Skip to main content

Advertisement

Log in

Selecting the optimal gridded climate dataset for Nigeria using advanced time series similarity algorithms

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Choosing a suitable gridded climate dataset is a significant challenge in hydro-climatic research, particularly in areas lacking long-term, reliable, and dense records. This study used the most common method (Perkins skill score (PSS)) with two advanced time series similarity algorithms, short time series distance (STS), and cross-correlation distance (CCD), for the first time to evaluate, compare, and rank five gridded climate datasets, namely, Climate Research Unit (CRU), TERRA Climate (TERRA), Climate Prediction Center (CPC), European Reanalysis V.5 (ERA5), and Climatologies at high resolution for Earth’s land surface areas (CHELSA), according to their ability to replicate the in situ rainfall and temperature data in Nigeria. The performance of the methods was evaluated by comparing the ranking obtained using compromise programming (CP) based on four statistical criteria in replicating in situ rainfall, maximum temperature, and minimum temperature at 26 locations distributed over Nigeria. Both methods identified CRU as Nigeria’s best-gridded climate dataset, followed by CHELSA, TERRA, ERA5, and CPC. The integrated STS values using the group decision-making method for CRU rainfall, maximum and minimum temperatures were 17, 10.1, and 20.8, respectively, while CDD values for those variables were 17.7, 11, and 12.2, respectively. The CP based on conventional statistical metrics supported the results obtained using STS and CCD. CRU’s Pbias was between 0.5 and 1; KGE ranged from 0.5 to 0.9; NSE ranged from 0.3 to 0.8; and NRMSE between − 30 and 68.2, which were much better than the other products. The findings establish STS and CCD’s ability to evaluate the performance of climate data by avoiding the complex and time-consuming multi-criteria decision algorithms based on multiple statistical metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

All the data are available in the public domain at the links provided in the texts.

Code availability

The codes used for data processing can be provided on request to the corresponding author.

References

  • Abatan AA, Abiodun BJ, Lawalc KA, Gutowski WJ (2016) Trends in extreme temperature over Nigeria from percentile-based threshold indices. Int J Climatol 36:2527–2540. https://doi.org/10.1002/joc.4510

    Article  Google Scholar 

  • Abdourahamane ZS (2021) Evaluation of fine resolution gridded rainfall datasets over a dense network of rain gauges in Niger. Atmos Res 252:105459. https://doi.org/10.1016/j.atmosres.2021.105459

    Article  Google Scholar 

  • Ahmed K, Shahid S, Wang X et al (2019a) Evaluation of gridded precipitation datasets over arid regions of Pakistan. Water 11:210

    Article  Google Scholar 

  • Ahmed K, Shahid S, Wang X et al (2019b) Evaluation of gridded precipitation datasets over arid regions of Pakistan. Water (Switzerland) 11. https://doi.org/10.3390/w11020210

  • Akande A, Costa AC, Mateu J, Henriques R (2017) Geospatial analysis of extreme weather events in Nigeria (1985–2015) using self-organizing maps. Adv Meteorol 2017. https://doi.org/10.1155/2017/8576150

  • Albergel C, Dutra E, Munier S et al (2018) ERA-5 and ERA-Interim driven ISBA land surface model simulations: which one performs better? Hydrol Earth Syst Sci 22:3515–3532. https://doi.org/10.5194/hess-22-3515-2018

    Article  ADS  Google Scholar 

  • Ansari R, Usman Liaqat M, Grossi G (2022) Evaluation of gridded datasets for terrestrial water budget assessment in the Upper Jhelum River Basin-South Asia. J Hydrol 613. https://doi.org/10.1016/j.jhydrol.2022.128294

  • Ardil C (2023) Comparison of Composite Programming and Compromise Programming for Aircraft Selection Problem Using Multiple Criteria Decision Making Analysis Method. Int J Aerosp Mech Eng 15(11):479–485

  • Bai P, Liu X (2018) Evaluation of five satellite-based precipitation products in two gauge-scarce basins on the Tibetan Plateau. Remote Sens 10:1316

    Article  ADS  Google Scholar 

  • Beck HE, Pan M, Roy T et al (2019) Daily evaluation of 26 precipitation datasets using stage-IV gauge-radar data for the CONUS. Hydrol Earth Syst Sci 23:207–224. https://doi.org/10.5194/hess-23-207-2019

