Skip to main content
Log in

Land subsidence susceptibility mapping: a new approach to improve decision stump classification (DSC) performance and combine it with four machine learning algorithms

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Land subsidence is a worldwide threat. In arid and semiarid lands, groundwater depletion is the main factor that induce the subsidence resulting in environmental damages and socio-economic issues. To foresee and prevent the impact of land subsidence, it is necessary to develop accurate maps of the magnitude and evolution of the subsidences. Land subsidence susceptibility maps (LSSMs) provide one of the effective tools to manage vulnerable areas and to reduce or prevent land subsidence. In this study, we used a new approach to improve decision stump classification (DSC) performance and combine it with machine learning algorithms (MLAs) of naïve Bayes tree (NBTree), J48 decision tree, alternating decision tree (ADTree), logistic model tree (LMT), and support vector machine (SVM) in land subsidence susceptibility mapping (LSSSM). We employ data from 94 subsidence locations, among which 70% were used to train learning hybrid models and the other 30% were used for validation. In addition, the models’ performance was assessed by ROC-AUC, accuracy, sensitivity, specificity, odd ratio, root-mean-square error (RMSE), kappa, frequency ratio, and F-score techniques. A comparison of the results obtained from the different models reveals that the new DSC-ADTree hybrid algorithm has the highest accuracy (AUC = 0.983) in preparing LSSSMs as compared to other learning models such as DSC-J48 (AUC = 0.976), DSC-NBTree (AUC = 0.959), DSC-LMT (AUC = 0.948), DSC-SVM (AUC = 0.939), and DSC (AUC = 0.911). The LSSSMs generated through the novel scientific approach presented in our study provide reliable tools for managing and reducing the risk of land subsidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

The models and code that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Abelson M, Yechieli Y, Baer B, Lapid G, Behar N, Calvo R, Rosensaft M (2017) Natural versus human control on subsurface salt dissolution and development of thousands of sinkholes along the Dead Sea coast. J Geophys Res Earth Surf, 122 (6), https://doi.org/10.1002/2017JF004219

  • Abidin H, Andreas H, Gumilar I, Sidiq TP, Fukuda Y (2013) Land subsidence in coastal city of Semarang (Indonesia): characteristics, impacts and causes. Geomat Nat Haz Risk 4(3):226–240

    Article  Google Scholar 

  • Arabameri A, Pradhan B, Rezaei K, Yamani M, Pourghasemi HR, Lombardo L (2018) Spatial modelling of gully erosion using evidential belief function, logistic regression, and a new ensemble of evidential belief function–logistic regression algorithm. Land Degrad Dev 29(11):4035–4049

    Article  Google Scholar 

  • Arabameri A, Chen W, Blaschke T, Tiefenbacher JP, Pradhan B, Tien Bui D (2020) Gully head-cut distribution modeling using machine learning methods—a case study of NW Iran. Water 12(1):16

    Article  Google Scholar 

  • Arabameri, Saha S, Roy J, Tiefenbacher J, Cerda A, Biggs T, Pradhan B, ThaoThi Ngo P, Collin A (2020b) A novel ensemble computational intelligence approach for the spatial prediction of land subsidence susceptibility. Sci Total Environ 138595

  • Arabameri A, Chandra Pal S, Rezaie F, Chakrabortty R, Chowdhuri I, Blaschke T, Thi Ngo PT (2021a) Comparison of multi-criteria and artificial intelligence models for land-subsidence susceptibility zonation. J Environ Manage 284:112067

    Article  PubMed  Google Scholar 

  • Arabameri A, Lee S, Rezaie F, Chandra Pal S, Asadi Nalivan O, Saha A, Chowdhuri I, Moayedi H (2021b) Performance evaluation of GIS-based novel ensemble approaches for land subsidence susceptibility mapping. Front Earth Sci 9:663678. https://doi.org/10.3389/feart.2021.663678

    Article  Google Scholar 

  • Bagheri-Gavkosh M, Hosseini SM, Ataie-Ashtiani B ... Ashrafi S (2021) Land subsidence: a global challenge. Sci Total Environ. 778, 146193

  • Ben-Hur A, Horn D, Siegelmann HT, Vapnik V (2001) Support vector clustering. J Mach Learn Res, 2(Dec): 125–137

