Skip to main content
Log in

Influence of concrete material of runoff collection containers on monitoring of nitrogen and phosphorus pollutants

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The accurate monitoring of N and P surface runoff losses from farmland is crucial to control agricultural nonpoint source pollution. A pond constructed with concrete material (CM) is a common collection container used during field experiments in China, but the adsorption characteristics of concrete may cause a considerable underestimation of surface runoff losses from farmland. To characterize any neglected error caused by the collection container material, a laboratory experiment was conducted comparing the N and P contents of runoff samples collected from CM and plastic material (PM) containers. The results indicated that CM containers significantly lowered N and P sample contents compared with PM containers, which was attributed to the adsorption capacity of pollutants by CM containers. This was confirmed by scanning electron microscopy (SEM) images of particles retained in CM containers. In an attempt to alleviate this error, three common water-repellent materials were applied to CM containers that significantly limited the pollutant adsorption of CM containers. Moreover, it was shown that there was no significant difference between the calculated concentration of runoff losses and the total amount of pollutants. To calibrate the observational error from CM containers, stepwise multiple regression models of different forms of N and P pollutants were developed. The results of this study suggest that treating CM containers with water repellent is an effective measure for improving the accuracy of new-built monitor points of agricultural nonpoint source pollutants. In addition, the calibration of observational error from CM containers and delayed sampling is essential to estimate agricultural nonpoint source pollution load via the surface runoff from farmland based on data from monitor points.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number 41907074).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Changcun Ye. The first draft of the manuscript was written by Shanshan Ying, and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shanshan Ying.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, C., Li, X., Li, P. et al. Influence of concrete material of runoff collection containers on monitoring of nitrogen and phosphorus pollutants. Environ Sci Pollut Res 30, 73636–73648 (2023). https://doi.org/10.1007/s11356-023-27511-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-27511-2

Keywords

Navigation