Skip to main content

Advertisement

Log in

Silver nanoparticle ecotoxicity and phytoremediation: a critical review of current research and future prospects

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) are widely used in various industries, including textiles, electronics, and biomedical fields, due to their unique optical, electronic, and antimicrobial properties. However, the extensive use of AgNPs has raised concerns about their potential ecotoxicity and adverse effects on the environment. AgNPs can enter the environment through different pathways, such as wastewater, surface runoff, and soil application and can interact with living organisms through adsorption, ingestion, and accumulation, causing toxicity and harm. The small size, high surface area-to-volume ratio, and ability to generate reactive oxygen species (ROS) make AgNPs particularly toxic. Various bioremediation strategies, such as phytoremediation, have been proposed to mitigate the toxic effects of AgNPs and minimize their impact on the environment. Further research is needed to improve these strategies and ensure their safety and efficacy in different environmental settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abbas S, Nasreen S, Haroon A, Ashraf MA (2020) Synthesis of silver and copper nanoparticles from plants and application as adsorbents for naphthalene decontamination. Saudi J Biol Sci 27(4):1016–1023

    CAS  Google Scholar 

  • Abbasi E, Milani M, Fekri Aval S, Kouhi M, Akbarzadeh A, Tayefi Nasrabadi H, Nikasa P, Joo SW, Hanifehpour Y, Nejati-Koshki K, Samiei M (2016) Silver nanoparticles: synthesis methods, bio-applications and properties. Crit Rev Microbiol 42(2):173–180

    CAS  Google Scholar 

  • Abd-Alla MH, Nafady NA, Khalaf DM (2016) Assessment of silver nanoparticles contamination on faba bean-Rhizobium leguminosarum bv. viciae-Glomus aggregatum symbiosis: implications for induction of autophagy process in root nodule. Agric Ecosyst Environ 218:163–177

    CAS  Google Scholar 

  • Abramenko NB, Demidova TB, Abkhalimov EV, Ershov BG, Krysanov EY, Kustov LM (2018) Ecotoxicity of different-shaped silver nanoparticles: case of zebrafish embryos. J Hazard Mater 347:89–94

    CAS  Google Scholar 

  • Adebayo-Tayo B, Salaam A, Ajibade A (2019) Green synthesis of silver nanoparticle using Oscillatoria sp. extract, its antibacterial, antibiofilm potential and cytotoxicity activity. Heliyon 5(10):e02502

    Google Scholar 

  • Ahmadi F, Branch S (2012) Impact of different levels of silver nanoparticles (Ag-NPs) on performance, oxidative enzymes and blood parameters in broiler chicks. Pak Vet J 32(3):325–328

    CAS  Google Scholar 

  • Ajith MP, Gautam R, Rajamani P (2022) Impact of metal and metal oxide nanoparticles on male reproductive system: a comprehensive review. Indian J Biochem Biophys 59(11):1048–1055

  • Akter M, Sikder MT, Rahman MM, Ullah AA, Hossain KF, Banik S, Hosokawa T, Saito T, Kurasaki M (2018) A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res 9:1–6

    CAS  Google Scholar 

  • Ale A, Liberatori G, Vannuccini ML, Bergami E, Ancora S, Mariotti G, Bianchi N, Galdopórpora JM, Desimone MF, Cazenave J, Corsi I (2019) Exposure to a nanosilver-enabled consumer product results in similar accumulation and toxicity of silver nanoparticles in the marine mussel Mytilus galloprovincialis. Aquat Toxicol 211:46–56

    CAS  Google Scholar 

  • Amirjani A, Firouzi F, Haghshenas DF (2020) Predicting the size of silver nanoparticles from their optical properties. Plasmonics 15:1077–1082

    CAS  Google Scholar 

  • Amooaghaie R, Saeri MR, Azizi M (2015) Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles. Ecotoxicol Environ Saf 120:400–408

    CAS  Google Scholar 

  • An J, Zhang M, Wang S, Tang J (2008) Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT Food Sci Technol 41:1100–1107

    CAS  Google Scholar 

  • An HJ, Sarkheil M, Park HS, Yu IJ, Johari SA (2019) Comparative toxicity of silver nanoparticles (AgNPs) and silver nanowires (AgNWs) on saltwater microcrustacean, Artemia salina. Comp Biochem Physiol Part - c: Toxicol Pharmacol 218:62–69

    CAS  Google Scholar 

  • Andersen CP, King G, Plocher M, Storm M, Pokhrel LR, Johnson MG, Rygiewicz PT (2016) Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles. Environ Toxicol Chem 35(9):2223–2229

    CAS  Google Scholar 

  • Antony JJ, Sivalingam P, Chen B (2015) Toxicological effects of silver nanoparticles. Environ Toxicol Pharmacol 40(3):729–732

    CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  Google Scholar 

  • Asati A, Santra S, Kaittanis C, Perez JM (2010) Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 4(9):5321–5331

    CAS  Google Scholar 

  • Asharani PV, Wu YL, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnol 19(25):255102

    CAS  Google Scholar 

  • Aslani F, Bagheri S, Muhd Julkapli N, Juraimi AS, Hashemi FSG, Baghdadi A (2014) Effects of engineered nanomaterials on plants growth: an overview. Sci World J 2014:641759

    Google Scholar 

  • Auffan M, Rose J, Wiesner MR, Bottero JY (2009) Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157(4):1127–1133

    CAS  Google Scholar 

  • Avalos A, Haza AI, Mateo D, Morales P (2014) Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells. J Appl Toxicol 34(4):413–423

    CAS  Google Scholar 

  • Badawy AM, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44(4):1260–1266

    Google Scholar 

  • Baek S, Joo SH, Su C, Toborek M (2020) Toxicity of ZnO/TiO2-conjugated carbon-based nanohybrids on the coastal marine alga Thalassiosira pseudonana. Environ Toxicol 35(1):87–96

    CAS  Google Scholar 

  • Bagherzadeh Homaee M, Ehsanpour AA (2016) Silver nanoparticles and silver ions: oxidative stress responses and toxicity in potato (Solanum tuberosum L.) grown in vitro. Hortic Environ Biotechnol 57:544–553

    CAS  Google Scholar 

  • Bao S, Tang W, Fang T (2020) Sex-dependent and organ-specific toxicity of silver nanoparticles in livers and intestines of adult zebrafish. Chemosphere 249:126172

    CAS  Google Scholar 

  • Barbir R, Capjak I, Crnković T, Debeljak Ž, Jurašin DD, Ćurlin M, Šinko G, Weitner T, Vrček IV (2021) Interaction of silver nanoparticles with plasma transport proteins: a systematic study on impacts of particle size, shape and surface functionalization. Chem Biol Interact 335:109364

    CAS  Google Scholar 

  • Barker LK, Giska JR, Radniecki TS, Semprini L (2018) Effects of short-and long-term exposure of silver nanoparticles and silver ions to Nitrosomonas europaea biofilms and planktonic cells. Chemosphere 206:606–614

    CAS  Google Scholar 

  • Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75(7):850–857

    CAS  Google Scholar 

  • Barros D, Pradhan A, Pascoal C, Cassio F (2020) Proteomic responses to silver nanoparticles vary with the fungal ecotype. Sci Total Environ 704:135385

    CAS  Google Scholar 

  • Barros D, Pradhan A, Pascoal C, Cassio F (2021) Transcriptomics reveals the action mechanisms and cellular targets of citrate-coated silver nanoparticles in a ubiquitous aquatic fungus. Environ Pollut 268:115913

    CAS  Google Scholar 

  • Beddow J, Stolpe B, Cole P, Lead JR, Sapp M, Lyons BP, Colbeck I, Whitby C (2014) Effects of engineered silver nanoparticles on the growth and activity of ecologically important microbes. Environ Microbiol Rep 6(5):448–458

    CAS  Google Scholar 

  • Bennicelli R, Stępniewska Z, Banach A, Szajnocha K, Ostrowski J (2004) The ability of Azolla caroliniana to remove heavy metals (Hg (II), Cr (III), Cr (VI)) from municipal waste water. Chemosphere 55(1):141–146

    CAS  Google Scholar 

  • Bernas L, Winkelmann K, Palmer A (2017) Phytoremediation of silver species by waterweed (Egeria densa). Chemist 90:7–13

    Google Scholar 

  • Bettigole SE, Glimcher LH (2015) Endoplasmic reticulum stress in immunity. Annu Rev Immunol 33:107–138

    CAS  Google Scholar 

  • Beyene HD, Werkneh AA, Bezabh HK, Ambaye TG (2017) Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustain Mater Technol 13:18–23

    CAS  Google Scholar 

  • Bhandary B, Marahatta A, Kim HR, Chae HJ (2012) An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int J Mol Sci 14(1):434–456

    Google Scholar 

  • Biswas JK, Sarkar D (2019) Nanopollution in the aquatic environment and ecotoxicity: no nano issue! Curr Pollut Rep 5:4–7

    Google Scholar 

  • Blanco J, Tomás-Hernández S, García T, Mulero M, Gómez M, Domingo JL, Sánchez DJ (2018) Oral exposure to silver nanoparticles increases oxidative stress markers in the liver of male rats and deregulates the insulin signalling pathway and p53 and cleaved caspase 3 protein expression. Food Chem Toxicol 115:398–404

    CAS  Google Scholar 

  • Blinova I, Niskanen J, Kajankari P, Kanarbik L, Käkinen A, Tenhu H, Penttinen OP, Kahru A (2013) Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus. Environ Sci Pollut Res 20:3456–3463

    CAS  Google Scholar 

  • Bonner JC (2010) Nanoparticles as a potential cause of pleural and interstitial lung disease. Proc Am Thorac Soc 7(2):138–141

    CAS  Google Scholar 

  • Bressan E, Ferroni L, Gardin C, Rigo C, Stocchero M, Vindigni V, Cairns W, Zavan B (2013) Silver nanoparticles and mitochondrial interaction. Int J Dent 2013:1–8

    Google Scholar 

  • Bundschuh M, Filser J, Lüderwald S, McKee MS, Metreveli G, Schaumann GE, Schulz R, Wagner S (2018) Nanoparticles in the environment: where do we come from, where do we go to? Environ Sci Eur 30(1):1–7

    CAS  Google Scholar 

  • Buzea C, Pacheco I (2019) Toxicity of nanoparticles. In: Pacheco-Torgal F, Diamanti MV, Nazari A, Granqvist CG, Pruna A, Amirkhanian S (ed) Nanotechnology in eco-efficient construction, 2nd edn. Elsevier, Woodhead publishing, pp 705–754

  • Caille N, Zhao FJ, McGrath SP (2005) Comparison of root absorption, translocation and tolerance of arsenic in the hyperaccumulator Pteris vittata and the nonhyperaccumulator Pteris tremula. New Phytol 165(3):755–761

