Skip to main content
Log in

Spatiotemporal patterns of net regional productivity and its causes throughout Ordos, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A comprehensive understanding of the terrestrial carbon sink is essential for proficient regional carbon management. However, previous studies predominantly relied on net ecosystem productivity (NEP) as an indicator of regional carbon sink, overlooking the impacts of carbon emissions from physical processes and carbon leakage associated with anthropogenic activities. In this study, net region productivity (NRP), a vital metric representing carbon sink dynamics in regional multi-landscape ecosystems, was employed to systematically analyze the patterns, trends, and causes of carbon sink in Ordos. The results revealed that spatially averaged NRP in Ordos was 70.334 g·m−2·a−1, indicating a carbon sink effect. The coefficient of variation of NRP was 68.035%, with a higher NRP in the southern region. Normalized difference vegetation index (NDVI) predominantly controlled the spatial heterogeneity of NRP in Ordos, while precipitation emerged as the primary climatic factor influencing spatial differences in NRP. Regional variations in the impact of environmental factors on NRP were evident. In most areas, NRP showed a notable increasing trend influenced by various factors. Specifically, the simultaneous rise in NDVI and improvements in hydrothermal conditions contributed to the gradual elevation of NRP, each with varying degrees of influence across Ordos and its sub-regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  • Bahn M, Rodeghiero M, Anderson DM et al (2008) Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems 11(8):1352–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320(5882):1444–1449

    Article  CAS  PubMed  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  • Chen J, Fung J, Mo G et al (2006) Atmospheric inversion of surface carbon flux with consideration of the spatial distribution of US crop production and consumption. Biogeosciences 12(2):323–343

    Article  Google Scholar 

  • Chen J, Mo G, Deng F (2017) A joint global carbon inversion system using both CO2 and CO2 atmospheric concentration data. Geosci Model Dev 10(3):1131–1156

    Article  CAS  Google Scholar 

  • Chen H, Li Y, Xu Z et al (2021) Effects of afforestation on soil organic carbon sequestration in China: a meta–analysis. Land Use Policy 101:105165

    Google Scholar 

  • Cutler A, Cutler DR, Stevens JR (2011) Random forests. Mach Learn 45(1):157–176

    Google Scholar 

  • Dai E, Huang Y, Wu Z et al (2016) Spatial–temporal features of carbon source–sink and its relationship with climate factors in Inner Mongolia grassland ecosystem. Acta Pratacul Sin 71(1):21–34

    Google Scholar 

  • D’Arrigo R, Jacoby G, Frank D et al (2004) Spatial response to major volcanic events in or about AD 536, 934, and 1258: frost rings and other dendrochronological evidence from Mongolia and Northern Siberia. Palaeogeogr Palaeoclimatol Palaeoecol 209(3–4):173–187

    Google Scholar 

  • Deng F, Chen J (2011) Recent global CO2 flux inferred from atmospheric CO2 observations and its regional analyses. Biogeosciences 8(11):3263–3281

    Article  CAS  Google Scholar 

  • Evans RD, Koyama A, Sonderegger DL et al (2014) Greater ecosystem carbon in the Mojave Desert after ten years exposure to elevated CO2. Nat Clim Chang 4(5):394–397

    Article  CAS  Google Scholar 

  • Fang J, Liu G, Zhu B et al (2007) Carbon budgets of three temperate forest ecosystems in Dongling Mt., Beijing, China. Sci China Series D: Earth Sci 50(1):92–101

    Article  Google Scholar 

  • Fay PA, Blair JM, Smith MD et al (2011) Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function. Biogeosciences 8(10):3053–3068

    Article  CAS  Google Scholar 

  • Friedlingstein P, O’Sullivan M, Jones MW et al (2023) Global carbon budget 2023. Earth Syst Sci Data 15:5301–5369

    Article  Google Scholar 

  • Fu Q, Johanson CM, Wallace JM et al (2006) Enhanced mid–latitude tropospheric warming in satellite measurements. Science 312(5777):1179

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Hao C, Wu S et al (2016) Analysis of changes in net primary productivity and its susceptibility to climate change of Inner Mongolian grasslands using the CENTURY model. Geogr Res 35(2):271–284

    Google Scholar 

  • Houghton RA (2018) Interactions between land–use change and climate–carbon cycle feedbacks. Curr Clim Change Rep 4:115–127

    Article  Google Scholar 

  • Huang X, Li E, Zhang J et al (2016) Soil organic carbon stock and its influencing factors under different vegetation types in western Inner Mongolia. J Arid Land Resour Environ 30(8):165–171

    Google Scholar 

  • Huang L, Zhou W, Li, et al (2018) Effect of land use/cover change on grassland NPP in grassland ecosystem of Ordos. Bull Soil Water Conserv 38(4):46–52

