Skip to main content
Log in

Environmental resilience through artificial intelligence: innovations in monitoring and management

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The rapid rise of artificial intelligence (AI) technology has revolutionized numerous fields, with its applications spanning finance, engineering, healthcare, and more. In recent years, AI’s potential in addressing environmental concerns has garnered significant attention. This review paper provides a comprehensive exploration of the impact that AI has on addressing and mitigating critical environmental concerns. In the backdrop of AI’s remarkable advancement across diverse disciplines, this study is dedicated to uncovering its transformative potential in the realm of environmental monitoring. The paper initiates by tracing the evolutionary trajectory of AI technologies and delving into the underlying design principles that have catalysed its rapid progression. Subsequently, it delves deeply into the nuanced realm of AI applications in the analysis of remote sensing imagery. This includes an intricate breakdown of challenges and solutions in per-pixel analysis, object detection, shape interpretation, texture evaluation, and semantic understanding. The crux of the review revolves around AI’s pivotal role in environmental control, examining its specific implementations in wastewater treatment and solid waste management. Moreover, the study accentuates the significance of AI-driven early-warning systems, empowering proactive responses to environmental threats. Through a meticulous analysis, the review underscores AI’s unparalleled capacity to enhance accuracy, adaptability, and real-time decision-making, effectively positioning it as a cornerstone in shaping a sustainable and resilient future for environmental monitoring and preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbasi M, Abduli MA, Omidvar B, Baghvand A (2014) Results uncertainty of support vector machine and hybrid of wavelet transform-support vector machine models for solid waste generation forecasting. Environ Prog Sustain Energy 33:220–228. https://doi.org/10.1002/ep.11747

    Article  CAS  Google Scholar 

  • Abbasi M, El Hanandeh A (2016) Forecasting municipal solid waste generation using artificial intelligence modelling approaches. Waste Manag 56:13–22. https://doi.org/10.1016/j.wasman.2016.05.018

    Article  PubMed  Google Scholar 

  • Adamović VM, Antanasijević DZ, Ćosović AR et al (2018) An artificial neural network approach for the estimation of the primary production of energy from municipal solid waste and its application to the Balkan countries. Waste Manag 78:955–968. https://doi.org/10.1016/j.wasman.2018.07.012

    Article  PubMed  Google Scholar 

  • Agarwala N (2021) Managing marine environmental pollution using artificial intelligence. Marit Technol Res 3:120–136

    Article  Google Scholar 

  • Ali JM, Hussain MA, Tade MO, Zhang J (2015) Artificial Intelligence techniques applied as estimator in chemical process systems—a literature survey. Expert Syst Appl 42:5915–5931

    Article  Google Scholar 

  • Antwi P, Li J, Meng J et al (2018) Feedforward neural network model estimating pollutant removal process within mesophilic upflow anaerobic sludge blanket bioreactor treating industrial starch processing wastewater. Bioresour Technol 257:102–112

    Article  CAS  PubMed  Google Scholar 

  • Asadi A, Verma A, Yang K, Mejabi B (2017) Wastewater treatment aeration process optimization: a data mining approach. J Environ Manage 203:630–639. https://doi.org/10.1016/j.jenvman.2016.07.047

    Article  CAS  PubMed  Google Scholar 

  • Asfaram A, Ghaedi M, Ahmadi Azqhandi MH et al (2016a) Statistical experimental design, least squares-support vector machine (LS-SVM) and artificial neural network (ANN) methods for modeling the facilitated adsorption of methylene blue dye. RSC Adv 6:40502–40516. https://doi.org/10.1039/C6RA01874B

    Article  CAS  ADS  Google Scholar 

  • Asfaram A, Ghaedi M, Ahmadi Azqhandi MH et al (2017) Ultrasound-assisted binary adsorption of dyes onto Mn@ CuS/ZnS-NC-AC as a novel adsorbent: application of chemometrics for optimization and modeling. J Ind Eng Chem 54:377–388. https://doi.org/10.1016/j.jiec.2017.06.018

