Skip to main content
Log in

Synergistic adsorption and kinetic studies of heterostructured g-C3N4/TiO2 nano-photocatalyst under visible light for enhanced CO2 reduction

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Graphitic carbon nitride (g-C3N4) and titanium dioxide (TiO2) were synthesized using sol–gel and ultrasonic impregnation technique followed by calcination for photocatalytic CO2 reduction. The nano-photocatalysts were analyzed for their morphological, structural, and optical characteristics. Scanning electron microscopy (SEM) revealed the presence of spherical and layered sheet-like nanoparticles, as well as the occurrence of minor aggregations. The ultraviolet–visible spectroscopy (UV–vis) revealed that g-C3N4 has good photocatalytic properties with a medium band gap (2.7 eV), and TiO2 has high charge transfer potentials, robust oxidation properties, and high band gap (3.20 eV). However, the larger band gap makes it unresponsive in the visible light spectrum. In order to circumvent this constraint, a hybrid heterostructured g-C3N4/TiO2 catalyst with different compositions, viz., 1:1, 1:2, and 2:1, were fabricated using the ultrasonic impregnation technique followed by calcination process. The optical band gap of g-C3N4/TiO2 nanocomposite shows a red shift towards 2.85 eV from 3.20 eV for bare TiO2, inferring enhanced absorption in the visible light region. Further, the photocatalytic experiments were performed using visible light sources for all the catalysts. The g-C3N4/TiO2 (2:1) reported higher photocatalytic activity due to its reduced crystallite size of 12.94 nm which were investigated using X-ray diffraction analysis (XRD) and lower band gap of 2.85 eV. The study infers that hybrid photocatalyst enhances the visible light absorption, electron–hole (e − /h +) pair separation rate, and photocatalytic reduction of CO2. In addition, two adsorption models Langmuir and Freundlich were used and adsorption kinetic data were fitted to pseudo-first-order reaction for all the five catalysts. The adsorption isotherm of CO2 by g-C3N4/TiO2 (2:1) well fitted by the Freundlich adsorption equation. On the basis of adsorption magnitude (n) values (1.74), it was found that the interaction between CO2 molecules and g-C3N4/TiO2 occurs according to the chemisorption mechanism. The kinetic study infers that the highest value of apparent rate constant (kapp) was exhibited by g-C3N4/TiO2 (2:1), which indicates that the products predominate at equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing does not apply to this article.

References

Download references

Funding

GV was supported by the Department of Science and Technology, Government of India (Project No. SPG/2021/000605) for providing partial support to carry out this project. GV and RN acknowledge the VIT Management for providing support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by R.N. G.V. supervised the experimental work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Velvizhi Gokuladoss.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Sami Rtimi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, R., Gokuladoss, V. Synergistic adsorption and kinetic studies of heterostructured g-C3N4/TiO2 nano-photocatalyst under visible light for enhanced CO2 reduction. Environ Sci Pollut Res 31, 2495–2510 (2024). https://doi.org/10.1007/s11356-023-31163-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-31163-7

Keywords

Navigation