    Google Scholar 

  • Hurtt GC, Chini LP, Frolking S et al (2011) Harmonization of land–use scenarios for the period 1500–2100: 600 years of global gridded annual land–use transitions, wood harvest, and resulting secondary lands. Clim Change 109(1–2):117–161

    Article  Google Scholar 

  • Jiang C, Ryu Y, Fang H et al (2020) Time series analysis of satellite data reveals continuous deforestation of sensitive biomes in South America. Environ Res Lett 15(6):064014

    Google Scholar 

  • Jin Z, Dong Y, Qi Y et al (2010) Soil respiration and net primary productivity in perennial grass and desert shrub ecosystems at the Ordos Plateau of Inner Mongolia. China J Arid Environ 74(10):1248–1256

    Article  Google Scholar 

  • Jin Q, Ju Y, Yang X et al (2017) Temporal and spatial patterns of emissions and pollutants from grassland burned in Inner Mongolia during 2005–2014. Acta Pratacul Sin 26(2):21–29

    Google Scholar 

  • Jin Q, Huang H, Shen F et al (2019) Dynamic changes of pollutants emission from grassland fires based on MODIS images in lnner Mongolia. China Environ Sci 39(3):1154–1163

    CAS  Google Scholar 

  • Kang Z, Zhang S, Bai Y et al (2021) Spatio–temporal changes of grassland net primary productivity (NPP) in Inner Mongolia and its response to drought. Acta Agrestia Sinica 29(1):157–165

    Google Scholar 

  • Klosterhalfen A, Moene AF, Schmidt M et al (2019) Sensitivity analysis of a source partitioning method for H2O and CO2 fluxes based on high frequency eddy covariance data: findings from field data and large eddy simulations. Agric for Meteorol 265:152–170

    Article  Google Scholar 

  • Kong X, Teng C, Yang G (2019) Inversion of vegetation net productivity in Ordos Grassland. Beijing Surveying Mapping 33(2):161–166

    Google Scholar 

  • Lal R (2004) Carbon sequestration in dryland ecosystems. Environ Manage 33:528–544

    Article  PubMed  Google Scholar 

  • Lange M, Eisenhauer N, Sierra CA et al (2015) Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun 6(1):6707

    Article  CAS  PubMed  Google Scholar 

  • Le QC, Andres RJ, Boden T et al (2013) The global carbon budget 1959–2011. Earth Syst Sci Data 5(1):165−185

  • Li G, Zhou L, Wang D et al (2008) Variation of net primary productivity of Grassland and its response to climate in Inner Mongolia. Ecol Environ 17(5):1948–1955

    CAS  Google Scholar 

  • Li M, Zhang Q, Zheng B et al (2019) Persistent growth of anthropogenic non–methane volatile organic compound (NMVOC) emissions in China during 1990–2017: drivers, speciation and ozone formation potential. Atmos Chem Phys 19(13):8897–8913

    Article  CAS  Google Scholar 

  • Li CH, Zhu TB, Zhou M et al (2021) Temporal and spatial change of net primary productivity of vegetation and its determinants in Hexi corridor. Acta Ecol Sin 41(5):1931–1943

    Google Scholar 

  • Liu W, Zhang Z, Wan S (2009) Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob Change Biol 15(1):184–195

    Article  Google Scholar 

  • Ma B, Jing J, Liu B et al (2022) Quantitative assessment of the relative contributions of climate change and human activities to NPP changes in the Southwest Karst area of China. Environ Sci Pollut Res 29(53):80597–80611

    Article  Google Scholar 

  • Mahowald NM, Randerson JT, Lindsay K et al (2017) Interactions between land use change and carbon cycle feedbacks. Global Biogeochem Cycles 31(1):96–113

    Article  CAS  Google Scholar 

  • Maia VA, Santos ABM, de Aguiar–Campos N et al (2020) The carbon sink of tropical seasonal forests in southeastern Brazil can be under threat. Sci Adv 6(51):eabd4548

  • Mishra G, Jangir A, Francaviglia R (2019) Modeling soil organic carbon dynamics under shifting cultivation and forests using Rothc model. Ecol Model 396:33–41

    Article  CAS  Google Scholar 

  • Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Science 333(6045):988–993

    Article  CAS  PubMed  Google Scholar 

  • Pei Y, Zhou P, Ouyang H et al (2010) Carbon budget of alpine steppe area in the Tibetan Plateau. Geogr Res 29(1):102–110

    Google Scholar 

  • Petrie MD, Collins SL, Swann AM et al (2015) Grassland to shrubland state transitions enhance carbon sequestration in the northern Chihuahuan Desert. Glob Change Biol 21(3):1226–1235

    Article  CAS  Google Scholar 

  • Peylin P, Law RM, Gurney KR et al (2013) Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. Biogeosciences 10(10):6699–6720

