Skip to main content
Log in

A review on the green synthesis of nanoparticles, their biological applications, and photocatalytic efficiency against environmental toxins

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Green synthesis of nanoparticles (NPs) using plant materials and microorganisms has evolved as a sustainable alternative to conventional techniques that rely on toxic chemicals. Recently, green-synthesized eco-friendly NPs have attracted interest for their potential use in various biological applications. Several studies have demonstrated that green-synthesized NPs are beneficial in multiple medicinal applications, including cancer treatment, targeted drug delivery, and wound healing. Additionally, due to their photodegradation activity, green-synthesized NPs are a promising tool in environmental remediation. Photodegradation is a process that uses light and a photocatalyst to turn a pollutant into a harmless product. Green NPs have been found efficient in degrading pollutants such as dyes, herbicides, and heavy metals. The use of microbes and flora in green synthesis technology for nanoparticle synthesis is biologically safe, cost-effective, and eco-friendly. Plants and microbes can now use and accumulate inorganic metallic ions in the environment. Various NPs have been synthesized via the bio-reduction of biological entities or their extracts. There are several biological and environmental uses for biologically synthesized metallic NPs, such as photocatalysis, adsorption, and water purification. Since the last decade, the green synthesis of NPs has gained significant interest in the scientific community. Therefore, there is a need for a review that serves as a one-stop resource that points to relevant and recent studies on the green synthesis of NPs and their biological and photocatalytic efficiency. This review focuses on the green fabrication of NPs utilizing diverse biological systems and their applications in biological and photodegradation processes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Not applicable.

References

  • Adeyemi JO, Oriola AO, Onwudiwe DC, Oyedeji AO (2022) Plant extracts mediated metal-based nanoparticles: synthesis and biological applications. Biomolecules 12(5):627. https://doi.org/10.3390/biom12050627

    Article  CAS  Google Scholar 

  • Adibkia K, Alaei-Beirami M, Barzegar-Jalali M, Mohammadi G, Ardestani MS (2012) Evaluation and optimization of factors affecting novel diclofenac sodium-eudragit RS100 nanoparticles. Afr J Pharm Pharmacol 6(12), 941–947. https://www.cabdirect.org/globalhealth/abstract/20123155403

  • Ahmad N (2012) Green synthesis of silver nanoparticles using extracts of Ananas comosus. Green Sustain Chem 02:141–147. https://doi.org/10.4236/gsc.2012.24020

    Article  CAS  Google Scholar 

  • Ahmed A-A, Hamzah H, Maaroof M, Suood A (2018) Analyzing formation of silver nanoparticles from the filamentous fungus Fusarium oxysporum and their antimicrobial activity. Turk J Biol 42. https://doi.org/10.3906/biy-1710-2

  • Aj H, Yj K (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release : Official Journal of the Controlled Release Society 156(2). https://doi.org/10.1016/j.jconrel.2011.07.002

  • Alam T, Khan R, Ali A, Sher H, Ullah Z, Ali M (2019) Biogenic synthesis of iron oxide nanoparticles via Skimmia laureola and their antibacterial efficacy against bacterial wilt pathogen Ralstonia solanacearum. Mater Sci Eng, C 98:101–108. https://doi.org/10.1016/j.msec.2018.12.117

    Article  CAS  Google Scholar 

  • Alavi M, Karimi N (2018) Characterization, antibacterial, total antioxidant, scavenging, reducing power and ion chelating activities of green synthesized silver, copper and titanium dioxide nanoparticles using Artemisia haussknechtii leaf extract. Artif Cells, Nanomed Biotechnol 46(8):2066–2081. https://doi.org/10.1080/21691401.2017.1408121

    Article  CAS  Google Scholar 

  • Al-Hakkani MF (2020) Biogenic copper nanoparticles and their applications: a review. SN Appl Sci 2(3):505. https://doi.org/10.1007/s42452-020-2279-1

    Article  CAS  Google Scholar 

  • Ali MA, Ahmed T, Wu W, Hossain A, Hafeez R, Islam Masum MM, Wang Y, An Q, Sun G, Li B (2020) Advancements in plant and microbe-based synthesis of metallic nanoparticles and their antimicrobial activity against plant pathogens. Nanomaterials, 10(6), Article 6. https://doi.org/10.3390/nano10061146