    Article  CAS  Google Scholar 

  • Asfaram A, Ghaedi M, Hajati S, Goudarzi A (2016b) Synthesis of magnetic γ-Fe2O3-based nanomaterial for ultrasonic assisted dyes adsorption: modeling and optimization. Ultrason Sonochem 32:418–431. https://doi.org/10.1016/j.ultsonch.2016.04.011

    Article  CAS  PubMed  Google Scholar 

  • Baştanlar Y, Özuysal M (2014) Introduction to machine learning. MiRNomics MicroRNA Biol Comput Anal:105–128

  • Beigl P, Lebersorger S, Salhofer S (2008) Modelling municipal solid waste generation: a review. Waste Manag 28:200–214. https://doi.org/10.1016/j.wasman.2006.12.011

    Article  CAS  PubMed  Google Scholar 

  • Chambers D, Reese C, Thornburg L et al (2018) Distinguishing petroleum (crude oil and fuel) from smoke exposure within populations based on the relative blood levels of benzene, toluene, ethylbenzene, and xylenes (BTEX), styrene and 2, 5-dimethylfuran by pattern recognition using artificial neural networks. Environ Sci Technol 52:308–316

    Article  CAS  PubMed  ADS  Google Scholar 

  • Chen J, Liu J, He Y et al (2017) Investigation of co-combustion characteristics of sewage sludge and coffee grounds mixtures using thermogravimetric analysis coupled to artificial neural networks modeling. Bioresour Technol 225:234–245. https://doi.org/10.1016/j.biortech.2016.11.069

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Xie C, Liu J et al (2018) Co-combustion of sewage sludge and coffee grounds under increased O2/CO2 atmospheres: thermodynamic characteristics, kinetics and artificial neural network modeling. Bioresour Technol 250:230–238. https://doi.org/10.1016/j.biortech.2017.11.031

    Article  CAS  PubMed  Google Scholar 

  • Cong Q, Yu W (2018) Integrated soft sensor with wavelet neural network and adaptive weighted fusion for water quality estimation in wastewater treatment process. Measurement 124:436–446. https://doi.org/10.1016/j.measurement.2018.01.001

    Article  ADS  Google Scholar 

  • Csábrági A, Molnár S, Tanos P et al (2019) Estimation of dissolved oxygen in riverine ecosystems: comparison of differently optimized neural networks. Ecol Eng 138:298–309

    Article  Google Scholar 

  • da Rocha SJSS, Torres CMME, Jacovine LAG et al (2018) Artificial neural networks: modeling tree survival and mortality in the Atlantic Forest biome in Brazil. Sci Total Environ 645:655–661

    Article  CAS  PubMed  ADS  Google Scholar 

  • Deng Z, Sun H, Zhou S et al (2018) Multi-scale object detection in remote sensing imagery with convolutional neural networks. ISPRS J Photogramm Remote Sens 145:3–22

    Article  ADS  Google Scholar 

  • Dil EA, Ghaedi M, Asfaram A et al (2017) Preparation of nanomaterials for the ultrasound-enhanced removal of Pb2+ ions and malachite green dye: chemometric optimization and modeling. Ultrason Sonochem 34:677–691

    Article  CAS  PubMed  Google Scholar 

  • Ding D, Feng C, Jin Y et al (2011) Domestic sewage treatment in a sequencing batch biofilm reactor (SBBR) with an intelligent controlling system. Desalination 276:260–265. https://doi.org/10.1016/j.desal.2011.03.059

    Article  CAS  Google Scholar 

  • Dolatabadi M, Mehrabpour M, Esfandyari M et al (2018) Modeling of simultaneous adsorption of dye and metal ion by sawdust from aqueous solution using of ANN and ANFIS. Chemom Intell Lab Syst 181:72–78

    Article  CAS  Google Scholar 

  • Du P, Liu P, Xia J et al (2014) Remote sensing image interpretation for urban environment analysis: Methods, system and examples. Remote Sens 6:9458–9474

    Article  ADS  Google Scholar 

  • Fan M, Hu J, Cao R et al (2018) A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence. Chemosphere 200:330–343