    CAS  Google Scholar 

  • Canesi L, Ciacci C, Balbi T (2015) Interactive effects of nanoparticles with other contaminants in aquatic organisms: friend or foe? Mar Environ Res 111:128–134

    CAS  Google Scholar 

  • Cangul H, Broday L, Salnikow K, Sutherland J, Peng W, Zhang Q, Poltaratsky V, Yee H, Zoroddu MA, Costa M (2002) Molecular mechanisms of nickel carcinogenesis. Toxicol Lett 127(1):69–75

    CAS  Google Scholar 

  • Cao Y, Long J, Liu L, He T, Jiang L, Zhao C, Li Z (2017) A review of endoplasmic reticulum (ER) stress and nanoparticle (NP) exposure. Life Sci 186:33–42

    CAS  Google Scholar 

  • Capron I, Rojas OJ, Bordes R (2017) Behavior of nanocelluloses at interfaces. Curr Opin Colloid Interface Sci 29:83–95

    CAS  Google Scholar 

  • Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112(43):13608–13619

    CAS  Google Scholar 

  • Carocho M, Ferreira ICFR (2013) A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 51:15–25

    CAS  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    CAS  Google Scholar 

  • Chalew TE, Ajmani GS, Huang H, Schwab KJ (2013) Evaluating nanoparticle breakthrough during drinking water treatment. Environ Health Perspect 121(10):1161–1166

    Google Scholar 

  • Chen M, Xu P, Zeng G, Yang C, Huang D, Zhang J (2015) Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol Adv 33(6):745–755

    CAS  Google Scholar 

  • Chen QY, Brocato J, Laulicht F, Costa M (2017) Mechanisms of nickel carcinogenesis. In: Mudipalli A, Zelikoff JT (eds) Essential and non-essential metals: carcinogenesis, prevention and cancer therapeutics. Springer International Publishing, Cham, pp 181–197

    Google Scholar 

  • Chen W, Hou Y, Liao A, Huang J, Zhao P (2022) Chitosan improves storage stability of wheat-embryo globulin. Int J Biol Macromol 199:287–297

    CAS  Google Scholar 

  • Chen S, Yan X, Peralta-Videa JR, Su Z, Hong J, Zhao L (2023) Biological effects of AgNPs on crop plants: environmental implications and agriculture applications. Environ Sci Nano 10:62–71

    CAS  Google Scholar 

  • Chew BP, Park JS (2004) Carotenoid action on the immune response. J Nutr 134:257S-261S

    CAS  Google Scholar 

  • Cho YM, Mizuta Y, Akagi JI, Toyoda T, Sone M, Ogawa K (2018) Size-dependent acute toxicity of silver nanoparticles in mice. J Toxicol Pathol 31(1):73–80

    CAS  Google Scholar 

  • Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42(12):4583–4588

    CAS  Google Scholar 

  • Choi O, Deng KK, Kim NJ, Ross L Jr, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42(12):3066–3074

    CAS  Google Scholar 

  • Choi D, Hwang J, Bang J, Han S, Kim T, Oh Y, Hwang Y, Choi J, Hong J (2021) In vitro toxicity from a physical perspective of polyethylene microplastics based on statistical curvature change analysis. Sci Total Environ 752:142242

    CAS  Google Scholar 

  • Choudhary A, Singh S, Ravichandiran V (2022) Toxicity, preparation methods and applications of silver nanoparticles: an update. Toxicol Mech Methods 32(9):650–661

    CAS  Google Scholar 

  • Cota-Ruiz K, Delgado-Rios M, Martínez-Martínez A, Núñez-Gastelum JA, Peralta-Videa JR, Gardea-Torresdey JL (2018) Current findings on terrestrial plants–engineered nanomaterial interactions: are plants capable of phytoremediating nanomaterials from soil? Curr Opin Environ Sci Health 6:9–15

    Google Scholar 

  • Courtois P, Rorat A, Lemiere S, Guyoneaud R, Attard E, Levard C, Vandenbulcke F (2019) Ecotoxicology of silver nanoparticles and their derivatives introduced in soil with or without sewage sludge: a review of effects on microorganisms, plants and animals. Environ Pollut 253:578–598

    CAS  Google Scholar 

  • Dal Lago V, de Oliveira LF, de Almeida GK, Kobarg J, Cardoso MB (2011) Size-selective silver nanoparticles: future of biomedical devices with enhanced bactericidal properties. J Mater Chem 21(33):12267–12273

    Google Scholar 

  • Dang F, Wang Q, Cai W, Zhou D, Xing B (2020) Uptake kinetics of silver nanoparticles by plant: relative importance of particles and dissolved ions. Nanotoxicol 14(5):654–666

    CAS  Google Scholar 

  • Daniel SK, Tharmaraj V, Sironmani TA, Pitchumani K (2010) Toxicity and immunological activity of silver nanoparticles. Appl Clay Sci 48(4):547–551

    CAS  Google Scholar 

  • Das P, Barua S, Sarkar S, Chatterjee SK, Mukherjee S, Goswami L, Das S, Bhattacharya S, Karak N, Bhattacharya SS (2018) Mechanism of toxicity and transformation of silver nanoparticles: inclusive assessment in earthworm-microbe-soil-plant system. Geoderma 314:73–84

    CAS  Google Scholar 

  • Das NC, Roy B, Patra R, Choudhury A, Ghosh M, Mukherjee S (2021) Surface-modified noble metal nanoparticles as antimicrobial agents: biochemical, molecular and therapeutic perspectives. In: Maddela NR, Chakraborty S, Prasad R (ed) Nanotechnology for advances in medical microbiology, 1st edn. springer, Singapore, pp 165–205

  • de Souza TA, Souza LR, Franchi LP (2019) Silver nanoparticles: an integrated view of green synthesis methods, transformation in the environment, and toxicity. Ecotoxicol Environ Saf 171:691–700

    Google Scholar 

  • Demarchi CA, da Silva LM, Niedźwiecka A, Ślawska-Waniewska A, Lewińska S, Dal Magro J, Calisto JF, Martello R, Rodrigues CA (2020) Nanoecotoxicology study of the response of magnetic O-carboxymethylchitosan loaded silver nanoparticles on Artemia salina. Environ Toxicol Pharmacol 74:103298

    CAS  Google Scholar 

  • Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16:582–589

    CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47(2):1082–1090

    CAS  Google Scholar 

  • Ding R, Li L, Yang P, Luo L, Li L, Wang Q (2019) Assessing the environmental occurrence and risk of nano-silver in Hunan, China using probabilistic material flow modeling. Sci Total Environ 658:1249–1255

    CAS  Google Scholar 

  • Dorobantu LS, Fallone C, Noble AJ, Veinot J, Ma G, Goss GG, Burrell RE (2015) Toxicity of silver nanoparticles against bacteria, yeast, and algae. J Nanopart Res 17:1–3

    CAS  Google Scholar 

  • Dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M, Gade A, Rai M (2014) Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci 103(7):1931–1944

    Google Scholar 

  • Dreno B, Alexis A, Chuberre B, Marinovich M (2019) Safety of titanium dioxide nanoparticles in cosmetics. J Eur Acad Dermatol Venereol 33:34–46

    CAS  Google Scholar 

  • Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, Guo H (2017) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem 110:210–225

    CAS  Google Scholar 

  • Du J, Tang J, Xu S, Ge J, Dong Y, Li H, Jin M (2018) A review on silver nanoparticles-induced ecotoxicity and the underlying toxicity mechanisms. Regul Toxicol Pharmacol 98:231–239

    CAS  Google Scholar 

  • Dubchak S, Bondar O (2019) Bioremediation and phytoremediation: best approach for rehabilitation of soils for future use. In: Gupta D, Voronina A (eds) Remediation measures for radioactively contaminated areas. Springer, Berlin/Heidelberg, Germany, pp 201–221

    Google Scholar 

  • Dumont E, Johnson AC, Keller VD, Williams RJ (2015) Nano silver and nano zinc-oxide in surface waters–exposure estimation for Europe at high spatial and temporal resolution. Environ Pollut 196:341–349

    CAS  Google Scholar 

  • Durán N, Durán M, De Jesus MB, Seabra AB, Fávaro WJ, Nakazato G (2016) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomed: Nanotechnol Biol Med 12(3):789–799

    Google Scholar 

  • El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45(1):283–287

    Google Scholar 

  • El-Habit OH, Mousa EA, Hassan BN (2014) Cytotoxicity of silver nanoparticles in mice liver cells: an ultrastructure study. J Hosp Med 57(1):554–564

    Google Scholar 

  • Elmachliy S, Chefetz B, Tel-Or E, Vidal L, Canals A, Gedanken A (2011) Removal of silver and lead ions from water wastes using Azolla filiculoides, an aquatic plant, which adsorbs and reduces the ions into the corresponding metallic nanoparticles under microwave radiation in 5 min. Water Air Soil Pollut 218:365–370

    CAS  Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27(1):42–49

    CAS  Google Scholar 

  • Ema M, Okuda H, Gamo M, Honda K (2017) A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals. Reprod Toxicol 67:149–164

    CAS  Google Scholar 

  • Evangelou MW, Papazoglou EG, Robinson BH, Schulin R (2015) Phytomanagement: phytoremediation and the production of biomass for economic revenue on contaminated land. Phytoremediation. Springer, Berlin/Heidelberg, Germany, pp 115–132

    Google Scholar 

  • Fabrega J, Fawcett SR, Renshaw JC, Lead JR (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43(19):7285–7290

    CAS  Google Scholar 

  • Fahmy HM, Mosleh AM, Abd Elghany A, Shams-Eldin E, Serea ES, Ali SA, Shalan AE (2019) Coated silver nanoparticles: synthesis, cytotoxicity, and optical properties. RSC Adv 9(35):20118–20136

    CAS  Google Scholar 

  • Falanga A, Siciliano A, Vitiello M, Franci G, Del Genio V, Galdiero S, Guida M, Carraturo F, Fahmi A, Galdiero E (2020) Ecotoxicity evaluation of pristine and indolicidin-coated silver nanoparticles in aquatic and terrestrial ecosystem. Int J Nanomedicine 15:8097–8108

  • Falco WF, Scherer MD, Oliveira SL, Wender H, Colbeck I, Lawson T, Caires AR (2020) Phytotoxicity of silver nanoparticles on Vicia faba: evaluation of particle size effects on photosynthetic performance and leaf gas exchange. Sci Total Environ 701:134816

    CAS  Google Scholar 

  • Farré M, Sanchís J, Barceló D (2011) Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. Trends Anal Chem 30(3):517–527

    Google Scholar 

  • Felix LC, Ede JD, Snell DA, Oliveira TM, Martinez-Rubi Y, Simard B, Luong JH, Goss GG (2016) Physicochemical properties of functionalized carbon-based nanomaterials and their toxicity to fishes. Carbon 104:78–89