    Article  ADS  Google Scholar 

  • Benítez I, Díez J-L (2022) Automated detection of electric energy consumption load profile patterns. Energies 15:2176

    Article  Google Scholar 

  • Billis A, Bamidis PD (2014) Employing time-series forecasting to historical medical data: an application towards early prognosis within elderly health monitoring environments. In: AI-AM/NetMed@ ECAI, pp 31–35

  • Chen M, Shi W, Xie P et al (2008) Assessing objective techniques for gauge-based analyses of global daily precipitation. J Geophys Res Atmos 113:1–13. https://doi.org/10.1029/2007JD009132

    Article  Google Scholar 

  • Darand M, Khandu K (2020) Statistical evaluation of gridded precipitation datasets using rain gauge observations over Iran. J Arid Environ 178:104172

    Article  Google Scholar 

  • Dhiman HS, Deb D (2020) Fuzzy TOPSIS and fuzzy COPRAS based multi-criteria decision making for hybrid wind farms. Energy 202:117755

    Article  Google Scholar 

  • Dhungana S, Shrestha S, Van TP et al (2023) Evaluation of gridded precipitation products in the selected sub-basins of Lower Mekong River Basin. Theor Appl Climatol 151:293–310. https://doi.org/10.1007/s00704-022-04268-1

    Article  ADS  Google Scholar 

  • Essou GRC, Brissette F (2013) Climate change impacts on the Oueme river, Benin, West Africa. J Earth Sci Clim Change 4:1

    Google Scholar 

  • Fallah B, Russo E, Menz C et al (2023) Anthropogenic influence on extreme temperature and precipitation in Central Asia. Sci Rep 13:6854. https://doi.org/10.1038/s41598-023-33921-6

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Freimer M, Yu PL (1976) Some new results on compromise solutions for group decision problems. Manag Sci 22:688–693. https://doi.org/10.1287/mnsc.22.6.688

    Article  MathSciNet  Google Scholar 

  • Fulcher BD, Lubba CH, Sethi SS, Jones NS (2020) A self-organizing, living library of time-series data. Sci Data 7:213

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh B, Basu B, O’Mahony M (2009) Multivariate short-term traffic flow forecasting using time-series analysis. IEEE Trans Intell Transp Syst 10:246–254

    Article  Google Scholar 

  • Goyal A, Krishnamurthy S, Kulkarni S, Kumar R, Vartak M, Lanham MA (2018) A solution to forecast demand using long short-term memory recurrent neural networks for time series forecasting. In Proceedings of the Midwest Decision Sciences Institute Conference, Indianapolis, IN, USA, pp 12–14

  • Hamed MM, Nashwan MS, Shahid S (2021) Performance evaluation of reanalysis precipitation products in Egypt using fuzzy entropy time series similarity analysis. Int J Climatol 41:5431–5446. https://doi.org/10.1002/joc.7286

    Article  Google Scholar 

  • Hamed MM, Nashwan MS, Shahid S (2022a) Climatic zonation of Egypt based on high-resolution dataset using image clustering technique. Prog Earth Planet Sci 9:35. https://doi.org/10.1186/s40645-022-00494-3

    Article  ADS  Google Scholar 

  • Hamed MM, Nashwan MS, Shiru MS, Shahid S (2022b) Comparison between CMIP5 and CMIP6 models over MENA Region using historical simulations and future projections. Sustainability 14:10375. https://doi.org/10.3390/su141610375

    Article  Google Scholar 

  • Hassan I, Kalin RM, White CJ, Aladejana JA (2020a) Selection of CMIP5 GCM ensemble for the projection of spatio-temporal changes in precipitation and temperature over the Niger Delta, Nigeria. Water (switzerland) 12:385. https://doi.org/10.3390/w12020385

    Article  Google Scholar 

  • Hassan I, Kalin RM, White CJ, Aladejana JA (2020b) Evaluation of daily gridded meteorological datasets over the Niger Delta region of Nigeria and implication to water resources management. Atmos Clim Sci 10:21–39

    Google Scholar 

  • He W, Ma L, Yan Z, Lu H (2023) Evaluation of advanced time series similarity measures for object-based cropland mapping. Int J Remote Sens 44:3777–3800