    Article  CAS  PubMed  ADS  Google Scholar 

  • Fang B, Yu J, Chen Z et al (2023) Artificial intelligence for waste management in smart cities: a review. Environ Chem Lett 21:1959–1989. https://doi.org/10.1007/s10311-023-01604-3

    Article  CAS  Google Scholar 

  • Fernandez de Canete J, Del Saz-Orozco P, Baratti R et al (2016) Soft-sensing estimation of plant effluent concentrations in a biological wastewater treatment plant using an optimal neural network. Expert Syst Appl 63:8–19. https://doi.org/10.1016/j.eswa.2016.06.028

    Article  Google Scholar 

  • Fernandez-Beltran R, Haut JM, Paoletti ME et al (2018) Remote sensing image fusion using hierarchical multimodal probabilistic latent semantic analysis. IEEE J Sel Top Appl Earth Obs Remote Sens 11:4982–4993

    Article  ADS  Google Scholar 

  • Fu L, Li J, Chen Y (2023) An innovative decision making method for air quality monitoring based on big data-assisted artificial intelligence technique. J Innov Knowl 8:100294. https://doi.org/10.1016/j.jik.2022.100294

    Article  Google Scholar 

  • Genuino DAD, Bataller BG, Capareda SC, de Luna MDG (2017) Application of artificial neural network in the modeling and optimization of humic acid extraction from municipal solid waste biochar. J Environ Chem Eng 5:4101–4107. https://doi.org/10.1016/j.jece.2017.07.071

    Article  CAS  Google Scholar 

  • Ghaedi A, Ghaedi M, Pouranfard A et al (2016) Adsorption of Triamterene on multi-walled and single-walled carbon nanotubes: artificial neural network modeling and genetic algorithm optimization. J Mol Liq 216:654–665

    Article  CAS  Google Scholar 

  • Ghazouani F, Farah IR, Solaiman B (2018) Semantic remote sensing scenes interpretation and change interpretation. In: Ontology in information science. IntechOpen

    Google Scholar 

  • Haimi H, Mulas M, Corona F, Vahala R (2013) Data-derived soft-sensors for biological wastewater treatment plants: an overview. Environ Model Softw 47:88–107. https://doi.org/10.1016/j.envsoft.2013.05.009

    Article  Google Scholar 

  • Han H-G, Li Y, Guo Y-N, Qiao J-F (2016) A soft computing method to predict sludge volume index based on a recurrent self-organizing neural network. Appl Soft Comput 38:477–486. https://doi.org/10.1016/j.asoc.2015.09.051

    Article  Google Scholar 

  • He J, Gong S, Yu Y et al (2017) Air pollution characteristics and their relation to meteorological conditions during 2014–2015 in major Chinese cities. Environ Pollut 223:484–496. https://doi.org/10.1016/j.envpol.2017.01.050

    Article  CAS  PubMed  Google Scholar 

  • Helm JM, Swiergosz AM, Haeberle HS et al (2020) Machine learning and artificial intelligence: definitions, applications, and future directions. Curr Rev Musculoskelet Med 13:69–76

    Article  PubMed  PubMed Central  Google Scholar 

  • Himeur Y, Rimal B, Tiwary A, Amira A (2022) Using artificial intelligence and data fusion for environmental monitoring: a review and future perspectives. Inf Fusion 86:44–75

    Article  Google Scholar 

  • Hoang T-D, Ky NM, Thuong NTN et al (2022) Artificial intelligence in pollution control and management: status and future prospects. Artif Intell Environ Sustain Chall Solut Era Ind 40:23–43

    Google Scholar 

  • Huang M, Ma Y, Wan J, Chen X (2015) A sensor-software based on a genetic algorithm-based neural fuzzy system for modeling and simulating a wastewater treatment process. Appl Soft Comput 27:1–10. https://doi.org/10.1016/j.asoc.2014.10.034

    Article  Google Scholar 

  • James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning. Springer

    Book  Google Scholar 

  • Jiang M, Zhu Z (2022) The role of artificial intelligence algorithms in marine scientific research. Front Mar Sci 9:920994