    CAS  Google Scholar 

  • Feng Y, Cui X, He S, Dong G, Chen M, Wang J, Lin X (2013) The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ Sci Technol 47(16):9496–9504

    CAS  Google Scholar 

  • Ferdous Z, Nemmar A (2020) Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci 21(7):2375

    CAS  Google Scholar 

  • Fernandes JP, Mucha AP, Francisco T, Gomes CR, Almeida CM (2017) Silver nanoparticles uptake by salt marsh plants–implications for phytoremediation processes and effects in microbial community dynamics. Mar Pollut Bull 119(1):176–183

    CAS  Google Scholar 

  • Fiordaliso F, Bigini P, Salmona M, Diomede L (2022) Toxicological impact of titanium dioxide nanoparticles and food-grade titanium dioxide (E171) on human and environmental health. Environ Sci Nano 9:1199–1211

    CAS  Google Scholar 

  • Flores-Lopez LZ, Espinoza-Gomez H, Somanathan R (2019) Silver nanoparticles: electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review. J Appl Toxicol 39(1):16–26

    CAS  Google Scholar 

  • Forstner C, Orton TG, Wang P, Kopittke PM, Dennis PG (2020) Wastewater treatment processing of silver nanoparticles strongly influences their effects on soil microbial diversity. Environ Sci Technol 54(21):13538–13547

    CAS  Google Scholar 

  • Freixa A, Acuña V, Sanchís J, Farré M, Barceló D, Sabater S (2018) Ecotoxicological effects of carbon based nanomaterials in aquatic organisms. Sci Total Environ 619:328–337

    Google Scholar 

  • Frérot H, Faucon MP, Willems G, Godé C, Courseaux A, Darracq A, Verbruggen N, Saumitou-Laprade P (2010) Genetic architecture of zinc hyperaccumulation in Arabidopsis halleri: the essential role of QTL× environment interactions. New Phytol 187(2):355–367

    Google Scholar 

  • Fulekar M (2012) Bioremediation technology: recent advances. Springer Science & Business Media, Berlin/Heidelberg, Germany

    Google Scholar 

  • Gaillet S, Rouanet JM (2015) Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms–a review. Food Chem Toxicol 77:58–63

    CAS  Google Scholar 

  • Gaiser BK, Fernandes TF, Jepson MA, Lead JR, Tyler CR, Baalousha M (2014) Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. Environ Toxicol Chem 33(4):879–886

    Google Scholar 

  • Gambardella C, Costa E, Piazza V, Fabbrocini A, Magi E, Faimali M, Garaventa F (2015) Effect of silver nanoparticles on marine organisms belonging to different trophic levels. Mar Environ Res 111:41–49

    CAS  Google Scholar 

  • Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li K, Huang Y, Chen Y, Kolmakov A, Ma X (2013) Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 7:323–337

    CAS  Google Scholar 

  • Geisler-Lee J, Brooks M, Gerfen JR, Wang Q, Fotis C, Sparer A, Ma X, Berg RH, Geisler M (2014) Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nanomater 4:301–318

    Google Scholar 

  • Geranio L, Heuberger M, Nowack B (2009) The behavior of silver nanotextiles during washing. Environ Sci Technol 43(21):8113–8118

    CAS  Google Scholar 

  • Ghobashy MM, Elkodous MA, Shabaka SH, Younis SA, Alshangiti DM, Madani M, Al-Gahtany SA, Elkhatib WF, Noreddin AM, Nady N, El-Sayyad GS (2021) An overview of methods for production and detection of silver nanoparticles, with emphasis on their fate and toxicological effects on human, soil, and aquatic environment. Nanotechnol Rev 10(1):954–977

    CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21(5):383–393

    CAS  Google Scholar 

  • Golbamaki N, Rasulev B, Cassano A, Robinson RL, Benfenati E, Leszczynski J, Cronin MT (2015) Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms. Nanoscale 7(6):2154–2198

    CAS  Google Scholar 

  • Gong X, Huang D, Liu Y, Zeng G, Wang R, Wei J, Huang C, Xu P, Wan J, Zhang C (2018) Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: for heavy metals stabilization and dye adsorption. Bioresour Technol 253:64–71

    CAS  Google Scholar 

  • González AL, Noguez C (2007) Influence of morphology on the optical properties of metal nanoparticles. J Comput Theor Nanosci 4(2):231–238

    Google Scholar 

  • González-Vega JG, García-Ramos JC, Chavez-Santoscoy RA, Castillo-Quiñones JE, Arellano-Garcia ME, Toledano-Magaña Y (2022) Lung models to evaluate silver nanoparticles’ toxicity and their impact on human health. Nanomater 12(13):2316

    Google Scholar 

  • Gould KS (2004) Nature’s Swiss army knife: the diverse protective roles of anthocyanins in leaves. Biomed Res Int 2004:314–320

    Google Scholar 

  • Griffitt RJ, Hyndman K, Denslow ND, Barber DS (2009) Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci 107(2):404–415

    CAS  Google Scholar 

  • Grün AL, Emmerling C (2018) Long-term effects of environmentally relevant concentrations of silver nanoparticles on major soil bacterial phyla of a loamy soil. Environ Sci Eur 30:1–3

    Google Scholar 

  • Grün AL, Straskraba S, Schulz S, Schloter M, Emmerling C (2018) Long-term effects of environmentally relevant concentrations of silver nanoparticles on microbial biomass, enzyme activity, and functional genes involved in the nitrogen cycle of loamy soil. J Environ Sci 69:12–22

    Google Scholar 

  • Gupta IR, Anderson AJ, Rai M (2015) Toxicity of fungal-generated silver nanoparticles to soil-inhabiting Pseudomonas putida KT2440, a rhizospheric bacterium responsible for plant protection and bioremediation. J Hazard Mater 286:48–54

    CAS  Google Scholar 

  • Hajdú A, Illés E, Tombácz E, Borbáth I (2009) Surface charging, polyanionic coating and colloid stability of magnetite nanoparticles. Colloids Surf 347(1–3):104–108

    Google Scholar 

  • Hanks NA, Caruso JA, Zhang P (2015) Assessing Pistia stratiotes for phytoremediation of silver nanoparticles and Ag(I) contaminated waters. J Environ Manag 164:41–45

    CAS  Google Scholar 

  • Hari M, Joseph SA, Mathew S, Nithyaja B, Nampoori VP, Radhakrishnan P (2013) Thermal diffusivity of nanofluids composed of rod-shaped silver nanoparticles. Int J Therm Sci 64:188–194

    CAS  Google Scholar 

  • Harris A, Bali R (2008) On the formation and extent of uptake of silver nanoparticles by live plants. J Nanoparticle Res 10(4):691–695

    CAS  Google Scholar 

  • Hashem A, Tabassum B, Abd-Allah EF (2019) Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci 26(6):1291–1297

    CAS  Google Scholar 

  • Hassanisaadi M, Barani M, Rahdar A, Heidary M, Thysiadou A, Kyzas GZ (2022) Role of agrochemical-based nanomaterials in plants: biotic and abiotic stress with germination improvement of seeds. Plant Growth Regul 97(2):375–418

    CAS  Google Scholar 

  • Hawthorne J, Musante C, Sinha SK, White JC (2012) Accumulation and phytotoxicity of engineered nanoparticles to Cucurbita pepo. Int J Phytoremed 14(4):429–442

    CAS  Google Scholar 

  • Hayes JD, Dinkova-Kostova AT, Tew KD (2020) Oxidative stress in cancer. Cancer Cell 38(2):167–197

    CAS  Google Scholar 

  • He D, Jones AM, Garg S, Pham AN, Waite TD (2011) Silver nanoparticle–reactive oxygen species interactions: application of a charging-discharging model. J Phys Chem C 115:5461–5468

    CAS  Google Scholar 

  • He S, Feng Y, Ni J, Sun Y, Xue L, Feng Y, Yu Y, Lin X, Yang L (2016) Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles. Chemosphere 147:195–202

    CAS  Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7):1308–1316

    CAS  Google Scholar 

  • Heinlein M, Epel BL (2004) Macromolecular transport and signaling through plasmodesmata. Int Rev Cytol 235:93–164

    CAS  Google Scholar 

  • Holt BG, Lessard JP, Borregaard MK, Fritz SA, Araújo MB, Dimitrov D, Fabre PH, Graham CH, Graves GR, Jønsson KA (2013) An update of wallace’s zoogeographic regions of the world. Science 339(6115):74–78

    CAS  Google Scholar 

  • Homaee MB, Ehsanpour AA (2016) Silver nanoparticles and silver ions: oxidative stress responses and toxicity in potato (Solanum tuberosum L) grown in vitro. Hortic Environ Biotechnol 57:544–553

    Google Scholar 

  • Horie M, Fujita K, Kato H, Endoh S, Nishio K, Komaba LK, Nakamura A, Miyauchi A, Kinugasa S, Hagihara Y, Niki E, Yoshida Y, Iwahashi H (2012) Association of the physical and chemical properties and the cytotoxicity of metal oxide nanoparticles: metal ion release, adsorption ability and specific surface area. Metallomics 4(4):350–360

    CAS  Google Scholar 

  • Hou L, Li K, Ding Y, Li Y, Chen J, Wu X, Li X (2012) Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH4 reduction. Chemosphere 87(3):248–252

    CAS  Google Scholar 

  • Hou J, Zhou Y, Wang C, Li S, Wang X (2017) Toxic effects and molecular mechanism of different types of silver nanoparticles to the aquatic crustacean Daphnia magna. Environ Sci Technol 51(21):12868–12878

    CAS  Google Scholar 

  • Hu Y, Chen X, Yang K, Lin D (2018) Distinct toxicity of silver nanoparticles and silver nitrate to Daphnia magna in M4 medium and surface water. Sci Total Environ 618:838–846

    CAS  Google Scholar 

  • Huang J, Chong CA, Runqing LI, Wenzhu GU (2018a) Effects of silver nanoparticles on soil ammonia-oxidizing microorganisms under temperatures of 25 and 5 ˚C. Pedosphere 28(4):607–616

    CAS  Google Scholar 

  • Huang Z, Zeng Z, Chen A, Zeng G, Xiao R, Xu P, He K, Song Z, Hu L, Peng M, Huang T (2018b) Differential behaviors of silver nanoparticles and silver ions towards cysteine: bioremediation and toxicity to Phanerochaete chrysosporium. Chemosphere 203:199–208

    CAS  Google Scholar 

  • Huo L, Chen R, Zhao L, Shi X, Bai R, Long D, Chen F, Zhao Y, Chang YZ, Chen C (2015) Silver nanoparticles activate endoplasmic reticulum stress signaling pathway in cell and mouse models: the role in toxicity evaluation. Biomaterials 61:307–315

    CAS  Google Scholar 

  • Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang BI, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4(6):746–750

