, Isner JM (1999) Age-dependent impairment of angiogenesis. Circulation: 111-120

  • Rizki G, Iwata TN, Li J, Riedel CG, Picard CL, Jan M, Murphy CT, Lee SS (2010) The evolutionarily conserved longevity determinants HCF-1 and SIR-2.1/SIRT1 collaborate to regulate DAF-16/FOXO. PLoS Genet 7(9):e1002235

  • Rodella LF, Favero G, Rossini C, Foglio E, Bonomini F, Reiter RJ, Rezzani R (2013) Aging and vascular dysfunction: beneficial melatonin effects. Age (Dordr) 35(1):103–115

    Article  CAS  Google Scholar 

  • Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 101(45):15998–16003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roos CM, Hagler M, Zhang B, Oehler EA, Arghami A, Miller JD (2013) Transcriptional and phenotypic changes in aorta and aortic valve with aging and MnSOD deficiency in mice. Am J Physiol Heart Circ Physiol 305(10):1428–1439

    Article  CAS  Google Scholar 

  • Roth M, Chen WY (2014) Sorting out functions of sirtuins in cancer. Oncogene 33(13):1609–1620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ruan Y, Dong C, Patel J, Duan C, Wang X, Wu X, Cao Y, Pu L, Lu D, Shen T, Li J (2015) SIRT1 suppresses doxorubicin-induced cardiotoxicity by regulating the oxidative stress and p38MAPK pathways. Cell Physiol Biochem 35(3):1116–1124

    Article  CAS  PubMed  Google Scholar 

  • Samuel SM, Thirunavukkarasu M, Penumathsa SV, Paul D, Maulik N (2008) Akt/FOXO3a/SIRT1-mediated cardioprotection by n-tyrosol against ischemic stress in rat in vivo model of myocardial infarction: switching gears toward survival and longevity. J Agric Food Chem 56(20):9692–9698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sanchez-Fidalgo S, Villegas I, Sanchez-Hidalgo M, de la Lastra CA (2012) Sirtuin modulators: mechanisms and potential clinical implications. Curr Med Chem 19(15):2414–2441

    Article  CAS  PubMed  Google Scholar 

  • Scher MB, Vaquero A, Reinberg D (2007) SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev 21(8):920–928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schlicker C, Gertz M, Papatheodorou P, Kachholz B, Becker CF, Steegborn C (2008) Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J Mol Biol 382(3):790–801

    Article  CAS  PubMed  Google Scholar 

  • Schwer B, North BJ, Frye RA, Ott M, Verdin E (2002) The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol 158(4):647–657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schwer B, Schumacher B, Lombard DB, Xiao C, Kurtev MV, Gao J, Schneider JI, Chai H, Bronson RT, Tsai LH, Deng CX, Alt FW (2010) Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity. Proc Natl Acad Sci U S A 107(50):21790–21794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sequeira J, Boily G, Bazinet S, Saliba S, He X, Jardine K, Kennedy C, Staines W, Rousseaux C, Mueller R, McBurney MW (2008) sirt1-null mice develop an autoimmune-like condition. Exp Cell Res 314(16):3069–3074

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Camici GG, Lüscher TF (2010) Cardiovascular determinants of life span. Pflugers Arch 459(2):315–324

    Article  CAS  PubMed  Google Scholar 

  • Shinmura K, Tamaki K, Bolli R (2008) Impact of 6-mo caloric restriction on myocardial ischemic tolerance: possible involvement of nitric oxide-dependent increase in nuclear Sirt1. Am J Physiol Heart Circ Physiol 295(6):H2348–H2355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shore D, Squire M, Nasmyth KA (1984) Characterization of two genes required for the position-effect control of yeast mating-type genes. EMBO J;3(12):2817-2823

  • Sinclair DA, Guarente L (2014) Small-molecule allosteric activators of sirtuins. Annu Rev Pharmacol Toxicol 54:363–380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Someya S, Yu W, Hallows WC, Xu J, Vann JM, Leeuwenburgh C, Tanokura M, Denu JM, Prolla TA (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143(5):802–812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song Z, Liu Y, Hao B, Yu S, Zhang H, Liu D, Zhou B, Wu L, Wang M, Xiong Z, Wu C, Zhu J, Qian X (2014) Ginsenoside Rb1 prevents H2O2-induced HUVEC senescence by stimulating sirtuin-1 pathway. PLoS One 9(11):e112699.