    Article  CAS  Google Scholar 

  • Piao S, Ciais P, Friedlingstein P et al (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451(7174):49–52

    Article  CAS  PubMed  Google Scholar 

  • Piao S, Fang J, Ciais P et al (2009) The carbon balance of terrestrial ecosystems in China. Nature 458(7241):1009–1013

    Article  CAS  PubMed  Google Scholar 

  • Piao S, He Y, Wang X et al (2022a) Estimation of China’s terrestrial ecosystem carbon sink: methods, progress and prospects. Sci China Earth Sci 65(4):641–651

    Article  Google Scholar 

  • Piao S, Yue C, Ding J et al (2022b) Perspectives on the role of terrestrial ecosystems in the ‘carbon neutrality’ strategy. Sci China Earth Sci 65(6):1178–1186

    Article  Google Scholar 

  • Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44(2):81–99

    Article  Google Scholar 

  • Raich JW, Tufekciogul A (2000) Vegetation and soil respiration: correlations and controls. Biogeochemistry 48:71–90

    Article  CAS  Google Scholar 

  • Rodda SR, Thumaty KC, Praveen MSS et al (2021) Multi–year eddy covariance measurements of net ecosystem exchange in tropical dry deciduous forest of India. Agric for Meteorol 301:108351

    Article  Google Scholar 

  • Schimel DS, House JI, Hibbard KA et al (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414(6860):169–172

    Article  CAS  PubMed  Google Scholar 

  • Scott RL, Hamerlynck EP, Jenerette GD et al (2010) Carbon dioxide exchange in a semidesert grassland through drought–induced vegetation change. J Geophys Res: Biogeosci 115(G3):1−12

  • Steffen W, Noble I, Valentini R et al (1998) The terrestrial carbon cycle: implications for the Kyoto Protocol. Science 280(5368):1393–1394

    Article  Google Scholar 

  • Sun J, Zhang B, Pan Q et al (2023) Nonlinear response of productivity to precipitation extremes in the Inner Mongolia grassland. Funct Ecol 37(6):1663–1673

    Article  CAS  Google Scholar 

  • Sutton MA, Howard CM, Erisman JW et al (2007) The challenge to integrate nitrogen and phosphorus effects on carbon sequestration: a modeling approach. Environ Pollut 149(1):40–51

    Google Scholar 

  • Tan Z, Zhang Y, Yu G et al (2010) Carbon balance of a primary tropical seasonal rain forest. J Geophys Res: Atmos 115(D4):D00H26

  • Tian H, Lu C, Yang J et al (2015) Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: current status and future directions. Global Biogeochem Cycles 29(6):775–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Zheng H, Zhu X et al (2015) Primary estimation of Chinese terrestrial carbon sequestration during 2001–2010. Sci Bullet 60(6):577–590

    Article  CAS  Google Scholar 

  • Wang Z, Zhong J, Lan H et al (2019) Association analysis between spatiotemporal variation of net primary productivity and its driving factors in inner Mongolia, China during 1994–2013. Ecol Ind 105:355–364

    Article  Google Scholar 

  • Wang X, Biederman JA, Knowles JF et al (2022) Satellite solar–induced chlorophyll fluorescence and near–infrared reflectance capture complementary aspects of dryland vegetation productivity dynamics. Remote Sens Environ 270:112858

    Article  Google Scholar 

  • Wang T, Bao A, Xu W et al (2023) Dynamics of forest net primary productivity based on tree ring reconstruction in the Tianshan Mountains. Ecol Ind 146:109713

    Article  CAS  Google Scholar 

  • Watts JD, Farina M, Kimball JS et al (2023) Carbon uptake in Eurasian boreal forests dominates the high–latitude net ecosystem carbon budget. Glob Change Biol 29(7):1870–1889

    Article  CAS  Google Scholar 

  • Wu S, Zhou S, Chen D et al (2014) Determining the contributions of urbanization and climate change to NPP variations over the last decade in the Yangtze River Delta, China. Sci Total Environ 472:397–406

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Yang X, Tao W (2007) Remote sensing monitoring upon the grass product in China. Acta Ecol Sin 27(2):405–413

    Article  CAS  Google Scholar 

  • Xu Y, Xiao F, Yu L (2020) Review of spatio–temporal distribution of net primary productity in forest ecosystem and its responses to climate change in China. Acta Ecol Sin 40(14):4710–4723

    Google Scholar 

  • Xuan W, Rao L (2023) Spatiotemporal dynamics of net primary productivity and its influencing factors in the middle reaches of the Yellow River from 2000 to 2020. Front Plant Sci 14:1043807

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue H, Shi Z, Huo J et al (2023) Spatial difference of carbon budget and carbon balance zoning based on land use change: a case study of Henan Province, China. Environ Sci Pollut Res 30:109145–109161