    Article  ADS  Google Scholar 

  • Hersbach H, Bell B, Berrisford P et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146:1999–2049. https://doi.org/10.1002/qj.3803

    Article  ADS  Google Scholar 

  • Horvatic D, Stanley HE, Podobnik B (2011) Detrended cross-correlation analysis for non-stationary time series with periodic trends. Europhys Lett 94:18007

    Article  ADS  Google Scholar 

  • Hossain SA, Anower MS, Halder A (2015) A cross-correlation based signal processing approach to determine number and distance of objects in the sea using CHIRP signal. In: 2015 International Conference on Electrical & Electronic Engineering (ICEEE). IEEE, pp 177–180. https://doi.org/10.1109/CEEE.2015.7428249

  • Hyde JS, Jesmanowicz A (2012) Cross-correlation: an fMRI signal-processing strategy. Neuroimage 62:848–851

    Article  PubMed  Google Scholar 

  • Ibrahim AH, Molla DD, Lohani TK (2022) Performance evaluation of satellite-based rainfall estimates for hydrological modeling over Bilate river basin, Ethiopia. World J Eng. https://doi.org/10.1108/WJE-03-2022-0106

  • Iqbal SW, Latif M, Ahmed R et al (2022) Performance evaluation and comparison of observed and reanalysis gridded precipitation datasets over Pakistan. Theor Appl Climatol 149:1093–1116. https://doi.org/10.1007/s00704-022-04100-w

  • Ji X, Li Y, Luo X et al (2020) Evaluation of bias correction methods for APHRODITE data to improve hydrologic simulation in a large Himalayan basin. Atmos Res 242:104964. https://doi.org/10.1016/j.atmosres.2020.104964

    Article  Google Scholar 

  • Jiang Q, Li W, Fan Z et al (2021a) Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland. J Hydrol 595:125660. https://doi.org/10.1016/j.jhydrol.2020.125660

    Article  Google Scholar 

  • Jiang S, Yu Z-G, Anh VV, Zhou Y (2021b) Long-and short-term time series forecasting of air quality by a multi-scale framework. Environ Pollut 271:116381

    Article  CAS  PubMed  Google Scholar 

  • Jones PD, Harris I (2008) Climatic Research Unit (CRU) time-series datasets of variations in climate with variations in other phenomena. NCAS Br Atmos Data Cent 15

  • Karger DN, Conrad O, Böhner J et al (2017) Climatologies at high resolution for the earth’s land surface areas. Sci Data 4:1–20. https://doi.org/10.1038/sdata.2017.122

    Article  Google Scholar 

  • Kegel L (2020) Feature-based time series analytics. https://core.ac.uk/download/pdf/353950366.pdf

  • Khan MKU, Iqbal MF, Mahmood I, Shahzad MI, Zafar Q, Khalid B (2023) Evaluation of precipitation products over different climatic zones of Pakistan. Theor Appl Climatol 151(3–4):1301–1321

    Article  ADS  Google Scholar 

  • Kirschbaum D, Kapnick SB, Stanley T, Pascale S (2020) Changes in extreme precipitation and landslides over High Mountain Asia. Geophys Res Lett 47:e2019GL085347

    Article  ADS  Google Scholar 

  • Kurbalija V, Radovanović M, Geler Z, Ivanović M (2014) The influence of global constraints on similarity measures for time-series databases. Knowledge-Based Syst 56:49–67

    Article  Google Scholar 

  • Lawal IM, Bertram D, White CJ, Jagaba AH, Hassan I, Shuaibu A (2021a) Multi-criteria performance evaluation of gridded precipitation and temperature products in data-sparse regions. Atmos 12(12):1597. https://doi.org/10.3390/atmos12121597

    Article  ADS  Google Scholar 

  • Lawal YB, Ojo JS, Falodun SE (2021b) Variability and trends in rain height retrieved from GPM and implications on rain-induced attenuation over Nigeria. Heliyon 7:e08108. https://doi.org/10.1016/j.heliyon.2021.e08108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le MH, Lakshmi V, Bolten J, Du BD (2020) Adequacy of satellite-derived precipitation estimate for hydrological modeling in Vietnam Basins. J Hydrol 586:124820. https://doi.org/10.1016/j.jhydrol.2020.124820