  • Bendarzsevszkij A, Eszterhai V, Gere L, Klemensits P, Polyák E (2017) World Economic Forum

  • Bhargava N, Sharma G, Bhargava R, Mathuria M (2013) Decision tree analysis on j48 algorithm for data mining. Proceedings of International J Adv Res Comput Sci Softw Eng, 3(6)

  • Bhattarai R, Alifu H, Maitiniyazi A, Kondoh A (2017) Detection of land subsidence in Kathmandu Valley, Nepal, using DInSAR technique. Land 6(2):39

    Article  Google Scholar 

  • Birkle P, Torres Rodrı´guez V, Gonza´lez Partida E (1998) The water balance for the Basin of the Valley of Mexico and implications for future water consumption. Hydrogeol J 6(4):500-517

  • Biswajeet P, Saro L (2007) Utilization of optical remote sensing data and GIS tools for regional landslide hazard analysis using an artificial neural network model. Earth Sci Front 14(6):143–151

    Article  ADS  Google Scholar 

  • Brambati A, Carbognin L, Quaia T, Teatini P, Tosi L (2003) The Lagoon of Venice: geological setting, evolution and land subsidence. Episodes 26(3):264–268

    Article  Google Scholar 

  • Burbey TJ (2002) The influence of faults in basin-fill deposits on land subsidence, Las Vegas Valley, Nevada, USA. Hydrogeol J 10(5):525–538

    Article  ADS  Google Scholar 

  • Calderhead A, Therrien R, Rivera A, Martel R, Garfias J (2011) Simulating pumping-induced regional land subsidence with the use of InSAR and field data in the Toluca Valley Mexico. Adv Water Resour 34(1):83–97

    Article  ADS  Google Scholar 

  • Chang Z, Du Z, Zhang F, Huang F, Chen J, Li W, Guo Z (2020) Landslide susceptibility prediction based on remote sensing images and GIS: comparisons of supervised and unsupervised machine learning models. Remote Sensing 12(3):502

    Article  ADS  Google Scholar 

  • Changxing S, Dian Z, Lianyuan Y, Bingyuan L, Zulu Z, Ouyang Z (2007) Land subsidence as a result of sediment consolidation in the Yellow River Delta. J Coastal Res 2007(231):173–181

    Article  Google Scholar 

  • Chaussard E, Wdowinski S, Cabral-Cano E, Amelung F (2014) Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens Environ 140:94–106

    Article  ADS  Google Scholar 

  • Chen S, Shen B, Wang X, Yoo S-J (2019) A strong machine learning classifier and decision stumps based hybrid adaboost classification algorithm for cognitive radios. Sensors 19(23):5077

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Fan L, Li C, Pham BT (2020) Spatial prediction of landslides using hybrid integration of artificial intelligence algorithms with frequency ratio and index of entropy in Nanzheng county, china. Appl Sci 10(1):29

    Article  CAS  Google Scholar 

  • Chen W, Zhang S, Li R, Shahabi H (2018) Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling. Sci Total Environ 644:1006–1018

    Article  ADS  CAS  PubMed  Google Scholar 

  • Cheng Y, Fu L (2022) Nonlinear seismic inversion by physics-informed Caianiello convolutional neural networks for overpressure prediction of source rocks in the offshore Xihu depression, East China. J Petrol Sci Eng 215:110654. https://doi.org/10.1016/j.petrol.2022.110654

    Article  CAS  Google Scholar 

  • Cortes C, Vapnik V (1995) Support-Vector Networks. Machine Learning 20(3):273–297

    Article  Google Scholar 

  • Dai Z, Li X, Lan B (2023) Three-dimensional modeling of tsunami waves triggered by submarine landslides based on the smoothed particle hydrodynamics method. J Marine Sci Eng 11(10):2015

    Article  Google Scholar 

  • Demirpolat AB, Das M (2019) Prediction of viscosity values of nanofluids at different pH values by alternating decision tree and multilayer perceptron methods. Appl Sci 9(7):1288

    Article  CAS  Google Scholar 

  • Derczynski L (2016) Complementarity, F-score, and NLP Evaluation, Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), pp. 261–266

  • Dong W, Zhao J, Qu J, Xiao S, Li N, Hou S ... Li Y (2023) abundance matrix correlation analysis network based on hierarchical multihead self-cross-hybrid attention for hyperspectral change detection. IEEE Transactions on Geoscience and Remote Sensing, 61