    Article  Google Scholar 

  • Jing L, Chen B, Zhang B (2014) Modeling of UV-induced photodegradation of naphthalene in marine oily wastewater by artificial neural networks. Water Air Soil Pollut 225:1906. https://doi.org/10.1007/s11270-014-1906-0

    Article  CAS  ADS  Google Scholar 

  • Jing L, Chen B, Zhang B, Li P (2015) Process simulation and dynamic control for marine oily wastewater treatment using UV irradiation. Water Res 81:101–112. https://doi.org/10.1016/j.watres.2015.03.023

    Article  CAS  PubMed  Google Scholar 

  • Johnson NE, Ianiuk O, Cazap D et al (2017) Patterns of waste generation: a gradient boosting model for short-term waste prediction in New York City. Waste Manag 62:3–11. https://doi.org/10.1016/j.wasman.2017.01.037

    Article  PubMed  Google Scholar 

  • Jordan MI, Mitchell TM (2015) Machine learning: trends, perspectives, and prospects. Science 349:255–260

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  • Jothiswaran V, Velumani T, Jayaraman R (2020) Application of artificial intelligence in fisheries and aquaculture. Biot Res Today 2:499–502

    Google Scholar 

  • Kannangara M, Dua R, Ahmadi L, Bensebaa F (2018) Modeling and prediction of regional municipal solid waste generation and diversion in Canada using machine learning approaches. Waste Manag 74:3–15

    Article  PubMed  Google Scholar 

  • Karri RR, Tanzifi M, Tavakkoli Yaraki M, Sahu JN (2018) Optimization and modeling of methyl orange adsorption onto polyaniline nano-adsorbent through response surface methodology and differential evolution embedded neural network. J Environ Manage 223:517–529. https://doi.org/10.1016/j.jenvman.2018.06.027

    Article  CAS  PubMed  Google Scholar 

  • Kashiwao T, Nakayama K, Ando S et al (2017) A neural network-based local rainfall prediction system using meteorological data on the Internet: a case study using data from the Japan Meteorological Agency. Appl Soft Comput 56:317–330

    Article  Google Scholar 

  • Kemker R, Salvaggio C, Kanan C (2018) Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning. ISPRS J Photogramm Remote Sens 145:60–77

    Article  ADS  Google Scholar 

  • Khatami R, Mountrakis G, Stehman SV (2017) Mapping per-pixel predicted accuracy of classified remote sensing images. Remote Sens Environ 191:156–167

    Article  ADS  Google Scholar 

  • Kim S, Pan S, Mase H (2019) Artificial neural network-based storm surge forecast model: Practical application to Sakai Minato, Japan. Appl Ocean Res 91:101871

    Article  Google Scholar 

  • Kok JN, Boers EJ, Kosters WA et al (2009) Artificial intelligence: definition, trends, techniques, and cases. Artif Intell 1:270–299

    Google Scholar 

  • Kontokosta CE, Hong B, Johnson NE, Starobin D (2018) Using machine learning and small area estimation to predict building-level municipal solid waste generation in cities. Comput Environ Urban Syst 70:151–162. https://doi.org/10.1016/j.compenvurbsys.2018.03.004

    Article  Google Scholar 

  • Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25

  • Kumar A, Samadder SR (2017) An empirical model for prediction of household solid waste generation rate — a case study of Dhanbad, India. Waste Manag 68:3–15. https://doi.org/10.1016/j.wasman.2017.07.034

    Article  PubMed  Google Scholar 

  • Kumar A, Samadder SR, Kumar N, Singh C (2018) Estimation of the generation rate of different types of plastic wastes and possible revenue recovery from informal recycling. Waste Manag 79:781–790. https://doi.org/10.1016/j.wasman.2018.08.045

    Article  PubMed  Google Scholar 

  • Kupidura P (2019) The comparison of different methods of texture analysis for their efficacy for land use classification in satellite imagery. Remote Sens 11:1233