  • Stein S, Lohmann C, Schäfer N, Hofmann J, Rohrer L, Besler C, Rothgiesser KM, Becher B, Hottiger MO, Borén J, McBurney MW, Landmesser U, Lüscher TF, Matter CM (2010) SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis. Eur Heart J 31(18):2301–2309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Strait JB, Lakatta EG (2012) Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail Clin 8(1):143–164

    Article  PubMed Central  PubMed  Google Scholar 

  • Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP (2009) Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 119(9):2758–2771

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sundaresan NR, Pillai VB, Gupta MP (2011) Emerging roles of SIRT1 deacetylase in regulating cardiomyocyte survival and hypertrophy. J Mol Cell Cardio 51(4):614–618

    Article  CAS  Google Scholar 

  • Sundaresan NR, Vasudevan P, Zhong L, Kim G, Samant S, Parekh V, Pillai VB, Ravindra PV, Gupta M, Jeevanandam V, Cunningham JM, Deng CX, Lombard DB, Mostoslavsky R, Gupta MP (2012) The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med 18(11):1643–1650

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tan WQ, Wang K, Lv DY, Li PF (2008) Foxo3a inhibits cardiomyocyte hypertrophy through transactivating catalase. J Biol Chem 283(44):29730–29739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tang BL (2011) Sirt1’s systemic protective roles and its promise as a target in antiaging medicine. Transl Res 157(5):276–284

    Article  CAS  PubMed  Google Scholar 

  • Tang PC, Ng YF, Ho S, Gyda M, Chan SW (2014) Resveratrol and cardiovascular health—promising therapeutic or hopeless illusion? Pharmacol Res 90:88–115

    Article  CAS  PubMed  Google Scholar 

  • Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y (2007) Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem 282(9):6823–6832

    Article  CAS  PubMed  Google Scholar 

  • Thompson AM, Wagner R, Rzucidlo EM (2014) Age-related loss of SirT1 expression results in dysregulated human vascular smooth muscle cell function. Am J Physiol Heart Circ Physiol 307(4):H533–H541

    Article  CAS  PubMed  Google Scholar 

  • Togliatto G, Trombetta A, Dentelli P, Gallo S, Rosso A, Cotogni P, Granata R, Falcioni R, Delale T, Ghigo E, Brizzi MF (2014) Unacylated ghrelin induces oxidative stress resistance in a glucose intolerance and peripheral artery disease mouse model by restoring endothelial cell miR-126 expression. Diabetes 64(4):1370–1382

    Article  PubMed  CAS  Google Scholar 

  • Tong C, Morrison A, Mattison S, Qian S, Bryniarski M, Rankin B, Wang J, Thomas DP, Li J (2013) Impaired SIRT1 nucleocytoplasmic shuttling in the senescent heart during ischemic stress. FASEB J 27(11):4332–4342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tseng AH, Wu LH, Shieh SS, Wang DL (2014) SIRT3 interactions with FOXO3 acetylation, phosphorylation and ubiquitinylation mediate endothelial cell responses to hypoxia. Biochem J 464(1):157–168

    Article  CAS  PubMed  Google Scholar 

  • Ungvari Z, Buffenstein R, Austad SN, Podlutsky A, Kaley G, Csiszar A (2008) Oxidative stress in vascular senescence: lessons from successfully aging species. Front Biosci 13:5056–5070

    Article  CAS  PubMed  Google Scholar 

  • Ungvari Z, Orosz Z, Rivera A, Labinskyy N, Xiangmin Z, Olson S, Podlutsky A, Csiszar A (2007) Resveratrol increases vascular oxidative stress resistance. Am J Physiol Heart Circ Physiol 292(5):2417–2244

    Article  CAS  Google Scholar 

  • Vakhrusheva O, Braeuer D, Liu Z, Braun T, Bober E (2008b) Sirt7-dependent inhibition of cell growth and proliferation might be instrumental to mediate tissue integrity during aging. J Physiol Pharmacol 59(Suppl 9):201–212