  • Dong W, Yang Y, Qu J, Xiao S, Li Y (2023) Local information-enhanced graph-transformer for hyperspectral image change detection with limited training samples. IEEE Trans Geosci Remote Sens, 61

  • Fan C, Li H, Qin Q, He S, Zhong C (2020) Geological conditions and exploration potential of shale gas reservoir in Wufeng and Longmaxi Formation of southeastern Sichuan Basin, China. J Petrol Sci Eng 191:107138. https://doi.org/10.1016/j.petrol.2020.107138

    Article  CAS  Google Scholar 

  • Feizizadeh B, Blaschke T (2013) Land suitability analysis for Tabriz County, Iran: a multi-criteria evaluation approach using GIS. J Environ Planning Manage 56(1):1–23

    Article  Google Scholar 

  • Freund Y, Mason L (1999) The alternating decision tree learning algorithm, icml, pp. 124–133

  • Ghorbanzadeh O, Blaschke T, Aryal J, Gholaminia K (2018) A new GIS-based technique using an adaptive neuro-fuzzy inference system for land subsidence susceptibility mapping. J Spat Sci: 1–17

  • Frumkin A, Raz E (2001) Collapse and subsidence associated with salt karstification along the Dead Sea. Carbonates Evaporites 16(2):117–130

    Article  CAS  Google Scholar 

  • Gong SL, Li C, Yang SL (2009) The microscopic characteristics of Shanghai soft clay and its effect on soil body deformation and land subsidence. Environ Geol 56(6):1051–1056

    Article  CAS  Google Scholar 

  • Gao C, Hao M, Chen J, Gu C (2021) Simulation and design of joint distribution of rainfall and tide level in Wuchengxiyu Region China. Urban Climate 40:101005. https://doi.org/10.1016/j.uclim.2021.101005

    Article  Google Scholar 

  • Hall M, Frank E, Holmes G, Pfahringer Peter Reutemann B, Witten I (2009) The WEKA data mining software: an update. ACM SIGKDD explorations newsletter, 11(1): 10-18

  • He M, Dong J, Jin Z, Liu C, Xiao J, Zhang F ... Deng L (2021) Pedogenic processes in loess-paleosol sediments: clues from Li isotopes of leachate in Luochuan loess. Geochimica et Cosmochimica Acta, 299, 151-162

  • Hong H, Pradhan B, Xu C, Bui DT (2015) Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. CATENA 133:266–281

    Article  Google Scholar 

  • Hu D, Li Y, Yang X, Liang X, Zhang K, Liang X, ... Taciroglu E (2023) Experiment and application of NATM tunnel deformation monitoring based on 3D laser scanning. Struct Control Health Monit 2023:3341788. https://doi.org/10.1155/2023/3341788

  • Hu R, Yue Z, Wang LU, Wang S (2004) Review on current status and challenging issues of land subsidence in China. Eng Geol, 76(1-2): 65-77

  • Hu X, Mei H, Zhang H, Li Y, Li M (2021) Performance evaluation of ensemble learning techniques for landslide susceptibility mapping at the Jinping county, Southwest China. Nat Hazards 105:1663–1689. https://doi.org/10.1007/s11069-020-04371-4

    Article  Google Scholar 

  • Huang H, Guo M, Zhang W, Huang M (2022) Seismic behavior of strengthened RC columns under combined loadings. J Bridge Eng, 27(6).

  • Huang H, Huang M, Zhang W, Guo M, Chen Z ... Li M (2021a) Progressive collapse resistance of multistory RC frame strengthened with HPFL-BSP. J Build Eng, 43, 103123

  • Huang H, Yuan Y, Zhang W, Li M (2021b) Seismic behavior of a replaceable artificial controllable plastic hinge for precast concrete beam-column joint. Eng Struct 245:112848

    Article  Google Scholar 

  • Iba W, Langley P (1992) Induction of one-level decision trees, Machine Learning Proceedings 1992. Elsevier, pp. 233–240

  • Jiang S, Zuo Y, Yang M, Feng R (2021) Reconstruction of the Cenozoic tectono-thermal history of the Dongpu Depression, Bohai Bay Basin, China: Constraints from apatite fission track and vitrinite reflectance data. J Petrol Sci Eng 205:108809. https://doi.org/10.1016/j.petrol.2021.108809