    CAS  Google Scholar 

  • Iftikhar M, Noureen A, Uzair M, Jabeen F, Abdel Daim M, Cappello T (2021) Perspectives of nanoparticles in male infertility: evidence for induced abnormalities in sperm production. Int J Environ Res Public Health 18(4):1758

    CAS  Google Scholar 

  • Ihtisham M, Noori A, Yadav S, Sarraf M, Kumari P, Brestic M, Imran M, Jiang F, Yan X, Rastogi A (2021) Silver nanoparticle’s toxicological effects and phytoremediation. Nanomater 11(9):2164

    CAS  Google Scholar 

  • Ishwarya R, Vaseeharan B, Shanthi S, Ramesh S, Manogari P, Dhanalakshmi K, Vijayakumar S, Benelli G (2017) Green synthesized silver nanoparticles: toxicity against Poecilia reticulata fishes and Ceriodaphnia cornuta crustaceans. J Clust Sci 28:519–527

    CAS  Google Scholar 

  • Ivask A, Kurvet I, Kasemets K, Blinova I, Aruoja V, Suppi S, Vija H, Käkinen A, Titma T, Heinlaan M, Visnapuu M (2014) Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS One 9(7):e102108

    Google Scholar 

  • Jang MH, Kim WK, Lee SK, Henry TB, Park JW (2014) Uptake, tissue distribution, and depuration of total silver in common carp (Cyprinus carpio) after aqueous exposure to silver nanoparticles. Environ Sci Technol 48(19):11568–11574

    CAS  Google Scholar 

  • Jaswal T, Gupta J (2023) A review on the toxicity of silver nanoparticles on human health. Mater Today: Proc 81(2):859–863

  • Javed Z, Dashora K, Mishra M, Fasake VD, Srivastva A (2019) Effect of accumulation of nanoparticles in soil health-a concern on future. Front Nanosci Nanotechnol 5:1–9

    Google Scholar 

  • Jiang HS, Qiu XN, Li GB, Li W, Yin LY (2014) Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environ Toxicol Chem 33:1398–1405

    CAS  Google Scholar 

  • Jin Y, Liu W, Li XL, Shen SG, Liang SX, Liu C, Shan L (2016) Nano-hydroxyapatite immobilized lead and enhanced plant growth of ryegrass in a contaminated soil. Ecol Eng 95:25–29

    Google Scholar 

  • Jordan JT, Singh KP, Cañas-Carrell JE (2018) Carbon-based nanomaterials elicit changes in physiology, gene expression, and epigenetics in exposed plants: a review. Curr Opin Environ Sci Health 6:29–35

    Google Scholar 

  • Juan WA, Kunhui SH, Zhang LI, Youbin SI (2017) Effects of silver nanoparticles on soil microbial communities and bacterial nitrification in suburban vegetable soils. Pedosphere 27(3):482–490

    Google Scholar 

  • Kabir E, Kumar V, Kim KH, Yip AC, Sohn JR (2018) Environmental impacts of nanomaterials. J Environ Manag 225:261–271

    CAS  Google Scholar 

  • Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, Boller M, Burkhardt M (2010) Release of silver nanoparticles from outdoor facades. Environ Pollut 158(9):2900–2905

    CAS  Google Scholar 

  • Kaegi R, Voegelin A, Ort C, Sinnet B, Thalmann B, Krismer J, Hagendorfer H, Elumelu M, Mueller E (2013) Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res 47(12):3866–3877

    CAS  Google Scholar 

  • Kakakhel MA, Wu F, Sajjad W, Zhang Q, Khan I, Ullah K, Wang W (2021) Long-term exposure to high-concentration silver nanoparticles induced toxicity, fatality, bioaccumulation, and histological alteration in fish (Cyprinus carpio). Environ Sci Eur 33:1–11

    Google Scholar 

  • Kalantzi I, Mylona K, Toncelli C, Bucheli TD, Knauer K, Pergantis SA, Pitta P, Tsiola A, Tsapakis M (2019) Ecotoxicity of silver nanoparticles on plankton organisms: a review. J Nanopart Res 21:1–26

    CAS  Google Scholar 

  • Kannan RR, Jerley AJ, Ranjani M, Prakash VS (2011) Antimicrobial silver nanoparticle induces organ deformities in the developing Zebrafish (Danio rerio) embryos. J Biomed Sci Eng 4(4):248

    Google Scholar 

  • Kaveh R, Li YS, Ranjbar S, Tehrani R, Brueck CL, Van Aken B (2013) Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47:10637–10644

    CAS  Google Scholar 

  • Ke M, Li Y, Qu Q, Ye Y, Peijnenburg WJ, Zhang Z, Xu N, Lu T, Sun L, Qian H (2020) Offspring toxicity of silver nanoparticles to Arabidopsis thaliana flowering and floral development. J Hazard Mater 386:121975

    CAS  Google Scholar 

  • Khan N, Bano A (2016) Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation. Int J Phytoremediat 18(3):211–221

    CAS  Google Scholar 

  • Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12(7):908–931

    CAS  Google Scholar 

  • Khan I, Raza MA, Awan SA, Shah GA, Rizwan M, Ali B, Tariq R, Hassan MJ, Alyemeni MN, Brestic M, Zhang X (2020) Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): the oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiol Biochem 156:221–232

    CAS  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK (2007) Antimicrobial effects of silver nanoparticles. Nanomed: Nanotechnol Biol Med 3(1):95–101

    CAS  Google Scholar 

  • Kim TH, Kim M, Park HS, Shin US, Gong MS, Kim HW (2012) Size-dependent cellular toxicity of silver nanoparticles. J Biomed Mater Rest A 100(4):1033–1043

    Google Scholar 

  • Kleiven M, Macken A, Oughton DH (2019) Growth inhibition in raphidocelis subcapita - evidence of nanospecific toxicity of silver nanoparticles. Chemosphere 221:785–792

    CAS  Google Scholar 

  • Korani M, Ghazizadeh E, Korani S, Hami Z, Mohammadi-Bardbori A (2015) Effects of silver nanoparticles on human health. Eur J Nanomed 7(1):51–62

    CAS  Google Scholar 

  • Kowalczyk D, Kaminska I (2020) Effect of pH and surfactants on the electrokinetic properties of nanoparticles dispersions and their application to the PET fibres modification. J Mol Liq 320:114426

    CAS  Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJ, Smith JA (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379(6566):635–638

    Google Scholar 

  • Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem 47:651–658

    CAS  Google Scholar 

  • Krivoruchko A, Kuyukina M, Ivshina I (2019) Advanced Rhodococcus biocatalysts for environmental biotechnologies. Catalysts 9(3):236

    Google Scholar 

  • Kumar A, Behl T, Chadha S (2020) Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects. Int J Biol Macromol 149:1262–1274

  • Kumar N, Palmer GR, Shah V, Walker VK (2014) The effect of silver nanoparticles on seasonal change in arctic tundra bacterial and fungal assemblages. PLoS One 9(6):e99953

    Google Scholar 

  • Kumar H, Venkatesh N, Bhowmik H, Kuila A (2018) Metallic nanoparticle: a review. Biomed J Sci Tech Res 4(2):3765–3775

    Google Scholar 

  • Kumar CV, Karthick V, Kumar VG, Inbakandan D, Rene ER, Suganya KU, Embrandiri A, Dhas TS, Ravi M, Sowmiya P (2022) The impact of engineered nanomaterials on the environment: release mechanism, toxicity, transformation, and remediation. Environ Res 212:113202

    Google Scholar 

  • Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407(19):5243–5246

    CAS  Google Scholar 

  • Kumari P, Rastogi A, Shukla A, Srivastava S, Yadav S (2018) Prospects of genetic engineering utilizing potential genes for regulating arsenic accumulation in plants. Chemosphere 211:397–406

    CAS  Google Scholar 

  • Kuppusamy P, Ichwan SJ, Parine NR, Yusoff MM, Maniam GP, Govindan N (2015) Intracellular biosynthesis of Au and Ag nanoparticles using ethanolic extract of Brassica oleracea L. and studies on their physicochemical and biological properties. J Environ Sci 29:151–157

    CAS  Google Scholar 

  • Kvítek O, Siegel J, Hnatowicz V, Švorčík V (2013) Noble metal nanostructures influence of structure and environment on their optical properties. J Nanomater 2013:111

    Google Scholar 

  • Kwak JI, Cui R, Nam SH, Kim SW, Chae Y, An YJ (2016) Multispecies toxicity test for silver nanoparticles to derive hazardous concentration based on species sensitivity distribution for the protection of aquatic ecosystems. Nanotoxicol 10(5):521–530

    CAS  Google Scholar 

  • Lacave JM, Fanjul Á, Bilbao E, Gutierrez N, Barrio I, Arostegui I, Cajaraville MP, Orbea A (2017) Acute toxicity, bioaccumulation and effects of dietary transfer of silver from brine shrimp exposed to PVP/PEI-coated silver nanoparticles to zebrafish. Comp Biochem Physiol C: Toxicol Pharmacol 199:69–80

    CAS  Google Scholar 

  • Lacave JM, Vicario-Parés U, Bilbao E, Gilliland D, Mura F, Dini L, Cajaraville MP, Orbea A (2018) Waterborne exposure of adult zebrafish to silver nanoparticles and to ionic silver results in differential silver accumulation and effects at cellular and molecular levels. Sci Total Environ 642:1209–1220

    CAS  Google Scholar 

  • Laguir I, Stekelorum R, El Baz J (2020) Going green? Investigating the relationships between proactive environmental strategy, GSCM practices and performances of third-party logistics providers (TPLs). Prod Plan Control 2020:1–14

    Google Scholar 

  • Lai E, Teodoro T, Volchuk A (2007) Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology 22(3):193–201

    CAS  Google Scholar 

  • Lalau CM, Simioni C, Vicentini DS, Ouriques LC, Mohedano RA, Puerari RC, Matias WG (2020) Toxicological effects of AgNPs on duckweed (Landoltia punctata). Sci Total Environ 710:136318

    CAS  Google Scholar 

  • Landsiedel R, Ma-Hock L, Kroll A, Hahn D, Schnekenburger J, Wiench K, Wohlleben W (2010) Testing metal-oxide nanomaterials for human safety. Adv Mater 22(24):2601–2627

    CAS  Google Scholar 

  • Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V, Ouerdane L, Carrière M, Sarret G (2014) Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264:98–106

    CAS  Google Scholar 

  • Lau ZL, Low SS, Ezeigwe ER, Chew KW, Chai WS, Bhatnagar A, Yap YJ, Show PL (2022) A review on the diverse interactions between microalgae and nanomaterials: growth variation, photosynthesis performance and toxicity. Bioresour Technol 351:127048

  • Lazim ZM, Salmiati SA, Salim MR, Arman NZ (2020) Toxicity of silver nanoparticles and their removal applying phytoremediation system to water environment: an overview. J Environ Treat Tech 8(3):978–9842