    Article  ADS  Google Scholar 

  • Li C, Zhu Z (2018) Research and application of a novel hybrid air quality early-warning system: a case study in China. Sci Total Environ 626:1421–1438

    Article  CAS  PubMed  ADS  Google Scholar 

  • Li K, Wan G, Cheng G et al (2020) Object detection in optical remote sensing images: a survey and a new benchmark. ISPRS J Photogramm Remote Sens 159:296–307

    Article  ADS  Google Scholar 

  • Liao Q, Zhu M, Wu L et al (2020) Deep learning for air quality forecasts: a review. Curr Pollut Rep 6:399–409

    Article  Google Scholar 

  • Lillesand T, Kiefer RW, Chipman J (2015) Remote sensing and image interpretation. John Wiley & Sons

    Google Scholar 

  • Longo S, d’Antoni BM, Bongards M et al (2016) Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement. Appl Energy 179:1251–1268. https://doi.org/10.1016/j.apenergy.2016.07.043

    Article  ADS  Google Scholar 

  • Luo J, Chen C, Xie J (2015) Multi-objective immune algorithm with preference-based selection for reservoir flood control operation. Water Resour Manag 29:1447–1466

    Article  Google Scholar 

  • Mazaheri H, Ghaedi M, Azqhandi MHA, Asfaram A (2017) Application of machine/statistical learning, artificial intelligence and statistical experimental design for the modeling and optimization of methylene blue and Cd(II) removal from a binary aqueous solution by natural walnut carbon. Phys Chem Phys 19:11299–11317. https://doi.org/10.1039/C6CP08437K

    Article  CAS  Google Scholar 

  • Mir T, Ul G, Katoch V, Angurana R et al (2023a) 6 — Environmental and toxicological concerns associated with nanomaterials used in the industries. In: Castro GR, Nadda AK, Nguyen TA et al (eds) Nanomaterials for Bioreactors and Bioprocessing Applications. Elsevier, pp 141–193

    Chapter  Google Scholar 

  • Mir T, Ul G, Wani AK, Akhtar N et al (2023b) Advancing biological investigations using portable sensors for detection of sensitive samples. Heliyon 9:e22679. https://doi.org/10.1016/j.heliyon.2023.e22679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mushtaq S, Islam MM, Sohaib M (2021) Deep learning aided data-driven fault diagnosis of rotatory machine: A comprehensive review. Energies 14:5150

    Article  Google Scholar 

  • Nabavi-Pelesaraei A, Bayat R, Hosseinzadeh-Bandbafha H et al (2017) Prognostication of energy use and environmental impacts for recycle system of municipal solid waste management. J Clean Prod 154:602–613. https://doi.org/10.1016/j.jclepro.2017.04.033

    Article  Google Scholar 

  • Nag S, Mondal A, Roy DN et al (2018) Sustainable bioremediation of Cd (II) from aqueous solution using natural waste materials: kinetics, equilibrium, thermodynamics, toxicity studies and GA-ANN hybrid modelling. Environ Technol Innov 11:83–104

    Article  Google Scholar 

  • Nguyen DP, Ha HD, Trinh NT, Nguyen MT (2023) Application of artificial intelligence for forecasting surface quality index of irrigation systems in the Red River Delta, Vietnam. Environ Syst Res 12:24. https://doi.org/10.1186/s40068-023-00307-6

    Article  Google Scholar 

  • Oliveira V, Sousa V, Dias-Ferreira C (2019) Artificial neural network modelling of the amount of separately-collected household packaging waste. J Clean Prod 210:401–409. https://doi.org/10.1016/j.jclepro.2018.11.063

    Article  Google Scholar 

  • Olsson G (2012) ICA and me — a subjective review. Water Res 46:1585–1624. https://doi.org/10.1016/j.watres.2011.12.054

    Article  CAS  PubMed  Google Scholar 

  • Pandey DS, Das S, Pan I et al (2016) Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor. Waste Manag 58:202–213. https://doi.org/10.1016/j.wasman.2016.08.023