    Article  CAS  Google Scholar 

  • Jun X, Lu Y, Lei Z, Hui X (2014) Boosting decision stumps to do pairwise classification. Electron Lett 50(12):866–868

    Article  ADS  Google Scholar 

  • Karimi H, Taheri K (2010) Hazards and mechanism of sinkholes on Kaboudar Ahang and Famenin plains of Hamadan Iran. Nat Hazards 55:481–499

    Article  Google Scholar 

  • Keesstra SD, Bouma J, Wallinga J, Tittonell P, Smith P, Bardgett RD (2016) The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2:111–128

    Article  ADS  Google Scholar 

  • Keesstra S, Mol G, de Leeuw J, Okx J, de Cleen M, Visser S (2018) Soil-related sustainable development goals: four concepts to make land degradation neutrality and restoration work. Land 7(4):133

    Article  Google Scholar 

  • Kohavi, R., 1996. Scaling up the accuracy of naive-Bayes classifiers: a decision-tree hybrid, Kdd, pp. 202–207.

  • Landwehr N, Hall M, Frank E (2005) Logistic Model Trees. Machine Learning 59(1–2):161–205

    Article  Google Scholar 

  • Lee S, Park I (2013) Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines. J Environ Manage 127:166–176

    Article  PubMed  Google Scholar 

  • Li H, Zhao X, Chi H, Zhang J-j (2009) Prediction and analysis of land subsidence based on improved BP neural network model. J Tianjin Univ, 1(42): 60-64

  • Li J, Zhang Y, Lin L., Zhou Y (2023a) Study on the shear mechanics of gas hydrate-bearing sand-well interface with different roughness and dissociation. Bull Eng Geol Environ 82(11):404. https://doi.org/10.1007/s10064-023-03432-9

  • Li Z, Gao M, Lei Z, Tong L, Sun J, Wang Y,... Jiang X. (2023b) Ternary cementless composite based on red mud, ultra-fine fly ash, and GGBS: synergistic utilization and geopolymerization mechanism. Case Studies in Construction Materials 19:e2410. https://doi.org/10.1016/j.cscm.2023.e02410

  • Li X, Li X, Wang Y, Hu Y, Zhou C, Zhang H (2022) Numerical investigation on stratum and surface deformation in underground phosphorite mining under different mining methods. Front Earth Sci (Lausanne), 10. https://doi.org/10.3389/feart.2022.831856

  • Lim T-S, Loh W-Y, Shih Y-S (2000) A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Mach Learn 40(3):203–228

    Article  Google Scholar 

  • Luo J, Wang G, Li G, Pesce G (2022) Transport infrastructure connectivity and conflict resolution: a machine learning analysis. Neural Comput Appl 34(9):6585–6601

    Article  Google Scholar 

  • Luo J, Wang Y, Li G (2023) The innovation effect of administrative hierarchy on intercity connection: The machine learning of twin cities. J Innov Knowl 8(1):100293

    Article  Google Scholar 

  • Lyu H-M, Shen S-L, Zhou A, Yang J (2019) Risk assessment of mega-city infrastructures related to land subsidence using improved trapezoidal FAHP. Sci Total Environ 135310

  • Ma K, Zhang Y, Ruan M, Guo J, Chai T (2019) Land subsidence in a coal mining area reduced soil fertility and led to soil degradation in arid and semi-arid regions. Int J Environ Res Public Health 16(20):3929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma R, Wang Y, Ma T, Sun Z, Yan S (2006) The effect of stratigraphic heterogeneity on areal distribution of land subsidence at Taiyuan, northern China. Environ Geol 50(4):551–568

    Article  ADS  CAS  Google Scholar 

  • Ma S, Qiu H, Yang D, Wang J, Zhu Y, Tang B ... Cao M (2023) Surface multi-hazard effect of underground coal mining. Landslides, 20(1), 39-52

  • Mi C, Liu Y, Zhang Y, Wang J, Feng Y ... Zhang Z (2023) A vision-based displacement measurement system for foundation pit. IEEE Trans Instrument Measure, 72

  • Mahmoudpour M, Khamehchiyan M, Nikudel MR, Ghassemi MR (2016) Numerical simulation and prediction of regional land subsidence caused by groundwater exploitation in the southwest plain of Tehran Iran. Eng Geol 201:6–28