    Google Scholar 

  • Lee CY, Horng JL, Chen PY, Lin LY (2019) Silver nanoparticle exposure impairs ion regulation in zebrafish embryos. Aquat Toxicol 214:105263

    CAS  Google Scholar 

  • Lekamge S, Miranda AF, Abraham A, Li V, Shukla R, Bansal V, Nugegoda D (2018) The toxicity of silver nanoparticles (AgNPs) to three freshwater invertebrates with different life strategies: Hydra vulgaris, Daphnia carinata, and Paratya australiensis. Front Environ Sci 6:152

    Google Scholar 

  • Letchumanan I, Gopinath SC, Arshad MM (2021) Natural resources for nanoparticle synthesis. In: Gopinath CBS, Gang F (ed) Nanoparticles in analytical and medical devices, Elsevier, pp 45–57

  • Li Y, Cummins E (2020) Hazard characterization of silver nanoparticles for human exposure routes. J Environ Sci Health A 55(6):704–725

    CAS  Google Scholar 

  • Li J, Yang X, Liu R, Huang J, Ji J (2011) Enhanced sensitivity of the developing zebrafish embryo to silver nanoparticle toxicity as a result of exposure mode: comparative study of dissolved, nanoparticulate, and microparticulate silver. Environ Toxicol Chem 30(8):1855–1864

    Google Scholar 

  • Li L, Stoiber M, Wimmer A, Xu Z, Lindenblatt C, Helmreich B (2016) Schuster M (2016) To what extent can full-scale wastewater treatment plant effluent influence the occurrence of silver-based nanoparticles in surface waters? Environ Sci Technol 50(12):6327–6333

    CAS  Google Scholar 

  • Li Y, Qin T, Ingle T, Yan J, He W, Yin JJ, Chen T (2017a) Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Arch Toxicol 91:509–519

    CAS  Google Scholar 

  • Li CC, Dang F, Li M, Zhu M, Zhong H, Hintelmann H, Zhou DM (2017b) Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice. Nanotoxicol 11:699–709

    CAS  Google Scholar 

  • Li X, Wan W, Luo X, Zheng L, He G, Huang D, Chen W, Huang Q (2021) High salinity inhibits soil bacterial community mediating nitrogen cycling. Appl Environ Microbiol 87(21):e01366-e1421

    CAS  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42(15):5580–5585

    CAS  Google Scholar 

  • Lish RA, Johari SA, Sarkheil M, Yu IJ (2019) On how environmental and experimental conditions affect the results of aquatic nanotoxicology on brine shrimp (Artemia salina): a case of silver nanoparticles toxicity. Environ Pollut 255:113358

    Google Scholar 

  • Liu J, Jiang G (2015) Silver nanoparticles in the environment. Springer, Heidelberg, pp 43–48

    Google Scholar 

  • Liu H, Wang X, Wu Y, Hou J, Zhang S, Zhou N, Wang X (2019) Toxicity responses of different organs of zebrafish (Danio rerio) to silver nanoparticles with different particle sizes and surface coatings. Environ Pollut 246:414–422

    CAS  Google Scholar 

  • Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5(4):916–924

    CAS  Google Scholar 

  • Lorenz C, Windler L, Goetz NV, Lehmann R, Schuppler M, Hungerbühler K, Heuberger M, Nowack B (2012) Characterization of silver release from commercially available functional (nano)textiles. Chemosphere 89(7):817–824

    CAS  Google Scholar 

  • Lu T, Qu Q, Lavoie M, Pan X, Peijnenburg W, Zhou Z, Pan X, Cai Z, Qian H (2020) Insights into the transcriptional responses of a microbial community to silver nanoparticles in a freshwater microcosm. Environ Pollut 258:113727

    CAS  Google Scholar 

  • Lucas WJ, Lee JY (2004) Plasmodesmata as a supracellular control network in plants. Nat Rev Mol Cell Biol 5:712

    CAS  Google Scholar 

  • Luo Z, Liu J, Jia T, Chai B, Wu T (2020) Soil bacterial community response and nitrogen cycling variations associated with subalpine meadow degradation on the Loess Plateau. China Appl Environ Microbiol 86(9):e00180-e220

    CAS  Google Scholar 

  • Luoma SN, Tasha Stoiber T, Croteau MN (2016) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Annu Rev Environ Resour 41:99–123

    Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061

    CAS  Google Scholar 

  • Ma C, White JC, Dhankher OP, Xing B (2015) Metal-based nanotoxicity and detoxification pathways in higher plants. Environ Sci Technol 49:7109–7122

    CAS  Google Scholar 

  • Ma YB, Lu CJ, Junaid M, Jia PP, Yang L, Zhang JH, Pei DS (2018) Potential adverse outcome pathway (AOP) of silver nanoparticles mediated reproductive toxicity in zebrafish. Chemosphere 207:320–328

    CAS  Google Scholar 

  • Macek T, Macková M, Káš J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18(1):23–34

    CAS  Google Scholar 

  • Mager EM, Escher BI, Schreiber R (2012) Effects of silver nanoparticles on the liver and hepatocytes of zebrafish (Danio rerio). Aquat Toxicol 120(121):59–67

    Google Scholar 

  • Mahboub HH, Khedr MH, Elshopakey GE, Shakweer MS, Mohamed DI, Ismail TA, Ismail SH, Rahman AN (2021) Impact of silver nanoparticles exposure on neuro-behavior, hematology, and oxidative stress biomarkers of African catfish (Clarias gariepinus). Aquac 544:737082

    CAS  Google Scholar 

  • Mahgoob AA, Tousson E, Abd Eldaim MA, Ullah S, Al-Sehemi AG, Algarni H, El Sayed IE (2023) Ameliorative role of chitosan nanoparticles against silver nanoparticle-induced reproductive toxicity in male albino rats. Environ Sci Pollut Res 30(7):17374–17383

    CAS  Google Scholar 

  • Mao BH, Tsai JC, Chen CW, Yan SJ, Wang YJ (2016) Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology 10(8):1021–1040

    CAS  Google Scholar 

  • Mao BH, Chen ZY, Wang YJ, Yan SJ (2018) Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep 8(1):2445

    Google Scholar 

  • Mazumdar H, Ahmed GU (2011) Phytotoxicity effect of silver nanoparticles on Oryza sativa. Int J Chem Tech Res 3(3):1494–1500

    CAS  Google Scholar 

  • McGillicuddy E, Murray I, Kavanagh S, Morrison L, Fogarty A, Cormican M, Dockery P, Prendergast M, Rowan N, Morris D (2017) Silver nanoparticles in the environment: sources, detection and ecotoxicology. Sci Total Environ 575:231–246

    CAS  Google Scholar 

  • McNeil PL, Boyle D, Henry TB, Handy RD, Sloman KA (2014) Effects of metal nanoparticles on the lateral line system and behaviour in early life stages of zebrafish (Danio rerio). Aquat Toxicol 152:318–323

    CAS  Google Scholar 

  • McShan D, Ray PC, Yu H (2014) Molecular toxicity mechanism of nanosilver. J Food Drug Anal 22(1):116–127

    CAS  Google Scholar 

  • McTeer J, Dean AP, White KN, Pittman JK (2014) Bioaccumulation of silver nanoparticles into Daphnia magna from a freshwater algal diet and the impact of phosphate availability. Nanotoxicol 8(3):305–316

    CAS  Google Scholar 

  • Medici S, Peana M, Nurchi VM, Zoroddu MA (2019) Medical uses of silver: history, myths, and scientific evidence. J Med Chem 62(13):5923–5943

    CAS  Google Scholar 

  • Mehata MS (2022) Surface plasmon resonance allied applications of silver nanoflowers synthesized from Breynia vitis-idaea leaf extract. Dalton Trans 51(7):2726–2736

    Google Scholar 

  • Metwally S, Stachewicz U (2019) Surface potential and charges impact on cell responses on biomaterials interfaces for medical applications. Mater Sci Eng C 104:109883

    CAS  Google Scholar 

  • Meyer JN, Lord CA, Yang XY, Turner EA, Badireddy AR, Marinakos SM, Chilkoti A, Wiesner MR, Auffan M (2010) Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat Toxicol 100(2):140–150

    CAS  Google Scholar 

  • Michels C, Yang Y, Moreira Soares H, Alvarez PJ (2015) Silver nanoparticles temporarily retard NO2− production without significantly affecting NO2 release by Nitrosomonas europaea. Environ Toxicol Chem 34(10):2231–2235

    CAS  Google Scholar 

  • Midha K, Singh G, Nagpal M, Arora S (2015) Potential application of silver nanoparticles in medicine. J Nanosci Nanotechnol-Asia 6(2):82–91

  • Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102(1):3–13

    CAS  Google Scholar 

  • Minogiannis P, Valenti M, Kati V, Kalantzi OI, Biskos G (2019) Toxicity of pure silver nanoparticles produced by spark ablation on the aquatic plant Lemna minor. J Aerosol Sci 128:17–21

    CAS  Google Scholar 

  • Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46:9224–9239

    CAS  Google Scholar 

  • Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54

    CAS  Google Scholar 

  • Misra SK, Nuseibeh S, Dybowska A, Berhanu D, Tetley TD, Valsami-Jones E (2014) Comparative study using spheres, rods and spindle-shaped nanoplatelets on dispersion stability, dissolution and toxicity of CuO nanomaterials. Nanotoxicology 8(4):422–432

    CAS  Google Scholar 

  • Mlalila NG, Swai HS, Hilonga A, Kadam DM (2016) Antimicrobial dependence of silver nanoparticles on surface plasmon resonance bands against Escherichia coli. Nanotechnol Sci Appl 10:1–9

  • Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62(2):161–165

    Google Scholar 

  • Montes A, Bisson MA, Gardella JA, Aga DS (2017) Uptake and transformations of engineered nanomaterials: critical responses observed in terrestrial plants and the model plant Arabidopsis thaliana. Sci Total Environ 607(608):1497–1516

    Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnol 16(10):2346

    CAS  Google Scholar 

  • Morteza E, Danesh-Shahraki A, Ardebili ZO (2018) Effects of silver nanoparticles on the growth, physiology, and microelement content of cucumber plants. Environ Sci Pollut Res 25(6):5476–5483

    Google Scholar 

  • Mourato M, Reis R, Martins LL (2012) Characterization of plant antioxidative system in response to abiotic stresses: a focus on heavy metal toxicity. In Advances in selected plant physiology aspects; IntechOpen, London, UK

  • Murata M (2018) Inflammation and cancer. Environ Health Prev Med 23(1):50

    Google Scholar 

  • Musante C, White JC (2012) Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol 27(9):510–517

    CAS  Google Scholar 

  • Mylona Z, Panteris E, Moustakas M, Kevrekidis T, Malea P (2020) Physiological, structural and ultrastructural impacts of silver nanoparticles on the seagrass Cymodocea nodosa. Chemosphere 248:126066