    Article  CAS  PubMed  Google Scholar 

  • Park S, Kim M, Kim M et al (2018) Predicting PM10 concentration in Seoul metropolitan subway stations using artificial neural network (ANN). J Hazard Mater 341:75–82. https://doi.org/10.1016/j.jhazmat.2017.07.050

    Article  CAS  PubMed  Google Scholar 

  • Rahaman J, Sing M (2021) An efficient multilevel thresholding based satellite image segmentation approach using a new adaptive cuckoo search algorithm. Expert Syst Appl 174:114633

    Article  Google Scholar 

  • Rahayu F, Wani AK, Murianingrum M et al (2022) Studies on dew retting process of kenaf by formulation of indigenous consortium bacteria. AIP Publishing

    Book  Google Scholar 

  • Rane N, Choudhary S, Rane J (2024) Enhancing water and air pollution monitoring and control through ChatGPT and similar generative artificial intelligence implementation

  • Rego ASC, Valim IC, Vieira AAS et al (2018) Optimization of sugarcane bagasse pretreatment using alkaline hydrogen peroxide through ANN and ANFIS modelling. Bioresour Technol 267:634–641. https://doi.org/10.1016/j.biortech.2018.07.087

    Article  CAS  PubMed  Google Scholar 

  • Roccetti M, Delnevo G, Casini L, Mirri S (2021) An alternative approach to dimension reduction for pareto distributed data: a case study. J Big Data 8:39. https://doi.org/10.1186/s40537-021-00428-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Roccetti M, Delnevo G, Casini L, Salomoni P (2020) A cautionary tale for machine learning design: why we still need human-assisted big data analysis. Mob Netw Appl 25:1075–1083. https://doi.org/10.1007/s11036-020-01530-6

    Article  Google Scholar 

  • Sabour MR, Amiri A (2017) Comparative study of ANN and RSM for simultaneous optimization of multiple targets in Fenton treatment of landfill leachate. Waste Manag 65:54–62. https://doi.org/10.1016/j.wasman.2017.03.048

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar P, Sivashanmugam P (2018) Multi-hydrolytic biocatalyst from organic solid waste and its application in municipal waste activated sludge pre-treatment towards energy recovery. Process Saf Environ Prot 117:1–10. https://doi.org/10.1016/j.psep.2018.03.036

    Article  CAS  Google Scholar 

  • Selwal N, Rahayu F, Herwati A et al (2023) Enhancing secondary metabolite production in plants: Exploring traditional and modern strategies. J Agric Food Res:100702. https://doi.org/10.1016/j.jafr.2023.100702

  • Shamiri A, Wong SW, Zanil MF et al (2015) Modified two-phase model with hybrid control for gas phase propylene copolymerization in fluidized bed reactors. Chem Eng J 264:706–719. https://doi.org/10.1016/j.cej.2014.11.104

    Article  CAS  Google Scholar 

  • Shi S, Xu G (2018) Novel performance prediction model of a biofilm system treating domestic wastewater based on stacked denoising auto-encoders deep learning network. Chem Eng J 347:280–290. https://doi.org/10.1016/j.cej.2018.04.087

    Article  CAS  Google Scholar 

  • Sun N, Chungpaibulpatana S (2017) Development of an appropriate model for forecasting municipal solid waste generation in Bangkok. Energy Procedia 138:907–912. https://doi.org/10.1016/j.egypro.2017.10.134

    Article  Google Scholar 

  • Tan KC, San Lim H, Jafri MZM (2016) Prediction of column ozone concentrations using multiple regression analysis and principal component analysis techniques: a case study in peninsular Malaysia. Atmospheric Pollut Res 7:533–546

    Article  Google Scholar 

  • Wang D, Wei S, Luo H et al (2017) A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine. Sci Total Environ 580:719–733. https://doi.org/10.1016/j.scitotenv.2016.12.018

    Article  CAS  PubMed  ADS  Google Scholar 

  • Wani AK, Ahmad S, Américo-Pinheiro JHP et al (2023a) Building the taxonomic profile of the Riniaie Marwah hot spring of Kishtwar in Jammu and Kashmir: the first high-throughput sequencing-based metagenome study. Iran J Microbiol 15:723–733