    Article  Google Scholar 

  • Lhermitte S, Verbesselt J, Verstraeten WW, Coppin P (2011) A comparison of time series similarity measures for classification and change detection of ecosystem dynamics. Remote Sens Environ 115:3129–3152

    Article  ADS  Google Scholar 

  • Li H, Fang L, Wang P, Liu J (2012) An algorithm based on piecewise slope transformation distance for short time series similarity measure. In: Proceedings of the 10thWorld Congress on Intelligent Control and Automation. IEEE, pp 691–695. https://doi.org/10.1109/WCICA.2012.6357966

  • Liao TW (2005) Clustering of time series data—a survey. Pattern Recognit 38:1857–1874

    Article  ADS  Google Scholar 

  • Miśkiewicz J, Ausloos M (2006) An attempt to observe economy globalization: the cross correlation distance evolution of the top 19 GDP’s. Int J Mod Phys C 17:317–331

    Article  ADS  Google Scholar 

  • Möller-Levet CS, Klawonn F, Cho K-H et al (2005) Clustering of unevenly sampled gene expression time-series data. Fuzzy Sets Syst 152:49–66

    Article  MathSciNet  Google Scholar 

  • Momeni M, Behzadian K, Yousefi H, Zahedi S (2021) A scenario-based management of water resources and supply systems using a combined system dynamics and compromise programming approach. Water Resour Manag 35:4233–4250. https://doi.org/10.1007/s11269-021-02942-z

    Article  Google Scholar 

  • Mori U, Mendiburu A, Lozano JA (2015) Similarity measure selection for clustering time series databases. IEEE Trans Knowl Data Eng 28:181–195

    Article  Google Scholar 

  • Morse MD, Patel JM (2007) An efficient and accurate method for evaluating time series similarity. Proc ACM SIGMOD Int Conf Manag Data 569–580. https://doi.org/10.1145/1247480.1247544

  • Morsy M, Moursy FI, Sayad T, Shaban S (2022) Climatological study of SPEI Drought Index using observed and CRU gridded Dataset over Ethiopia. Pure Appl Geophys 179:3055–3073. https://doi.org/10.1007/s00024-022-03091-z

    Article  ADS  Google Scholar 

  • Muhammad MKI, Nashwan MS, Shahid S et al (2019) Evaluation of empirical reference evapotranspiration models using compromise programming: a case study of Peninsular Malaysia. Sustain 11. https://doi.org/10.3390/su11164267

  • Nagbe K, Cugliari J, Jacques J (2018) Short-term electricity demand forecasting using a functional state space model. Energies 11:1120

    Article  Google Scholar 

  • Nakamura T, Taki K, Nomiya H et al (2013) A shape-based similarity measure for time series data with ensemble learning. Pattern Anal Appl 16:535–548

    Article  MathSciNet  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models - part i - a discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Nashwan MS, Shahid S (2019) Symmetrical uncertainty and random forest for the evaluation of gridded precipitation and temperature data. Atmos Res 230:104631. https://doi.org/10.1016/j.atmosres.2019.104632

    Article  Google Scholar 

  • Nashwan MS, Shahid S, Chung E-SS (2019) Development of high-resolution daily gridded temperature datasets for the central north region of Egypt. Sci Data 6:138. https://doi.org/10.1038/s41597-019-0144-0

    Article  PubMed  PubMed Central  Google Scholar 

  • New M, Hulme M, Jones P (2000) Representing twentieth-century space-time climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate. J Clim 13:2217–2238. https://doi.org/10.1175/1520-0442(2000)013%3c2217:RTCSTC%3e2.0.CO;2

    Article  ADS  Google Scholar 

  • Ogbu KN, Hounguè NR, Gbode IE, Tischbein B (2020) Performance evaluation of satellite-based rainfall products over Nigeria. Climate 8:103

    Article  Google Scholar 

  • Ogunjo ST, Olusegun CF, Fuwape IA (2022) Evaluation of monthly precipitation data from three gridded climate data products over Nigeria. Remote Sens Earth Syst Sci 5:119–128. https://doi.org/10.1007/s41976-022-00069-2