    CAS  Google Scholar 

  • Naderi S, Ghaderi A, Solaymani S, Golzan MM (2012) Structural, optical and thermal properties of silver colloidal nanoparticles. EPJ Appl Phys 58(2):20401

    Google Scholar 

  • Nair PM, Chung IM (2014) Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere 112:105–113

    CAS  Google Scholar 

  • Nam DH, Lee BC, Eom IC, Kim P, Yeo MK (2014) Uptake and bioaccumulation of titanium- and silver-nanoparticles in aquatic ecosystems. Mol Cell Toxicol 10:9–17

    CAS  Google Scholar 

  • Nashaat NN (2013) The application of nanoparticles for wastewater remediation. In: Bruggen BV (ed) Applications of nanomaterials for water quality,1st edn. Future Science Ltd, pp 52–65

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicol 17:372–386

    CAS  Google Scholar 

  • Noori A, Donnelly T, Colbert J, Cai W, Newman LA, White JC (2020) Exposure of tomato (Lycopersicon esculentum) to silver nanoparticles and silver nitrate: physiological and molecular response. Int J Phytoremediat 22(1):40–51

    CAS  Google Scholar 

  • Ocsoy I, Temiz M, Celik C, Altinsoy B, Yilmaz V, Duman F (2017) A green approach for formation of silver nanoparticles on magnetic graphene oxide and highly effective antimicrobial activity and reusability. J Mol Liq 227:147–152

    CAS  Google Scholar 

  • Okey-Onyesolu CF, Hassanisaadi M, Bilal M, Barani M, Rahdar A, Iqbal J, Kyzas GZ (2021) Nanomaterials as nanofertilizers and nanopesticides: an overview. Chemistry Select 6(33):8645–8663

    CAS  Google Scholar 

  • Omer AM (2008) Energy, environment and sustainable development. Renew Sustain Energy Rev 12:2265–2300

    CAS  Google Scholar 

  • Orbea A, González-Soto N, Lacave JM, Barrio I, Cajaraville MP (2017) Developmental and reproductive toxicity of PVP/PEI-coated silver nanoparticles to zebrafish. Comp Biochem Physiol Part - C: Toxicol Pharmacol 199:59–68

    CAS  Google Scholar 

  • Oukarroum A, Barhoumi L, Pirastru L, Dewez D (2013) Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Environ Toxicol Chem 32(4):902–907

    CAS  Google Scholar 

  • Padmapriya S, Murugan N, Ragavendran C, Thangabalu R, Natarajan D (2016) Phytoremediation potential of some agricultural plants on heavy metal contaminated mine waste soils, Salem District, Tamilnadu. Int J Phytoremediat 18:288–294

    CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720

    CAS  Google Scholar 

  • Panda KK, Achary VM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN, Panda BB (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol in Vitro 25(5):1097–1105

    CAS  Google Scholar 

  • Pandey RK, Prajapati VK (2018) Molecular and immunological toxic effects of nanoparticles. Int J Biol Macromol 107:1278–1293

    CAS  Google Scholar 

  • Pandey K, Lahiani MH, Hicks VK, Hudson MK, Green MJ, Khodakovskaya M (2018) Effects of carbon-based nanomaterials on seed germination, biomass accumulation and salt stress response of bioenergy crops. PLoS One 13(8):e0202274

    Google Scholar 

  • Pareek V, Gupta R, Panwar J (2018) Do physico-chemical properties of silver nanoparticles decide their interaction with biological media and bactericidal action? A review. Mater Sci Eng C 90:739–749

    CAS  Google Scholar 

  • Park EJ, Bae E, Yi J, Kim Y, Choi K, Lee SH, Yoon J, Lee BC, Park K (2010) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 30(2):162–168

    CAS  Google Scholar 

  • Patil S, Sandberg A, Heckert E, Self W, Seal S (2007) Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomater 28(31):4600–4607

    CAS  Google Scholar 

  • Patlolla AK, Berry A, May L, Tchounwou PB (2012) Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles. Int J Environ Res Public Health 9(5):1649–1662

    CAS  Google Scholar 

  • Peana M, Medici S, Nurchi VM, Crisponi G, Zoroddu MA (2013) Nickel binding sites in histone proteins: spectroscopic and structural characterization. Coord Chem Rev 257(19):2737–2751

    CAS  Google Scholar 

  • Peana M, Pelucelli A, Medici S, Cappai R, Nurchi VM, Zoroddu MA (2021) Metal toxicity and speciation: a review. Curr Med Chem 28(35):7190–7208

    CAS  Google Scholar 

  • Pham TL (2019) Toxicity of silver nanoparticles to tropical microalgae Scenedesmus acuminatus, Chaetoceros gracilis and crustacean Daphnia lumholtzi. Turk J Fish Aquat Sci 19(12):1009–1016

    Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    CAS  Google Scholar 

  • Pourzahedi L, Vance M, Eckelman MJ (2017) Life cycle assessment and release studies for 15 nanosilver-enabled consumer products: investigating hotspots and patterns of contribution. Environ Sci Technol 51(12):7148–7158

    CAS  Google Scholar 

  • Powers CM, Slotkin TA, Seidler FJ, Badireddy AR, Padilla S (2011) Silver nanoparticles alter zebrafish development and larval behavior: distinct roles for particle size, coating and composition. Neurotoxicol Teratol 33(6):708–714

    CAS  Google Scholar 

  • Prabakaran K, Li J, Anandkumar A, Leng Z, Zou CB, Du D (2019) Managing environmental contamination through phytoremediation by invasive plants: a review. Ecol Eng 138:28–37

    Google Scholar 

  • Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action. Synth Med Appl Toxic Eff Int Nano Lett 2(1):1–10

    Google Scholar 

  • Prakash P (2023) Nano-phytoremediation of heavy metals from soil: a critical review. Pollutants 3(3):360–380

    Google Scholar 

  • Pryshchepa O, Pomastowski P, Buszewski B (2020) Silver nanoparticles: synthesis, investigation techniques, and properties. Adv Colloid Interface Sci 284:102246

    CAS  Google Scholar 

  • Qian H, Peng X, Han X, Ren J, Sun L, Fu Z (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25(9):1947–1956

    CAS  Google Scholar 

  • Qing YA, Cheng L, Li R, Liu G, Zhang Y, Tang X, Wang J, Liu H, Qin Y (2018) Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomed 5:3311–3327

    Google Scholar 

  • Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7):4020–4028

    CAS  Google Scholar 

  • Rai PK, Kumar V, Lee S, Raza N, Kim KH, Ok YS, Tsang DC (2018) Nanoparticle-plant interaction: implications in energy, environment, and agriculture. Environ Int 119:1–19

    CAS  Google Scholar 

  • Rai PK, Kim KH, Lee SS, Lee JH (2020) Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes. Sci Total Environ 705:135858

    CAS  Google Scholar 

  • Rajput VD, Minkina T, Sushkova S, Tsitsuashvili V, Mandzhieva S, Gorovtsov A, Nevidomskyaya D, Gromakova N (2018) Effect of nanoparticles on crops and soil microbial communities. J Soils Sediments 18:2179–2187

    CAS  Google Scholar 

  • Ramesh PS, Kokila T, Geetha D (2015) Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract. Spectrochim Acta A Mol Biomol Spectrosc 142:339–343

    CAS  Google Scholar 

  • Ramirez-Lee MA, Aguirre-Bañuelos P, Martinez-Cuevas PP, Espinosa-Tanguma R, Chi-Ahumada E, Martinez-Castañon GA, Gonzalez C (2018) Evaluation of cardiovascular responses to silver nanoparticles (AgNPs) in spontaneously hypertensive rats. Nanomed: Nanotechnol Biol Med 14(2):385–395

    CAS  Google Scholar 

  • Rani PU, Yasur J, Loke KS, Dutta D (2016) Effect of synthetic and biosynthesized silver nanoparticles on growth, physiology and oxidative stress of water hyacinth: Eichhornia crassipes (Mart) Solms. Acta Physiol Plant 38:1–9

    CAS  Google Scholar 

  • Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:78

    Google Scholar 

  • Reeves RD, Baker AJ, Jaffré T, Erskine PD, Echevarria G, van Der Ent A (2018) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol 218(2):407–411

    Google Scholar 

  • Reshi MS, Uthra C, Yadav D, Sharma S, Singh A, Sharma A, Jaswal A, Sinha N, Shrivastava S, Shukla S (2017) Silver nanoparticles protect acetaminophen induced acute hepatotoxicity: a biochemical and histopathological approach. Regul Toxicol Pharmacol 90:36–41

    CAS  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498

    CAS  Google Scholar 

  • Rico CM, Peralta-Videa JR, Gardea-Torresdey JL (2015) Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences: nanoparticles and their impact on plants. Springer, Cham, Switzerland, pp 1–17

    Google Scholar 

  • Roberts JR, McKinney W, Kan H, Krajnak K, Frazer DG, Thomas TA, Waugh S, Kenyon A, MacCuspie RI, Hackley VA, Castranova V (2013) Pulmonary and cardiovascular responses of rats to inhalation of silver nanoparticles. J Toxicol Environ Health - A 76(11):651–668

    CAS  Google Scholar 

  • Romeh AA (2018) Green silver nanoparticles for enhancing the phytoremediation of soil and water contaminated by fipronil and degradation products. Water Air Soil Pollut 229:1–3

    CAS  Google Scholar 

  • Roy E, Patra S, Saha S, Kumar D, Madhuri R, Sharma PK (2017) Shape effect on the fabrication of imprinted nanoparticles: comparison between spherical-, rod-, hexagonal-, and flower-shaped nanoparticles. Chem Eng J 321:195–206

    CAS  Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4(3):707–716

    CAS  Google Scholar 

  • Sabella S, Carney RP, Brunetti V, Malvindi MA, Al-Juffali N, Vecchio G, Janes SM, Bakr OM, Cingolani R, Stellacci F, Pompa PP (2014) A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale 6(12):7052–7061

    CAS  Google Scholar 

  • Salama HE, Aziz MS, Saad GR (2018) Thermal properties, crystallization and antimicrobial activity of chitosan biguanidine grafted poly (3-hydroxybutyrate) containing silver nanoparticles. Int J Biol Macromol 111:19–27

    CAS  Google Scholar 

  • Saleeb N, Gooneratne R, Cavanagh J, Bunt C, Hossain AM, Gaw S, Robinson B (2019) The mobility of silver nanoparticles and silver ions in the soil-plant system. J Environ Qual 48(6):1835–1841

    CAS  Google Scholar 

  • Samutrtai P, Krobthong S, Roytrakul S (2020) Proteomics for toxicological pathways screening: a case comparison of low concentration ionic and nanoparticulate silver. Anal Sci 36(8):981–987