    PubMed  PubMed Central  Google Scholar 

  • Wani AK, Akhtar N, Naqash N et al (2023b) Discovering untapped microbial communities through metagenomics for microplastic remediation: recent advances, challenges, and way forward. Environ Sci Pollut Res:1–24

  • Wani AK, Akhtar N, Rahayu F et al (2023c) Eco-friendly and safe alternatives for the valorization of shrimp farming waste. Environ Sci Pollut Res:1–30

  • Wani AK, Chopra C, Singh R et al (2023d) Mining microbial tapestry using high-throughput sequencing and In silico analysis of Trehalose synthase (TreS) derived from hot spring metagenome. Biocatal Agric Biotechnol 52:102829. https://doi.org/10.1016/j.bcab.2023.102829

    Article  CAS  Google Scholar 

  • Wani AK, Roy P, Kumar V (2022) Metagenomics and artificial intelligence in the context of human health. Infect Genet Evol 100:105267

    Article  CAS  PubMed  Google Scholar 

  • Wen X, Gong B, Zhou J et al (2017) Efficient simultaneous partial nitrification, anammox and denitrification (SNAD) system equipped with a real-time dissolved oxygen (DO) intelligent control system and microbial community shifts of different substrate concentrations. Water Res 119:201–211. https://doi.org/10.1016/j.watres.2017.04.052

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Wang J (2017) A new air quality monitoring and early warning system: air quality assessment and air pollutant concentration prediction. Environ Res 158:105–117. https://doi.org/10.1016/j.envres.2017.06.002

    Article  CAS  PubMed  Google Scholar 

  • Yasin Y, Ahmad FBH, Ghaffari-Moghaddam M, Khajeh M (2014) Application of a hybrid artificial neural network–genetic algorithm approach to optimize the lead ions removal from aqueous solutions using intercalated tartrate-Mg–Al layered double hydroxides. Environ Nanotechnol Monit Manag 1–2:2–7. https://doi.org/10.1016/j.enmm.2014.03.001

    Article  Google Scholar 

  • Ye Z, Yang J, Zhong N et al (2020) Tackling environmental challenges in pollution controls using artificial intelligence: a review. Sci Total Environ 699:134279

    Article  CAS  PubMed  ADS  Google Scholar 

  • Zhang X, Han L, Han L, Zhu L (2020) How well do deep learning-based methods for land cover classification and object detection perform on high resolution remote sensing imagery? Remote Sens 12:417

    Article  ADS  Google Scholar 

  • Zhou P, Zhao Y, Zhao Z, Chai T (2015) Source mapping and determining of soil contamination by heavy metals using statistical analysis, artificial neural network, and adaptive genetic algorithm. J Environ Chem Eng 3:2569–2579. https://doi.org/10.1016/j.jece.2015.08.003

    Article  CAS  Google Scholar 

  • Zhu J-J, Kang L, Anderson PR (2018) Predicting influent biochemical oxygen demand: balancing energy demand and risk management. Water Res 128:304–313. https://doi.org/10.1016/j.watres.2017.10.053

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Han H, Guo M, Qiao J (2017) A data-derived soft-sensor method for monitoring effluent total phosphorus. Chin J Chem Eng 25:1791–1797. https://doi.org/10.1016/j.cjche.2017.06.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AKW: conceptualization, methodology, supervision, validation, writing—original draft preparation, writing—reviewing and editing. FR, IBA, MQ, and MM: methodology, resources, investigation, formal analysis, validation. PP, AA, SS, SS, SS, AK, and EL: writing—original draft preparation, visualization, writing and editing.

Corresponding author

Correspondence to Atif Khurshid Wani.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Marcus Schulz

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wani, A.K., Rahayu, F., Ben Amor, I. et al. Environmental resilience through artificial intelligence: innovations in monitoring and management. Environ Sci Pollut Res 31, 18379–18395 (2024). https://doi.org/10.1007/s11356-024-32404-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-32404-z

Keywords

Navigation