  • Armendariz V, Herrera I, Peralta-Videa JR, Jose-Yacaman M, Troiani H, Santiago P, Gardea-Torresdey JL (2004) Size controlled gold nanoparticle formation by Avena sativa biomass: Use of plants in nanobiotechnology. J Nanopart Res 6(4):377–382. https://doi.org/10.1007/s11051-004-0741-4

    Article  CAS  Google Scholar 

  • Asimuddin M, Shaik MR, Adil SF, Siddiqui MRH, Alwarthan A, Jamil K, Khan M (2020) Azadirachta indica based biosynthesis of silver nanoparticles and evaluation of their antibacterial and cytotoxic effects. J King Saud Univ - Sci 32(1):648–656. https://doi.org/10.1016/j.jksus.2018.09.014

    Article  Google Scholar 

  • Ayala V, Herrera AP, Latorre-Esteves M, Torres-Lugo M, Rinaldi C (2013) Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles. J Nanopart Res 15(8):1874

    Article  Google Scholar 

  • Baco-Carles V, Datas L, Tailhades P (2011) Copper nanoparticles prepared from oxalic precursors. ISRN Nanotechnol 2011:1–7. https://doi.org/10.5402/2011/729594

    Article  CAS  Google Scholar 

  • Badawy AME, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44(4):1260–1266

    Article  Google Scholar 

  • Baer D (2011) Surface characterization of nanoparticles: critical needs and significant challenges. J Surf Anal (online) 17:163–169

    Article  CAS  Google Scholar 

  • Baker S, Rakshith D, Kavitha KS, Santosh P, Kavitha HU, Rao Y, Satish S (2013) Plants: emerging as nanofactories towards facile route in synthesis of nanoparticles. Bioimpacts 3(3):111–117. https://doi.org/10.5681/bi.2013.012

    Article  CAS  Google Scholar 

  • Banu AN, Balasubramanian C (2014) Optimization and synthesis of silver nanoparticles using Isaria fumosorosea against human vector mosquitoes. Parasitol Res 113(10):3843–3851. https://doi.org/10.1007/s00436-014-4052-0

    Article  Google Scholar 

  • Bar H, Bhui D, Sahoo G, Sarkar P, Pyne S, Misra A (2009) Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids SurfA: Physicochem Eng Aspects 348:212–216. https://doi.org/10.1016/j.colsurfa.2009.07.021

    Article  CAS  Google Scholar 

  • Barzinjy AA, Azeez HH (2020) Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. Leaf extract and zinc nitrate hexahydrate salt. SN Appl Sci 2(5):991. https://doi.org/10.1007/s42452-020-2813-1

    Article  CAS  Google Scholar 

  • Basak S, Venkatram R, Singhal RS (2022) Recent advances in the application of molecularly imprinted polymers (MIPs) in food analysis. Food Control 139:109074. https://doi.org/10.1016/j.foodcont.2022.109074

    Article  Google Scholar 

  • Bhardwaj K, Dhanjal DS, Sharma A, Nepovimova E, Kalia A, Thakur S, Bhardwaj S, Chopra C, Singh R, Verma R, Kumar D, Bhardwaj P, Kuča K (2020) Conifer-derived metallic nanoparticles: green synthesis and biological applications. Int J Mol Sci 21(23), Article 23. https://doi.org/10.3390/ijms21239028

  • Bhattarai B, Zaker Y, Bigioni TP (2018) Green synthesis of gold and silver nanoparticles: challenges and opportunities. Curr Opin Green Sustain Chem 12:91–100

    Article  Google Scholar 

  • Bhosale MG, Sutar RS, Londhe SS, Patil MK (2022) Sol–gel method synthesized Ce-doped TiO2 visible light photocatalyst for degradation of organic pollutants. Appl Organomet Chem 36(4):e6586. https://doi.org/10.1002/aoc.6586

    Article  CAS  Google Scholar 

  • Bhuiyan MdSH, Miah MY, Paul SC, Aka TD, Saha O, Rahaman MdM, Sharif MdJI, Habiba O, Ashaduzzaman Md (2020) Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity. Heliyon 6(8):e04603. https://doi.org/10.1016/j.heliyon.2020.e04603

