Skip to main content

Advertisement

Log in

Quantification of the meteorological and hydrological droughts links over various regions of Iran using gridded datasets

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Drought is a gradual phenomenon that occurs slowly and directly impacts human life and agricultural products. Due to its significant damage, comprehensive studies must be conducted on drought events. This research employs precipitation and temperature from a satellite-based gridded dataset (i.e., NASA-POWER) and runoff from an observation-based gridded dataset (i.e., GRUN) to calculate hydrological and meteorological gical droughts in Iran during 1981–2014 based on the Standardised Precipitation-Evapotranspiration Index (SPEI) and Hydrological Drought Index (SSI) indices, respectively. In addition, the relationship between the meteorological and hydrological droughts is assessed over various regions of Iran. Afterward, this study employed the Long Short-Term Memory (LSTM) method to predict the hydrological drought based on the meteorological drought over the northwest region of Iran. Results show that hydrological droughts are less dependent on precipitation in the northern regions and the coastal strip of the Caspian Sea. These regions also have a poor correlation between meteorological and hydrological droughts. The correlation between hydrological and meteorological drought in this region is 0.44, the lowest value among the studied regions. Also, on the margins of the Persian Gulf and southwestern Iran, meteorological droughts affect hydrological droughts for 4 months. Besides, except the central plateau, most regions experienced meteorological and hydrological droughts in the spring. The correlation between droughts in the center of the Iranian plateau, which has a hot climate, is less than 0.2. The correlation between these two droughts in the spring is stronger than in other seasons (CC = 0.6). Also, this season is more prone to drought than other seasons. In general, hydrological droughts occurred one to two months after the meteorological drought in most regions of Iran. LSTM model for northwest Iran showed that the predicted values had a high correlation with the observed values, and their RMSE was less than 1 in this region. CC, RMSE, NSE, and R-square of the LSTM model are 0.7, 0.55, 0.44, and 0.6, respectively. Overall, these results can be used to manage water resources and allocate water downstream to deal with hydrological droughts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Please contact the corresponding author for data requests.

Code availability

Please contact the corresponding author for code requests.

References

Download references

Author information

Authors and Affiliations

Authors

Contributions

Yusef Kheyruri and Arezoo Shayesteh proposed the topic, conducted the review analysis and modeling, and participated in drafting the manuscript. Ahmad Sharafati participated in coordination and aided in interpreting results and paper editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ahmad Sharafati.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Marcus Schulz

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kheyruri, Y., Shayesteh, A. & Sharafati, A. Quantification of the meteorological and hydrological droughts links over various regions of Iran using gridded datasets. Environ Sci Pollut Res 30, 79049–79066 (2023). https://doi.org/10.1007/s11356-023-27498-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-27498-w

Keywords

Navigation