  • Saraswathi VS, Kamarudheen N, BhaskaraRao KV, Santhakumar K (2017) Phytoremediation of dyes using Lagerstroemia speciosa mediated silver nanoparticles and its biofilm activity against clinical strains Pseudomonas aeruginosa. J Photochem Photobiol b: Biol 168:107–116

    Google Scholar 

  • Sayes CM, Warheit DB (2009) Characterization of nanomaterials for toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(6):660–670

    CAS  Google Scholar 

  • Scherer MD, Sposito JC, Falco WF, Grisolia AB, Andrade LH, Lima SM, Machado G, Nascimento VA, Gonçalves DA, Wender H, Oliveira SL (2019) Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of Allium cepa roots: a close analysis of particle size dependence. Sci Total Environ 660:459–467

    CAS  Google Scholar 

  • Schlich K, Beule L, Hund-Rinke K (2016) Single versus repeated applications of CuO and Ag nanomaterials and their effect on soil microflora. Environ Pollut 215:322–330

    CAS  Google Scholar 

  • Schultz DR, Tang S, Miller C, Gagnon D, Shekh K, Alcaraz AJ, Janz DM, Hecker M (2021) A multi-life stage comparison of silver nanoparticle toxicity on the early development of three Canadian fish species. Environ Toxicol Chem 40(12):3337–3350

    CAS  Google Scholar 

  • Seiffert J, Hussain F, Wiegman C, Li F, Bey L, Baker W, Porter A, Ryan MP, Chang Y, Gow A, Zhang J (2015) Pulmonary toxicity of instilled silver nanoparticles: influence of size, coating and rat strain. PLoS One 10(3):e0119726

    Google Scholar 

  • Seitz F, Rosenfeldt RR, Schneider S, Schulz R, Bundschuh M (2014) Size-, surface-and crystalline structure composition-related effects of titanium dioxide nanoparticles during their aquatic life cycle. Sci Total Environ 493:891–897

    CAS  Google Scholar 

  • Selvam C, Mohan Lal D, Harish S (2016) Thermophysical properties of ethylene glycol-water mixture containing silver nanoparticles. J Mech Sci Technol 30:1271–1279

    Google Scholar 

  • Sengul AB, Asmatulu E (2020) Toxicity of metal and metal oxide nanoparticles: a review. Environ Chem Lett 18:1659–1683

    CAS  Google Scholar 

  • Serrano-Lotina A, Portela R, Baeza P, Alcolea-Rodriguez V, Villarroel M, Ávila P (2022) Zeta potential as a tool for functional materials development. Catal Today 423:113862

    Google Scholar 

  • Shafer MM, Overdier JT, Armstong DE (1998) Removal, partitioning, and fate of silver and other metals in wastewater treatment plants and effluent-receiving streams. Environ Toxicol Chem 17(4):630–641

    CAS  Google Scholar 

  • Sharma P, Pandey S (2014) Status of phytoremediation in world scenario. Int J Environ Bioremediat Biodegrad 2:178–191

    Google Scholar 

  • Sharma VK, Filip J, Zboril R, Varma RS (2015) Natural inorganic nanoparticles–formation, fate, and toxicity in the environment. Chem Soc Rev 44(23):8410–8423

    CAS  Google Scholar 

  • Sharma N, Rather MA, Ajima MN, Gireesh-Babu P, Kumar K, Sharma R (2016) Assessment of DNA damage and molecular responses in Labeo rohita (Hamilton, 1822) following short-term exposure to silver nanoparticles. Food Chem Toxicol 96:122–132

    CAS  Google Scholar 

  • Shehata AM, Salem FM, El-Saied EM, Abd El-Rahman SS, Mahmoud MY, Noshy PA (2021) Zinc nanoparticles ameliorate the reproductive toxicity induced by silver nanoparticles in male rats. Int J Nanomedicine 16:2555

    Google Scholar 

  • Shevlin D, O’Brien N, Cummins E (2018) Silver engineered nanoparticles in freshwater systems - likely fate and behaviour through natural attenuation processes. Sci Total Environ 621:1033–1046

    CAS  Google Scholar 

  • Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnol 18(22):225103

    Google Scholar 

  • Silva T, Pokhrel LR, Dubey B, Tolaymat TM, Maier KJ, Liu X (2014) Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity. Sci Total Environ 468:968–976

    Google Scholar 

  • Singh P, Pandit S, Mokkapati VR, Garg A, Ravikumar V, Mijakovic I (2018) Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci 19(7):1979

    Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182

    CAS  Google Scholar 

  • Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Lee EJ (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67

    CAS  Google Scholar 

  • Song B, Zeng G, Gong J, Liang J, Xu P, Liu Z, Zhang Y, Zhang C, Cheng M, Liu Y, Ye S (2017) Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environ Int 105:43–55

    CAS  Google Scholar 

  • Souza TM, Cunha LT, Souza MM, Marins LF, Nascimento IA (2013) Toxicity of Ag and TiO2 nanoparticles to Ceriodaphnia dubia and Danio rerio: a comparative study using standard ecotoxicological tests. Environ Sci Pollut Res 20(11):7600–7609

    Google Scholar 

  • Souza LRR, Correa TZ, Bruni AT, da Veiga M (2021) The effects of solubility of silver nanoparticles, accumulation, and toxicity to the aquatic plant lemna minor. Environ Sci Pollut Res 28(13):16720–16733

    CAS  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43(24):9473–9479

    CAS  Google Scholar 

  • Stegemeier JP, Colman BP, Schwab F, Wiesner MR, Lowry GV (2017) Uptake and distribution of silver in the aquatic plant Landoltia punctata (duckweed) exposed to silver and silver sulfide nanoparticles. Environ Sci Technol 51(9):4936–4943

    CAS  Google Scholar 

  • Strużyńska L, Skalska J (2018) Mechanisms underlying neurotoxicity of silver nanoparticles. Cell Mol Toxicol Nanoparticles 2018:227–250

    Google Scholar 

  • Strużyńska L, Dąbrowska-Bouta B, Sulkowski G (2022) Developmental neurotoxicity of silver nanoparticles: the current state of knowledge and future directions. Nanotoxicol 16(4):500–525

    Google Scholar 

  • Sun Q, Li Y, Tang T, Yuan Z, Yu CP (2013) Removal of silver nanoparticles by coagulation processes. J Hazard Mater 261:414–420

    CAS  Google Scholar 

  • Sun C, Yin N, Wen R, Liu W, Jia Y, Hu L, Zhou Q, Jiang G (2016) Silver nanoparticles induced neurotoxicity through oxidative stress in rat cerebral astrocytes is distinct from the effects of silver ions. Neurotoxicology 52:210–221

    CAS  Google Scholar 

  • Sun J, Wang L, Li S, Yin L, Huang J, Chen C (2017) Toxicity of silver nanoparticles to Arabidopsis: inhibition of root gravitropism by interfering with auxin pathway. Environ Toxicol Chem 36(10):2773–2780

    CAS  Google Scholar 

  • Sun C, Hu K, Mu D, Wang Z, Yu X (2022) The widespread use of nanomaterials: the effects on the function and diversity of environmental microbial communities. Microorganisms 10(10):2080

    CAS  Google Scholar 

  • Swathy TS, Antony MJ (2020) Tangled silver nanoparticles embedded polythiophene-functionalized multiwalled carbon nanotube nanocomposites with remarkable electrical and thermal properties. Polymer 189:122171

    CAS  Google Scholar 

  • Syafiuddin A, Salmiati S, Hadibarata T, Kueh AB, Salim MR, Zaini MA (2018) Silver nanoparticles in the water environment in Malaysia: inspection, characterization, removal, modeling, and future perspective. Sci Rep 8(1):986

    Google Scholar 

  • Syu YY, Hung JH, Chen JC, Chuang HW (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64

    CAS  Google Scholar 

  • Takahashi M (2005) ζ potential of microbubbles in aqueous solutions: electrical properties of the gas-water interface. J Phys Chem B 109(46):21858–21864

    CAS  Google Scholar 

  • Tang S, Zheng J (2018) Antibacterial activity of silver nanoparticles: structural effects. Adv Healthc Mater 7(13):1701503

    Google Scholar 

  • Tang Y, Xin H, Malkoske T, Yin D (2017) The toxicity of nanoparticles to algae. Bioact Eng Nanoparticles 2017:1–20

    CAS  Google Scholar 

  • Tantra R, Schulze P, Quincey P (2010) Effect of nanoparticle concentration on zeta-potential measurement results and reproducibility. Particuology 8(3):279–285

    CAS  Google Scholar 

  • Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI (2018) Impact of nanoparticles on brain health: an up to date overview. J Clin Med 7(12):490

    Google Scholar 

  • Temizel-Sekeryan S, Hicks AL (2020) Global environmental impacts of silver nanoparticle production methods supported by life cycle assessment. Resour Conserv Recycl 156:104676

    Google Scholar 

  • Thanan R, Oikawa S, Hiraku Y, Ohnishi S, Ma N, Pinlaor S, Yongvanit P, Kawanishi S, Murata M (2014) Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int J Mol Sci 16(1):193–217

    Google Scholar 

  • Thiruvengadam M, Gurunathan S, Chung IM (2015) Physiological, metabolic, and transcriptional effects of biologically-synthesized silver nanoparticles in turnip (Brassica rapa ssp. rapa L.). Protoplasma 252:1031–1046

    CAS  Google Scholar 

  • Tiwari R, Singh RD, Khan H, Gangopadhyay S, Mittal S, Singh V, Arjaria N, Shankar J, Roy SK, Singh D, Srivastava V (2017) Oral subchronic exposure to silver nanoparticles causes renal damage through apoptotic impairment and necrotic cell death. Nanotoxicology 11(5):671–686

    CAS  Google Scholar 

  • Tripathi DK, Tripathi A, Singh S, Singh Y, Vishwakarma K, Yadav G, Sharma S, Singh VK, Mishra RK, Upadhyay RG, Dubey NK (2017) Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Front Microbiol 8:7

    Google Scholar 

  • Turan NB, Erkan HS, Engin GO, Bilgili MS (2019) Nanoparticles in the aquatic environment: usage, properties, transformation and toxicity-a review. Process Saf Environ Prot 130:238–249

    CAS  Google Scholar 

  • Uçuncu E, Ozkan AD, Kurşungoz C, Ulger ZE, Olmez TT, Tekinay T, Ortaç B, Tunca E (2014) Effects of laser ablated silver nanoparticles on Lemna minor. Chemosphere 108:251–257

    Google Scholar 

  • Vajargah MF, Imanpoor MR, Shabani A, Hedayati A, Faggio C (2019) Effect of long-term exposure of silver nanoparticles on growth indices, hematological and biochemical parameters and gonad histology of male goldfish (Carassius auratus gibelio). Microsc Res Tech 82(7):1224–1230