    Article  Google Scholar 

  • Bibi I, Kamal S, Ahmed A, Iqbal M, Nouren S, Jilani K, Nazar N, Amir M, Abbas A, Ata S, Majid F (2017a) Nickel nanoparticle synthesis using Camellia Sinensis as reducing and capping agent: growth mechanism and photo-catalytic activity evaluation. Int J Biol Macromol 103:783–790. https://doi.org/10.1016/j.ijbiomac.2017.05.023

    Article  CAS  Google Scholar 

  • Bibi I, Nazar N, Iqbal M, Kamal S, Nawaz H, Nouren S, Safa Y, Jilani K, Sultan M, Ata S, Rehman F, Abbas M (2017b) Green and eco-friendly synthesis of cobalt-oxide nanoparticle: characterization and photo-catalytic activity. Adv Powder Technol 28(9):2035–2043. https://doi.org/10.1016/j.apt.2017.05.008

    Article  CAS  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17-71. https://doi.org/10.1116/1.2815690

    Article  Google Scholar 

  • Cao Y, Zhou G, Zhou R, Wang C, Chi B, Wang Y, Hua C, Qiu J, Jin Y, Wu S (2020) Green synthesis of reusable multifunctional γ-Fe2O3/bentonite modified by doped TiO2 hollow spherical nanocomposite for removal of BPA. Sci Total Environ 708:134669. https://doi.org/10.1016/j.scitotenv.2019.134669

    Article  CAS  Google Scholar 

  • Castillo-Henríquez L, Alfaro-Aguilar K, Ugalde-Álvarez J, Vega-Fernández L, Montes de Oca-Vásquez G, Vega-Baudrit JR (2020) Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials 10(9):1763. https://doi.org/10.3390/nano10091763

    Article  CAS  Google Scholar 

  • Castro-Longoria E, Moreno-Velázquez S, Vilchis-Nestor A, Arenas E, Avalos-Borja M (2012) Production of platinum nanoparticles and nanoaggregates using Neurospora crassa. J Microbiol Biotechnol 22:1000–1004. https://doi.org/10.4014/jmb.1110.10085

    Article  CAS  Google Scholar 

  • Chahardoli A, Karimi N, Sadeghi F, Fattahi A (2018) Green approach for synthesis of gold nanoparticles from Nigella arvensis leaf extract and evaluation of their antibacterial, antioxidant, cytotoxicity and catalytic activities. Artif Cells, Nanomed Biotechnol 46(3):579–588. https://doi.org/10.1080/21691401.2017.1332634

    Article  CAS  Google Scholar 

  • Chakraborty S, Basak B, Dutta S, Bhunia B, Dey A (2013) Decolorization and biodegradation of congo red dye by a novel white rot fungus Alternaria alternata CMERI F6. Bioresour Technol 147. https://doi.org/10.1016/j.biortech.2013.08.117

  • Chandra H, Kumari P, Bontempi E, Yadav S (2020) Medicinal plants: treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatal Agric Biotechnol 24:101518

    Article  Google Scholar 

  • Chandran S, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using aloe vera plant extract. Biotechnol Prog 22:577–583. https://doi.org/10.1021/bp0501423

    Article  CAS  Google Scholar 

  • Chang W, Liu S, Qileng A, Liu W, Liu Y (2018) In-situ synthesis of monodispersed Au nanoparticles on eggshell membrane by the extract of Lagerstroemia speciosa leaves for the catalytic reduction of 4-nitrophenol. Mater Res Express 6(1):015002. https://doi.org/10.1088/2053-1591/aae2f0

    Article  CAS  Google Scholar 

  • Chang B-Y, Koo B-S, Kim S-Y (2021) Pharmacological activities for Morus alba L., focusing on the immunostimulatory property from the fruit aqueous extract. Foods 10(8):1966. https://doi.org/10.3390/foods10081966

    Article  CAS  Google Scholar 

  • Chaurasia PK, Bharati SL, Yadava S (2022) Nano-reduction of gold and silver ions: a perspective on the fate of microbial laccases as potential biocatalysts in the synthesis of metals (gold and silver) nano-particles. Curr Res Microb Sci 3:100098. https://doi.org/10.1016/j.crmicr.2021.100098