    Article  Google Scholar 

  • Paganelli AI, Mondéjar AG, da Silva AC et al (2022) Real-time data analysis in health monitoring systems: a comprehensive systematic literature review. J Biomed Inform 127:104009

    Article  PubMed  Google Scholar 

  • Pal M, Kiran VS, Rao PM, Manimaran P (2016) Multifractal detrended cross-correlation analysis of genome sequences using chaos-game representation. Phys A Stat Mech Its Appl 456:288–293

    Article  Google Scholar 

  • Perkins SE, Pitman AJ, Holbrook NJ, McAneney J (2007) Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J Clim 20:4356–4376. https://doi.org/10.1175/JCLI4253.1

    Article  ADS  Google Scholar 

  • Peterson TC, Easterling DR, Karl TR et al (1998) Homogeneity adjustments of in situ atmospheric climate data: a review. Int J Climatol A J R Meteorol Soc 18:1493–1517

    Article  Google Scholar 

  • Qin LIU, Kaile W, Weixiong RAO (2015) Non-equal time series clustering algorithm with sliding window STS distance. J Front Comput Sci Technol 9:1301

    Google Scholar 

  • Raju K, Kumar D (2014) Ranking of global climate models for India using multicriterion analysis. Clim Res 60:103–117

    Article  Google Scholar 

  • Ren P, Li J, Feng P et al (2018) Evaluation of multiple satellite precipitation products and their use in hydrological modelling over the Luanhe River Basin, China. Water (Switzerland) 10. https://doi.org/10.3390/w10060677

  • Salaudeen A, Ismail A, Adeogun BK, Ajibike MA (2021) Validating gauge-based spatial surface atmospheric temperature datasets for Upper Benue River Basin, Nigeria. Niger J Environ Sci Technol 5:173–190. https://doi.org/10.36263/nijest.2021.01.0259

    Article  Google Scholar 

  • Salehie O, Ismail T, Shahid S et al (2021) Ranking of gridded precipitation datasets by merging compromise programming and global performance index: a case study of the Amu Darya basin. Theor Appl Climatol 144:985–999. https://doi.org/10.1007/s00704-021-03582-4

    Article  ADS  Google Scholar 

  • Salehie O, Ismail T, Shahid S et al (2022) Selection of the gridded temperature dataset for assessment of thermal bioclimatic environmental changes in Amu Darya River basin. Stoch Environ Res Risk Assess. https://doi.org/10.1007/s00477-022-02172-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Salman SA, Shahid S, Ismail T et al (2018) Selection of climate models for projection of spatiotemporal changes in temperature of Iraq with uncertainties. Atmos Res 213:509–522. https://doi.org/10.1016/j.atmosres.2018.07.008

    Article  Google Scholar 

  • Salman SA, Shahid S, Ismail T et al (2019) Selection of gridded precipitation data for Iraq using compromise programming. Meas J Int Meas Confed 132:87–98. https://doi.org/10.1016/j.measurement.2018.09.047

    Article  Google Scholar 

  • Sarvaiya JN, Patnaik S, Bombaywala S (2009) Image registration by template matching using normalized cross-correlation. In: 2009 International conference on advances in computing, control, and telecommunication technologies. IEEE, pp 819–822. https://doi.org/10.1109/ACT.2009.207

  • Sehad M, Lazri M, Ameur S (2017) Novel SVM-based technique to improve rainfall estimation over the Mediterranean region (north of Algeria) using the multispectral MSG SEVIRI imagery. Adv Sp Res 59:1381–1394

    Article  ADS  Google Scholar 

  • Shiru MS, Shahid S, Chung E-S, Alias N (2019a) Changing characteristics of meteorological droughts in Nigeria during 1901–2010. Atmos Res 223:60–73. https://doi.org/10.1016/j.atmosres.2019.03.010

    Article  Google Scholar 

  • Shiru MS, Shahid S, Chung E-SS et al (2019b) A MCDM-based framework for selection of general circulation models and projection of spatio-temporal rainfall changes: a case study of Nigeria. Atmos Res 225:1–16. https://doi.org/10.1016/j.atmosres.2019.03.033

    Article  Google Scholar 

  • Shiru MS, Shahid S, Dewan A et al (2020) Projection of meteorological droughts in Nigeria during growing seasons under climate change scenarios. Sci Rep 10:10107. https://doi.org/10.1038/s41598-020-67146-8