    Article  Google Scholar 

  • Maulana MF, Defriani M (2020) Logistic model tree and decision tree J48 algorithms for predicting the length of study period. PIKSEL: Penelitian Ilmu Komputer Sistem Embedded and Logic, 8(1): 39–48

  • Miao R, Liu Y, Wu L, Wang D, Liu Y, Miao Y, Ma J (2022) Effects of long-term grazing exclusion on plant and soil properties vary with position in dune systems in the Horqin Sandy Land. CATENA, 209. https://doi.org/10.1016/j.catena.2021.105860

  • Morris JA, Gardner MJ (1988) Calculating confidence intervals for relative risks (odds ratios) and standardised ratios and rates. Br Med J (clin Res Ed) 296(6632):1313–1316

    Article  CAS  PubMed  Google Scholar 

  • Mohammady M, Dustmohammadian AH, Amiri M, Kia Kianian M (2021) Investigating quantitative changes of groundwater in the Semnan plain. Water Resour Eng 13:61–70

    Google Scholar 

  • Navas JM, Telfer TC, Ross LG (2012) Separability indexes and accuracy of neuro-fuzzy classification in geographic information systems for assessment of coastal environmental vulnerability. Eco Inform 12:43–49

    Article  Google Scholar 

  • Nabavi MH (1987) Geological map of Semnan Quadrangle Scale 1:100,000. Geological Survey of Iran

  • Naeimi A, Alavi SA, Madanipour S (2022) Structural analysis and the late Cenozoic tectonic evolution of the SE Alborz Mountains in northern Iran: insights into the ArabiaEurasia collision. Geopersia 12(2):241–264

    Google Scholar 

  • Nguyen V-N, Yariyan P, Amiri M, Dang Tran A, Pham TD, Do MP, Thi Ngo PT, Nhu V-H, Quoc Long N, Tien Bui DA (2020) A new modeling approach for spatial prediction of flash flood with biogeography optimized CHAID tree ensemble and remote sensing data. Remote Sensing 12(9):1373

    Article  ADS  Google Scholar 

  • Nhu V-H, Janizadeh S, Avand M, Chen W, Farzin M, Omidvar E, Shirzadi A, Shahabi HJ, Clague J, Jaafari A, Mansoorypoor F, Thai Pham B, Ahmad BB, Lee S (2020a) Gis-based gully erosion susceptibility mapping: a comparison of computational ensemble data mining models. Appl Sci 10(6):2039

    Article  CAS  Google Scholar 

  • Nhu V-H, Shirzadi A, Shahabi H, Singh SK, Al-Ansari N, Clague JJ, Jaafari A, Chen W, Miraki S, Dou J, Luu C, Górski K, Thai Pham B, Nguyen HD, Ahmad BB (2020b) Shallow landslide susceptibility mapping: a comparison between logistic model tree, logistic regression, naïve Bayes tree, artificial neural network, and support vector machine algorithms. Int J Environ Res Public Health 17(8):2749

    Article  PubMed  PubMed Central  Google Scholar 

  • Oh H-J, Lee S (2011) Integration of ground subsidence hazard maps of abandoned coal mines in Samcheok Korea. Intl J Coal Geol 86(1):58–72

    Article  CAS  Google Scholar 

  • Oh H-J, Syifa M, Lee C-W, Lee S (2019) Land subsidence susceptibility mapping using Bayesian, functional, and meta-ensemble machine learning models. Appl Sci 9(6):1248

    Article  CAS  Google Scholar 

  • Oliver J, Hand D (1994) David, Averaging over decision stumps, in machine learning. ECML-94, European Conference on Machine Learning, Catania, Italy, pp. 231–241

  • Pacheco J, Arzate J, Rojas E, Arroyo M, Yutsis V, Ochoa G (2006) Delimitation of ground failure zones due to land subsidence using gravity data and finite element modeling in the Querétaro valley. México Engineering Geology 84(3–4):143–160

    Article  Google Scholar 

  • Panigrahi R, Borah S (2018) Rank allocation to J48 group of decision tree classifiers using binary and multiclass intrusion detection datasets. Procedia Comput Sci 132:323–332

    Article  Google Scholar 

  • Parise M (2015) A procedure for evaluating the susceptibility to natural and anthropogenic sinkholes. Georisk 9(4):272–285. https://doi.org/10.1080/17499518.2015.1045002