    Article  CAS  Google Scholar 

  • Chen S, Kucernak A (2004) Electrocatalysis under conditions of high mass transport rate: oxygen reduction on single submicrometer-sized Pt particles supported on carbon. J Phys Chem B 108(10):3262–3276

    Article  CAS  Google Scholar 

  • Chidambaram J, Rahuman A, Roopan S, Kirthi V, Venkatesan J, Kim S-K, Iyappan M, Siva C (2013) Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomol Spectrosc 107C. https://doi.org/10.1016/j.saa.2012.12.083

  • Chopra H, Bibi S, Singh I, Hasan MM, Khan MS, Yousafi Q, Baig AA, Rahman MM, Islam F, Emran TB, Cavalu S (2022) Green metallic nanoparticles: biosynthesis to applications. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2022.874742

    Article  Google Scholar 

  • Danish MSS, Estrella-Pajulas LL, Alemaida IM, Grilli ML, Mikhaylov A, Senjyu T (2022) Green synthesis of silver oxide nanoparticles for photocatalytic environmental remediation and biomedical applications. Metals, 12(5), Article 5. https://doi.org/10.3390/met12050769

  • Darroudi M, Ahmad M, Zamiri R, Khorsand Zak A, Abdullah A, Ibrahim N (2011) Time-dependent effect in green synthesis of silver nanoparticles. Int J Nanomed 6. https://doi.org/10.2147/IJN.S17669

  • Das RK, Gogoi N, Bora U (2011) Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract. Bioprocess Biosyst Eng 34(5):615–619. https://doi.org/10.1007/s00449-010-0510-y

    Article  CAS  Google Scholar 

  • Das C, Sen S, Singh T, Ghosh T, Paul SS, Kim TW, Jeon S, Maiti DK, Im J, Biswas G (2020) Green synthesis, characterization and application of natural product coated magnetite nanoparticles for wastewater treatment. Nanomaterials, 10(8), Article 8. https://doi.org/10.3390/nano10081615

  • Dash SR, Kundu CN (2020) Promising opportunities and potential risk of nanoparticle on the society. IET Nanobiotechnol 14(4):253–260. https://doi.org/10.1049/iet-nbt.2019.0303

    Article  Google Scholar 

  • de Vinicius Oliveira Brisola Maciel M, da Rosa Almeida A, Machado MH, Elias WC, Gonçalves da Rosa C, Teixeira GL, Noronha CM, Bertoldi FC, Nunes MR, Dutra de Armas R, Manique Barreto PL (2020) Green synthesis, characteristics and antimicrobial activity of silver nanoparticles mediated by essential oils as reducing agents. Biocatal Agric Biotechnol 28:101746. https://doi.org/10.1016/j.bcab.2020.101746

    Article  Google Scholar 

  • Dikshit PK, Kumar J, Das A, Sadhu S, Sharma S, Singh S, Gupta P, Kim BS (2021) Green synthesis of metallic nanoparticles: applications and limitations. Catalysts 11:1–37. https://doi.org/10.3390/catal11080902

    Article  CAS  Google Scholar 

  • Dil EA, Ghaedi M, Asfaram A (2017) The performance of nanorods material as adsorbent for removal of azo dyes and heavy metal ions: application of ultrasound wave, optimization and modeling. Ultrason Sonochem 34:792–802. https://doi.org/10.1016/j.ultsonch.2016.07.015

    Article  CAS  Google Scholar 

  • Drummer S, Madzimbamuto T, Chowdhury M (2021) Green synthesis of transition-metal nanoparticles and their oxides: a review. Materials, 14(11), Article 11. https://doi.org/10.3390/ma14112700

  • Dzimitrowicz A, Berent S, Motyka A, Jamroz P, Kurcbach K, Sledz W, Pohl P (2019) Comparison of the characteristics of gold nanoparticles synthesized using aqueous plant extracts and natural plant essential oils of Eucalyptus globulus and Rosmarinus officinalis. Arab J Chem 12(8):4795–4805. https://doi.org/10.1016/j.arabjc.2016.09.007