    Article  Google Scholar 

  • Yang H, Hu D, Xu H et al (2020) Assessing the spatiotemporal variation of NPP and its response to driving factors in Anhui province, China. Environ Sci Pollut Res 27:14915–14932

    Article  Google Scholar 

  • Yang Y, Dou Y, Wang B et al (2022) Increasing contribution of microbial residues to soil organic carbon in grassland restoration chronosequence. Soil Biol Biochem 170:108688

    Article  CAS  Google Scholar 

  • Yang C, Zhai G, Fu M et al (2023) Spatiotemporal characteristics and influencing factors of net primary production from 2000 to 2021 in China. Environ Sci Pollut Res 30:91084–91094

    Article  Google Scholar 

  • Yao Y, Piao S, Wang T (2018) Future biomass carbon sequestration capacity of Chinese forests. Science Bulletin 63(17):1108–1117

    Article  CAS  PubMed  Google Scholar 

  • Yu G, Fu Y, Sun X et al (2006) Recent progress and future directions of China FLUX. Sci China Ser D Earth Sci 49:1–23

    Article  Google Scholar 

  • Yu G, Wang Q, Liu Y et al (2011) Conceptual framework of carbon sequestration rate and potential increment of carbon sink of regional terrestrial ecosystem and scientific basis for quantitative carbon authentication. Prog Geogr 30(7):771–787

    Google Scholar 

  • Yu G, Chen Z, Piao S et al (2014) High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc Natl Acad Sci 111(13):4910–4915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue Y, Ni J, Ciais P et al (2016) Lateral transport of soil carbon and land−atmosphere CO2 flux induced by water erosion in China. Proc Natl Acad Sci 113(24):6617–6622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeppel MJB, Wilks JV, Lewis JD (2014) Impacts of extreme precipitation and seasonal changes in precipitation on plants. Biogeosciences 11(11):3083–3093

    Article  Google Scholar 

  • Zhang Y, Yu G, Yang J et al (2014) Climate–driven global changes in carbon use efficiency. Glob Ecol Biogeogr 23(2):144–155

    Article  Google Scholar 

  • Zhang Y, Qin D, Yuan W et al (2016) Historical trends of forest fires and carbon emissions in China from 1988 to 2012. J Geophys Res Biogeosci 121(9):2506–2517

    Article  CAS  Google Scholar 

  • Zhang W, Xi M, Liu H et al (2023) Low sensitivity of net primary productivity to climatic factors in three karst provinces in southwest China from 1981 to 2019. Ecol Ind 153:110465

    Article  Google Scholar 

  • Zhang Q, Shi P, Zhang X (2005) Some advance in the main factors controlling soil respiration. Adv Earth Science 7(7):778–785

  • Zhao K, Suarez JC, Garcia M et al (2018) Utility of multitemporal lidar for forest and carbon monitoring: tree growth, biomass dynamics, and carbon flux. Remote Sens Environ 204:883–897

    Article  Google Scholar 

  • Zhao M, Yan Q, Liu Z et al (2022) Analysis of temporal and spatial evolution and influencing factors of soil erosion in Ordos City. Arid Zone Res 39(6):1819–1831

    Google Scholar 

  • Zheng YJ, Liu HJ, Liu Y et al (2022) Analysis of vegetation and coverage change and driving factors in Ordos from 2000 to 2018. Res Environ Sci 35(11):2458–2468

    Google Scholar 

  • Zhu X, Zhang H, Gao Y et al (2018a) Assessing the regional carbon sink with its forming processes—a case study of Liaoning province. China Sci Rep 8(1):15161

    Article  PubMed  Google Scholar 

  • Zhu W, Chen JM, Wang C et al (2018b) Climate controls over the net carbon uptake period and amplitude of net ecosystem production in temperate and boreal ecosystems. Agric Meteorol 248:208–219

    Google Scholar 

Download references

Funding

This research is funded by the general program of the National Natural Science Foundation of China, grant number 42271435, and the Ordos City Landmark Team Project.

Author information

Authors and Affiliations

Authors

Contributions

Yurong Zheng’s contribution is conception, design, data collection, analysis, and writing; Shouhang Du’s contribution is conception, reviewing, and supervision; Wenbin Sun’s contribution is theory, guidance, and supervision; Cui Feng’s contribution is conception; Qing Su’s contribution is conception.

Corresponding author

Correspondence to Shouhang Du.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Du, S., Sun, W. et al. Spatiotemporal patterns of net regional productivity and its causes throughout Ordos, China. Environ Sci Pollut Res 31, 22038–22054 (2024). https://doi.org/10.1007/s11356-024-32368-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-32368-0

Keywords

Navigation