    Article  Google Scholar 

  • Parise M, Ravbar NZ, Ivanovic V, Mikszewski A, Kresic N, Ma´dl-Szonyi J, Kukuric N (2015) Hazards in Karst and managing water resources quality. In: Stevanovic Z (ed) Karst aquifers—characterization and engineering. Professional practice in earth sciences. https://doi.org/10.1007/978-3-319-12850-4_17, Springer, pp 601–687

  • Parise M, Gabrovsek F, Kaufmann G, Ravbar N (eds) 2018. Advances in karst research: theory, fieldwork and applications. Geological Society, London Special Publication 466, ISBN 978–1–78,620–359–5

  • Parise M (2019) Sinkholes. In: WHITE W.B., CULVER D.C. & PIPAN T. (Eds.), Encyclopedia of Caves. Academic Press, Elsevier, 3rd edition, ISBN ISBN 978–0–12–814124–3, p. 934–942

  • Park I, Lee J, Saro L (2014) Ensemble of ground subsidence hazard maps using fuzzy logic. Central Eur J Geosci 6(2):207–218

    ADS  Google Scholar 

  • Perrin J, Cartannaz C, Noury G, Vanoudheusden E (2015) A multicriteria approach to karst subsidence hazard mapping supported by weights-of-evidence analysis. Eng Geol 197:296–305

    Article  Google Scholar 

  • Pfahringer B, Holmes G, Kirkby R (2001) Optimizing the induction of alternating decision trees, Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, pp. 477–487

  • Pham BT, Jaafari A, Prakash I, Singh S, Quoc NK, Tien Bui D (2019) Hybrid computational intelligence models for groundwater potential mapping. CATENA 182:104101

    Article  Google Scholar 

  • Pham BT, Bui DT, Pourghasemi HR, Indra P, Dholakia M (2017a) Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods. Theoret Appl Climatol 128(1–2):255–273

    Article  ADS  Google Scholar 

  • Pham BT, Bui DT, Prakash I, Dholakia M (2017b) Hybrid integration of multilayer perceptron neural networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. CATENA 149:52–63

    Article  Google Scholar 

  • Pourghasemi H, Moradi H, Aghda SF, Gokceoglu C, Pradhan B (2014) GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran). Arab J Geosci 7(5):1857–1878

    Article  Google Scholar 

  • Pradhan B, Abokharima MH, Jebur MN, Tehrany MS (2014) Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS. Nat Hazards 73(2):1019–1042

    Article  Google Scholar 

  • Quinlan J (1993a) The Morgan Kaufmann series in machine learning. San Mateo

  • Quinlan JR (1993b) C4. 5: Programming for machine learning. Morgan Kauffmann, 38: 48

  • Quinlan JR (1993c) The Morgan Kaufmann series in machine learning.

  • Rahmati O, Ghorbanzadeh O, Teimurian T, Mohammadi F, Tiefenbacher JP, Falah F, Pirasteh S, Ngo P-TT, Bui DT (2019) Spatial modeling of snow avalanche using machine learning models and geo-environmental factors: comparison of effectiveness in two mountain regions. Remote Sensing 11(24):2995

    Article  ADS  Google Scholar 

  • Ren C, Yu J, Liu S, Yao W, Zhu Y ... Liu X (2022) A plastic strain-induced damage model of porous rock suitable for different stress paths. Rock Mech Rock Eng, 55(4), 1887-1906

  • Rezaei, M., Yazdani Noori, Z., Dashti Barmaki, M., 2020. Land subsidence susceptibility mapping using analytical hierarchy process (AHP) and Certain Factor (CF) models at Neyshabur plain, Iran. Geocarto International 1–20

  • Saha S, Roy J, Arabameri A, Blaschke T, Tien Bui D (2020) Machine learning-based gully erosion susceptibility mapping: a case study of Eastern India. Sensors 20(5):1313

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki Y (2007) The Truth of the F-Measure. 2007

  • Schapire RE (2003). The boosting approach to machine learning: an overview, Nonlinear estimation and classification. Springer, pp. 149–171

  • Seifi A, Riahi H (2020) Estimating daily reference evapotranspiration using hybrid gamma test-least square support vector machine, gamma test-ANN, and gamma test-ANFIS models in an arid area of Iran. J Water Climate Chang 11(1):217–240