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Székely GJ, Rizzo ML, Bakirov NK (2007) Measuring and testing dependence by correlation of distances, pp 2769–2794. https://doi.org/10.1214/009053607000000505

  • Tadesse KE, Melesse AM, Abebe A et al (2022) Evaluation of global precipitation products over Wabi Shebelle River Basin, Ethiopia. Hydrology 9:1–17. https://doi.org/10.3390/hydrology9050066

    Article  Google Scholar 

  • Tarek M, Brissette F, Arsenault R (2021) Uncertainty of gridded precipitation and temperature reference datasets in climate change impact studies. Hydrol Earth Syst Sci 25:3331–3350. https://doi.org/10.5194/hess-25-3331-2021

    Article  ADS  Google Scholar 

  • Torsri K, Lin Z, Dike VN et al (2022) Evaluation of spatial-temporal characteristics of rainfall variations over Thailand inferred from different gridded datasets. Water (Switzerland) 14. https://doi.org/10.3390/w14091359

  • Vitalis JP, Oruonye ED (2021) The Nigerian population: a treasure for national development or an unsurmountable national challenge. Int J Sci Res Arch 2:136–142. https://doi.org/10.30574/ijsra.2021.2.1.0026

    Article  Google Scholar 

  • Wang Z, Shang P, Mao X (2023) Ordinal network-based affine invariant Riemannian measure and its expansion: powerful similarity measure tools for complex systems. Nonlinear Dyn 111:3587–3603

    Article  Google Scholar 

  • Xing H, Xiao Z, Zhan D et al (2022) SelfMatch: robust semisupervised time-series classification with self-distillation. Int J Intell Syst 37:8583–8610

    Article  Google Scholar 

  • Xu X, Zhang X, Li X (2023) Evaluation of the applicability of three methods for climatic spatial interpolation in the Hengduan Mountains Region. J Hydrometeorol 24:35–51

    Article  ADS  Google Scholar 

  • Yao D, Cong G, Zhang C et al (2020) A linear time approach to computing time series similarity based on deep metric learning. IEEE Trans Knowl Data Eng 34:4554–4571

    Article  Google Scholar 

  • Zebende GF, Machado Filho A (2009) Cross-correlation between time series of vehicles and passengers. Phys A Stat Mech Its Appl 388:4863–4866

    Article  Google Scholar 

  • Zeleny M (2011) Multiple criteria decision making (MCDM): from paradigm lost to paradigm regained? J Multi-Criteria Decis Anal 18:77–89. https://doi.org/10.1002/mcda.473

    Article  Google Scholar 

  • Zhang X, Zhao M, Dong R (2020) Time-series prediction of environmental noise for urban IoT based on long short-term memory recurrent neural network. Appl Sci 10:1144

    Article  Google Scholar 

  • Zhang M, Pi D (2017) A novel method for fast and accurate similarity measure in time series field. In: 2017 IEEE international conference on data mining workshops (ICDMW). IEEE, pp 569–576

  • Zhao F, Huang Q, Gao W (2006) Image matching by normalized cross-correlation. In: 2006 IEEE international conference on acoustics speech and signal processing proceedings. IEEE, pp II–II. https://doi.org/10.1109/ICASSP.2006.1660446

Download references

Author information

Authors and Affiliations

Authors

Contributions

Bashir Tanimu: conceptualization, visualization, data curation, writing — original draft, and methodology; Mohammed Magdy Hamed: data curation, visualization, software, methodology, and writing — review and editing; Al-Amin Danladi Bello: conceptualization, writing — review and editing, and supervision; Sule Argungu Abdullahi: conceptualization and supervision; Morufu A. Ajibike: writing — original draft, supervision, and writing — review and editing; Shamsuddin Shahid: data curation, software, supervision, methodology, and writing — review and editing.

Corresponding author

Correspondence to Shamsuddin Shahid.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All the authors consented to publish the paper.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Marcus Schulz

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanimu, B., Hamed, M.M., Bello, AA.D. et al. Selecting the optimal gridded climate dataset for Nigeria using advanced time series similarity algorithms. Environ Sci Pollut Res 31, 15986–16010 (2024). https://doi.org/10.1007/s11356-024-32128-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-32128-0

Keywords

Navigation