    Google Scholar 

  • Vali S, Mohammadi G, Tavabe KR, Moghadas F, Naserabad SS (2020) The effects of silver nanoparticles (Ag-NPs) sublethal concentrations on common carp (Cyprinus carpio): bioaccumulation, hematology, serum biochemistry and immunology, antioxidant enzymes, and skin mucosal responses. Ecotoxicol Environ Saf 194:110353

    CAS  Google Scholar 

  • Veisi S, Sarkheil M, Johari SA, Safari O (2021) Dietary supplementation with melatonin: influence on growth performance, oxidative stress status, and amelioration of silver nanoparticles-induced toxicity in Nile tilapia (Oreochromis niloticus). Trop Anim Health Prod 53(2):314

    Google Scholar 

  • Velgosová O, Mražíková A, Marcinčáková R (2016) Influence of pH on green synthesis of Ag nanoparticles. Mater Lett 180:336–339

    Google Scholar 

  • Viswanath B, Kim S (2017) Influence of nanotoxicity on human health and environment: the alternative strategies. Rev Environ Contam Toxicol 242:61–104

    Google Scholar 

  • Vogt R, Hartmann S, Kunze J, Jupke JF, Steinhoff B, Schönherr H, Kuhnert KD, Witte K, Lamatsch DK, Wanzenböck J (2022) Silver nanoparticles adversely affect the swimming behavior of European Whitefish (Coregonus lavaretus) larvae within the low µg/L range. J Toxicol Environ Health A 85(21):867–880

    CAS  Google Scholar 

  • Völker C, Kämpken I, Boedicker C, Oehlmann J, Oetken M (2015) Toxicity of silver nanoparticles and ionic silver: comparison of adverse effects and potential toxicity mechanisms in the freshwater clam Sphaerium corneum. Nanotoxicol 9(6):677–685

    Google Scholar 

  • Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang Q, Schnoor JL, Colvin VL, Braam J, Alvarez PJ (2013) Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environ Sci Technol 47(10):5442–5449

    CAS  Google Scholar 

  • Wang D, Lin Z, Wang T, Yao Z, Qin M, Zheng S, Lu W (2016) Where does the toxicity of metal oxide nanoparticles come from: the nanoparticles, the ions, or a combination of both? J Hazard Mater 308:328–334

    CAS  Google Scholar 

  • Wang J, Che B, Zhang LW, Dong G, Luo Q, Xin L (2017) Comparative genotoxicity of silver nanoparticles in human liver HepG2 and lung epithelial A549 cells. J Appl Toxicol 37(4):495–501

    Google Scholar 

  • Wang P, Ng QX, Zhang H, Zhang B, Ong CN, He Y (2018) Metabolite changes behind faster growth and less reproduction of Daphnia similis exposed to low-dose silver nanoparticles. Ecotoxicol Environ Saf 163:266–273

    CAS  Google Scholar 

  • Wang X, Li T, Su X, Li J, Li W, Gan J, Wu T, Kong L, Zhang T, Tang M, Xue Y (2019) Genotoxic effects of silver nanoparticles with/without coating in human liver HepG2 cells and in mice. J Appl Toxicol 39(6):908–918

    CAS  Google Scholar 

  • Whiteley CM, Dalla Valle M, Jones KC, Sweetman AJ (2013) Challenges in assessing release, exposure and fate of silver nanoparticles within the UK environment. Environ Sci: Process Impacts 15(11):2050–2058

    CAS  Google Scholar 

  • Wigger KA, Shepherd DA (2020) We’re all in the same boat: a collective model of preserving and accessing nature-based opportunities. Entrep Theory Pract 44:587–617

    Google Scholar 

  • Wigginton NS, Titta AD, Piccapietra F, Dobias JA, Nesatyy VJ, Suter MJ, Bernier-Latmani R (2010) Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity. Environ Sci Technol 44(6):2163–2216

    CAS  Google Scholar 

  • Wiley B, Sun Y, Mayers B, Xia Y (2005) Shape-controlled synthesis of metal nanostructures: the case of silver. Chem Eur J 11(2):454–463

    CAS  Google Scholar 

  • Wong SW, Leung PT, Djurisic AB, Leung KM (2010) Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal Bioanal Chem 396(2):609–618

    CAS  Google Scholar 

  • Xiao B, Zhang Y, Wang X, Chen M, Sun B, Zhang T, Zhu L (2019) Occurrence and trophic transfer of nanoparticulate Ag and Ti in the natural aquatic food web of Taihu lake, China. Environ Sci Nano 6(11):3431–3441

    CAS  Google Scholar 

  • Xiong W, Li X, Xing B, Yao H (2016) Effects of silver nanoparticles on soil microbial communities and microbial nitrogen mineralization in contrasting soil types. Environ Pollut 214:117–124

    Google Scholar 

  • Yan N, Wang WX (2022) Maternal transfer and biodistribution of citrate and luminogens coated silver nanoparticles in medaka fish. J Hazard Mater 433:128862

    CAS  Google Scholar 

  • Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 11:359

    Google Scholar 

  • Yang Q, Xu W, Liu G, Song M, Tan Z, Mao Y, Yin Y, Cai Y, Liu J, Jiang G (2020) Transformation and uptake of silver nanoparticles and silver ions in rice plant (Oryza sativa L.): the effect of iron plaque and dissolved iron. Environ Sci: Nano 7(2):599–609

    CAS  Google Scholar 

  • Yaqoob AA, Umar K, Ibrahim MNM (2020) Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Appl Nanosci 10(5):1369–1378

    CAS  Google Scholar 

  • Yilmaz M, Yilmaz A, Karaman A, Aysin F, Aksakal O (2021) Monitoring chemically and green-synthesized silver nanoparticles in maize seedlings via surface-enhanced Raman spectroscopy (SERS) and their phytotoxicity evaluation. Talanta 225:121952

    CAS  Google Scholar 

  • Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M, Rose J, Liu J, Bernhardt ES (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45(6):2360–2367

    CAS  Google Scholar 

  • Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH (2020) The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomed 15:2555–2562

    CAS  Google Scholar 

  • Yoon KY, Byeon JH, Park JH, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373(2–3):572–575

    CAS  Google Scholar 

  • Yousef MI, Abuzreda AA, Kamel MA (2019) Cardiotoxicity and lung toxicity in male rats induced by long-term exposure to iron oxide and silver nanoparticles. Exp Ther Med 18(6):4329–4339

    CAS  Google Scholar 

  • Yu JX, Li TH (2011) Distinct biological effects of different nanoparticles commonly used in cosmetics and medicine coatings. Cell Biosci 1(1):1–9

    CAS  Google Scholar 

  • Yuan Z, Li J, Cui L, Xu B, Zhang H, Yu CP (2013) Interaction of silver nanoparticles with pure nitrifying bacteria. Chemosphere 90(4):1404–1411

    CAS  Google Scholar 

  • Zahran M, Ahmed HB, El-Rafie M (2014) Surface modification of cotton fabrics for antibacterial application by coating with AgNPs–alginate composite. Carbohydr Polym 108:145–152

    CAS  Google Scholar 

  • Zaytseva O, Neumann G (2018) Penetration and accumulation of carbon-based nanoparticles in plants. Phytotoxic Nanoparticles 2018:103–118

    Google Scholar 

  • Zechmann B, Müller M, Zellnig G (2008) Modified levels of cysteine affect glutathione metabolism in plant cells. In: Khan NA, Singh S, Umar S (eds) Sulfur assimilation and abiotic stress in plants. Springer, Berlin/Heidelberg, Germany, pp 193–206

    Google Scholar 

  • Zeumer R, Galhano V, Monteiro MS, Kuehr S, Knopf B, Meisterjahn B, Soares AM, Loureiro S, Lopes I, Schlechtriem C (2020) Chronic effects of wastewater-borne silver and titanium dioxide nanoparticles on the rainbow trout (Oncorhynchus mykiss). Sci Total Environ 723:137974

    CAS  Google Scholar 

  • Zhang L, Wang WX (2023) Silver nanoparticle toxicity to the larvae of oyster Crassostrea angulata: contribution of in vivo dissolution. Sci Total Environ 858:159965

    CAS  Google Scholar 

  • Zhang W, Xiao B, Fang T (2018a) Chemical transformation of silver nanoparticles in aquatic environments: mechanism, morphology and toxicity. Chemosphere 191:324–334

    CAS  Google Scholar 

  • Zhang L, Wu L, Si Y, Shu K (2018b) Size-dependent cytotoxicity of silver nanoparticles to Azotobacter vinelandii: growth inhibition, cell injury, oxidative stress and internalization. PLoS One 13(12):e0209020

    CAS  Google Scholar 

  • Zhang X, Li S, Guo X, Yuan Q, Liu S, Hu T, Jiang H (2018c) Toxic effects of silver nanoparticles on photosynthetic performance and chloroplast ultrastructure in two plant species: Chlamydomonas reinhardtii and wheat (Triticum aestivum). Environ Sci Pollut Res 25(19):18855–18865

    Google Scholar 

  • Zhang H, Huang M, Zhang W, Gardea-Torresdey JL, White JC, Ji R, Zhao L (2020) Silver nanoparticles alter soil microbial community compositions and metabolite profiles in unplanted and cucumber-planted soils. Environ Sci Technol 54(6):3334–3342

    CAS  Google Scholar 

  • Zhao Z, Xu L, Wang Y, Li B, Zhang W, Li X (2021) Toxicity mechanism of silver nanoparticles to Chlamydomonas reinhardtii: photosynthesis, oxidative stress, membrane permeability, and ultrastructure analysis. Environ Sci Pollut Res Int 28(12):15032–15042

    CAS  Google Scholar 

  • Zheng S, Zhou Q, Chen C, Yang F, Cai Z, Li D, Geng Q, Feng Y, Wang H (2019) Role of extracellular polymeric substances on the behavior and toxicity of silver nanoparticles and ions to green algae Chlorella vulgaris. Sci Total Environ 660:1182–1190

    CAS  Google Scholar 

  • Zou X, Li P, Huang Q, Zhang H (2016) The different response mechanisms of Wolffia globosa: light-induced silver nanoparticle toxicity. Aquat Toxicol 176:97–105

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful and thankful to institutional heads and directors to their help and support to write this article.

Author information

Authors and Affiliations

Authors

Contributions

Dibyaranjan Samal: writing — original draft, visualization. Pratima Khandayataray: visualization, writing — review and editing. Meesala Sravani and Janmejay Sethy: writing — review and editing. Meesala Krishna Murthy: supervision, conceptualization, writing — review and editing.

Corresponding author

Correspondence to Meesala Krishna Murthy.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors mutually agreed to publish the work in this journal.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Elena Maestri

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samal, D., Khandayataray, P., Sravani, M. et al. Silver nanoparticle ecotoxicity and phytoremediation: a critical review of current research and future prospects. Environ Sci Pollut Res 31, 8400–8428 (2024). https://doi.org/10.1007/s11356-023-31669-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-31669-0

Keywords

Navigation