    Article  Google Scholar 

  • Shang M, Luo J (2021) The Tapio decoupling principle and key strategies for changing factors of chinese urban carbon footprint based on cloud computing. Int J Environ Res Public Health 18(4):2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Xi J, Hu D, Cai Z, Xu K (2023) RayMVSNet++: Learning ray-based 1D implicit fields for accurate multi-view stereo. IEEE Trans Pattern Anal Mach Intell 45(11):13666–13682

    PubMed  Google Scholar 

  • Sikandar A, Anwar W, Bajwa UI, Wang X, Sikandar M, Yao L (2018) Decision tree based approaches for detecting protein complex in protein protein interaction network (PPI) via link and sequence analysis. IEEE Access 6:22108–22120

    Article  Google Scholar 

  • Stevanovic´, Z (2013) Global trend and negative synergy: climate changes and groundwater over-extraction. in: proceedings international conference on “Climate change impact on water resources”, 17–18 Oct 2013, Institute of Water Manag J Cerni & WSDAC, Belgrade, pp 42–45

  • Stevanović Z (2018) Global distribution and use of water from karst aquifers. Geol. Soc. London. Spec Publ 466:217–236

    Article  Google Scholar 

  • Stevanovic´ Z, Balint Z, Gadain H, Trivic´ B, Marobhe I, Milanovic S (2012) Hydrogeological survey and assessment of selected areas in Somaliland and Puntland. Technical report no. W-20, FAO-SWALIM (GCP/SOM/049/EC) Project (http://www.faoswalim.org/water_reports) Nairobi

  • Sumner M, Frank E, Hall M (2005) Speeding up logistic model tree induction, European conference on principles of data mining and knowledge discovery. Springer, pp. 675–683

  • Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  Google Scholar 

  • Süzen ML, Doyuran V (2004) A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45(5):665–679

    Article  Google Scholar 

  • Szumilas M (2010) Explaining odds ratios. J Canadian Acad Child Adolesc Psych 19(3):227

    Google Scholar 

  • Su Y, Wang J, Li D, Wang X, Hu L, Yao Y ... Kang Y (2023) End-to-end deep learning model for underground utilities localization using GPR. Automation in Construction, 149, 104776

  • Taheri, K. (2005). Sinkhole hazards in Karst terrains (with emphasis on Sinkholes of Hamedan). West Regional Water Authority of Iran, Kermanshah. [in Farsi].

  • Taheri K, Gutie´rrez F, Mohseni H, Raeisi E, Taheri M (2015) Sinkhole susceptibility mapping using the analytical hierarchy process (AHP) and magnitude-frequency relationships: a case study in Hamadan province, Iran. Geomorphology, 234:64-79

  • Taheri K, Taheri M, Parise M (2016) Impact of intensive groundwater exploitation on an unprotected covered karst aquifer: a case study in Kermanshah Province, western Iran. Environ Earth Sciences 75:1221

    Article  ADS  Google Scholar 

  • Taheri K, Shahabi H, Chapi K, Shirzadi A, Gutiérrez F, Khosravi K (2019) Sinkhole susceptibility mapping: a comparison between Bayes-based machine learning algorithms. Land Degrad Dev 30(7):730–745. https://doi.org/10.1002/ldr.3255

    Article  Google Scholar 

  • Tang Y-Q, Cui Z-D, Wang J-X, Yan L-P, Yan X-X (2008) Application of grey theory-based model to prediction of land subsidence due to engineering environment in Shanghai. Environ Geol 55(3):583–593

    Article  ADS  Google Scholar 

  • Teatini P, Ferronato M, Gambolati G, Bertoni W, Gonella M (2005) A century of land subsidence in Ravenna Italy. Environ Geol 47(6):831–846

    Article  Google Scholar 

  • Tien Bui D, Shahabi H, Shirzadi A, Chapi K, Pradhan B, Chen W, Khosravi K, Panahi M, Bin Ahmad B, Saro L (2018) Land subsidence susceptibility mapping in South Korea using machine learning algorithms. Sensors 18(8):2464

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Viera AJ (2008) Odds ratios and risk ratios: what’s the difference and why does it matter? South Med J 101(7):730–734

    Article  PubMed  Google Scholar 

  • Visser S, Keesstra S, Maas G, De Cleen M (2019) Soil as a basis to create enabling conditions for transitions towards sustainable land management as a key to achieve the SDGs by 2030. Sustainability 11(23):6792