    PubMed  Google Scholar 

  • Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kubin T, Braun T, Bober E (2008a) Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res 102(6):703–710

    Article  CAS  PubMed  Google Scholar 

  • Vaquero A, Scher MB, Lee DH, Sutton A, Cheng HL, Alt FW, Serrano L, Sternglanz R, Reinberg D (2006) SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev 20(10):1256–1261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vasko R, Xavier S, Chen J, Lin CH, Ratliff B, Rabadi M, Maizel J, Tanokuchi R, Zhang F, Cao J, Goligorsky MS (2014) Endothelial sirtuin 1 deficiency perpetrates nephrosclerosis through downregulation of matrix metalloproteinase-14: relevance to fibrosis of vascular senescence. J Am Soc Nephrol 25(2):276–291

  • Villalba JM, Alcaín FJ (2012) Sirtuin activators and inhibitors. Biofactors 38(5):349–359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Viswanathan M, Guarente L (2011) Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes. Nature 477(7365):E1–E2

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan M, Kim SK, Berdichevsky A, Guarente L (2005) A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev Cell 9(5):605–615

    Article  CAS  PubMed  Google Scholar 

  • Wallerath T, Deckert G, Ternes T, Anderson H, Li H, Witte K, Förstermann U (2002) Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation 106(13):1652–1658

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Nguyen M, Qin FX, Tong Q (2007) SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 6(4):505–514

    Article  CAS  PubMed  Google Scholar 

  • Wang JC, Bennett M (2012) Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res 111(2):245–259

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Khazan B, Lakatta EG (2010) Central arterial aging and angiotensin II signaling. Curr Hypertens Rev 6(4):266–281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang XQ, Shao Y, Ma CY, Chen W, Sun L, Liu W, Zhang DY, Fu BC, Liu KY, Jia ZB, Xie BD, Jiang SL, Li RK, Tian H (2014) Decreased SIRT3 in aged human mesenchymal stromal/stem cells increases cellular susceptibility to oxidative stress. J Cell Mol Med 18(11):2298–2310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Webster BR, Lu Z, Sack MN, Scott I (2012) The role of sirtuins in modulating redox stressors. Free Radic Biol Med 52(2):281–290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao C, Kim HS, Lahusen T, Wang RH, Xu X, Gavrilova O, Jou W, Gius D, Deng CX (2010) SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice. J Biol Chem 285(47):36776–36784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu J, Zhao J, Evan G, Xiao C, Cheng Y, Xiao J (2012) Circulating microRNAs: novel biomarkers for cardiovascular diseases. J Mol Med 90(8):865–875

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Byun J, Zhai P, Ikeda Y, Oka S, Sadoshima J (2014) Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS One 9(6):e98972

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yang Y, Duan W, Li Y, Jin Z, Yan J, Yu S, Yi D (2013) Novel role of silent information regulator 1 in myocardial ischemia. Circulation 128(20):2232–2240

    Article  PubMed  Google Scholar 

  • Yu W, Fu YC, Chen CJ, Wang X, Wang W (2009) SIRT1: a novel target to prevent atherosclerosis. J Cell Biochem 108(1):10–13

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Lee SM, Shannon S, Gao B, Chen W, Chen A, Divekar R, McBurney MW, Braley-Mullen H, Zaghouani H, Fang D (2009) The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice. J Clin Invest 119(10):3048–3058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang L, Han L, Ma R, Hou X, Yu Y, Sun S, Xu Y, Schedl T, Moley KH, Wang Q. (2015) Sirt3 prevents maternal obesity-associated oxidative stress and meiotic defects in mouse oocytes. Cell Cycle

Download references

Acknowledgments

Sincere thanks to Miss Stefania Castrezzati and Mrs. Lorena Giugno.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Rezzani.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Favero, G., Franceschetti, L., Rodella, L.F. et al. Sirtuins, aging, and cardiovascular risks. AGE 37, 65 (2015). https://doi.org/10.1007/s11357-015-9804-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-015-9804-y

Keywords

Navigation