    Article  Google Scholar 

  • Wang Q, Li W (2017) A GIS-based comparative evaluation of analytical hierarchy process and frequency ratio models for landslide susceptibility mapping. Phys Geogr 38(4):318–337

    Article  Google Scholar 

  • Wang Y-Q, Wang Z-F, Cheng W-C (2019) A review on land subsidence caused by groundwater withdrawal in Xi’an, China. Bull Eng Geol Env 78(4):2851–2863

    Article  Google Scholar 

  • Wu Y, Ke Y, Chen Z, Liang S, Zhao H, Hong H (2020) Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping. CATENA 187:104396

    Article  Google Scholar 

  • Wu J, Shi X, Xue Y, Zhang Y, Wei Z, Yu J (2008) The development and control of the land subsidence in the Yangtze Delta China. Environ Geol 55(8):1725–1735

    Article  ADS  Google Scholar 

  • Yang H, Zhang X, Li Z, Cui J (2022) Region-level traffic prediction based on temporal multi-spatial dependence graph convolutional network from GPS data. Remote Sensing 14(2):303

    Article  ADS  Google Scholar 

  • Yin J, Yu D, Wilby R (2016) Modelling the impact of land subsidence on urban pluvial flooding: a case study of downtown Shanghai, China. Sci Total Environ 544:744–753

    Article  ADS  CAS  PubMed  Google Scholar 

  • Yin L, Wang L, Li T, Lu S, Yin Z, Liu X ... Zheng W (2023a) U-Net-STN: a novel end-to-end lake boundary prediction model. Land, 12(8), 1602

  • Yin L, Wang L, Li J, Lu S, Tian J, Yin Z ... Zheng W (2023b) YOLOV4_CSPBi: enhanced land target detection model. Land, 12(9), 1813

  • Yin L, Wang L, Li T, Lu S, Tian J, Yin Z ... Zheng W (2023c) U-Net-LSTM: time series-enhanced lake boundary prediction model. Land, 12(10), 1859

  • Yu J, Zhu Y, Yao W, Liu X, Ren C, Cai Y ... Tang X (2021) Stress relaxation behaviour of marble under cyclic weak disturbance and confining pressures. Measurement, 182, 109777

  • Zhang C, Duan C, Sun L (2023) Inter-storey isolation versus base isolation using friction pendulum systems. Int J Struct Stab Dyn. https://doi.org/10.1142/S0219455424500226

  • Zhi-xiang T, Pei-xian L, Li-li Y, Ka-zhong D (2009) Study of the method to calculate subsidence coefficient based on SVM. Procedia Earth Planet Sci 1(1):970–976

    Article  ADS  Google Scholar 

  • Zhou Z (2012) Ensemble methods: foundations and algorithms. Chapman and Hall/CRC, Cambridge

    Book  Google Scholar 

  • Zhu J, Yang Y, Yu J, Gong X (2015) Land subsidence of coastal areas of Jiangsu Province, China: historical review and present situation. Proc Intl Assoc Hydrol Sci 372:503

    Google Scholar 

  • Zhuo Z, Du L, Lu X, Chen J, Cao Z (2022) Smoothed Lv Distribution Based Three-Dimensional Imaging for Spinning Space Debris. IEEE Trans Geosci Remote Sens 60:1–13

    Article  Google Scholar 

  • Zhu W, Chen J, Sun Q, Li Z, Tan W ... Wei Y (2022) Reconstructing of high-spatial-resolution three-dimensional electron density by ingesting SAR-derived VTEC into IRI model. IEEE Geoscience and Remote Sensing Letters, 19

Download references

Funding

This work was sponsored in part by the key talent introduction project of Xihua University Foundation (Z17109). Dr. Chenchen Fan helped us in revising the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by AA. The first draft of the manuscript was written by AA, MS, and RZ commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alireza Arabameri.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

All authors have consented.

Consent for publication

All authors have consent.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Arabameri, A. & Santosh, M. Land subsidence susceptibility mapping: a new approach to improve decision stump classification (DSC) performance and combine it with four machine learning algorithms. Environ Sci Pollut Res 31, 15443–15466 (2024). https://doi.org/10.1007/s11356-024-32075-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-32075-w

Keywords

Navigation