    Article  CAS  Google Scholar 

  • Edison TJI, Sethuraman MG (2012) Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem 47(9):1351–1357. https://doi.org/10.1016/j.procbio.2012.04.025

    Article  CAS  Google Scholar 

  • Elamawi RM, Al-Harbi RE, Hendi AA (2018) Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egyptian J Biol Pest Control 28(1):28. https://doi.org/10.1186/s41938-018-0028-1

    Article  Google Scholar 

  • Elbeshehy EKF, Elazzazy AM, Aggelis G (2015) Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Front Microbiol 6:453. https://doi.org/10.3389/fmicb.2015.00453

    Article  Google Scholar 

  • Eldomany E, Essam TM, Ahmed AE, Farghali A (2018) Biosynthesis physico-chemical optimization of gold nanoparticles as anti-cancer and synergetic antimicrobial activity using Pleurotus ostreatus fungus. J Appl Pharm Sci 8:119–128. https://doi.org/10.7324/JAPS.2018.8516

    Article  CAS  Google Scholar 

  • El-Sayed MEA (2020) Nanoadsorbents for water and wastewater remediation. Sci Total Environ 739:139903. https://doi.org/10.1016/j.scitotenv.2020.139903

    Article  CAS  Google Scholar 

  • Fouda A, El-Din Hassan S, Salem SS, Shaheen TI (2018) In-vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized zinc oxide nanoparticles for medical textile applications. Microb Pathog 125:252–261. https://doi.org/10.1016/j.micpath.2018.09.030

    Article  CAS  Google Scholar 

  • Fujiwara M, Imura T (2015) Photo induced membrane separation for water purification and desalination using azobenzene modified anodized alumina membranes. ACS Nano 9(6):5705–5712. https://doi.org/10.1021/nn505970n

    Article  CAS  Google Scholar 

  • Gahlawat G, Roy Choudhury A (2019) A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv 9(23):12944–12967. https://doi.org/10.1039/C8RA10483B

    Article  CAS  Google Scholar 

  • Gao G, Ze Y, Li B, Zhao X, Zhang T, Sheng L, Hu R, Gui S, Sang X, Sun Q, Cheng J, Cheng Z, Wang L, Tang M, Hong F (2012) Ovarian dysfunction and gene-expressed characteristics of female mice caused by long-term exposure to titanium dioxide nanoparticles. J Hazard Mater 243:19–27. https://doi.org/10.1016/j.jhazmat.2012.08.049

    Article  CAS  Google Scholar 

  • Ghosh S, Ahmad R, Zeyaullah Md, Khare SK (2021) Microbial nano-factories: synthesis and biomedical applications. Front Chem 9:626834. https://doi.org/10.3389/fchem.2021.626834

    Article  CAS  Google Scholar 

  • Ghotekar S, Dabhane H, Pansambal S, Oza R, Tambade P, Medhane V (2020) A review on biomimetic synthesis of Ag2O Nanoparticles using plant extract, characterization and its recent applications. Adv J Chem-Sect B, 2(3). https://doi.org/10.22034/ajcb.2020.107810

  • Gnanasekar S, Murugaraj J, Balakrishnan D, Krishnamoorthy V, Jha PK, Seetharaman PK, Vilwanathan R, Sivaperumal S (2017) Antibacterial and cytotoxicity effects of biogenic palladium nanoparticles synthesized using fruit extract of Couroupita guianensis Aubl. J Appl Biomed16. https://doi.org/10.1016/j.jab.2017.10.001

  • Gopalakrishnan K, Chandel M, Gupta V, Kaur K, Patel A, Kaur K, Kishore A, Prabhakar PK, Singh A, Prasad JS (2023) Valorisation of fruit peel bioactive into green synthesized silver nanoparticles to modify cellulose wrapper for shelf-life extension of packaged bread. Food Res Int 164:112321

    Article  CAS  Google Scholar 

  • Govindasamy S, Thirumarimurugan M, Muthukumaran C (2018) Green synthesis of ZnO nanoparticles using Tecoma castanifolia leaf extract: characterization and evaluation of its antioxidant, bactericidal and anticancer activities. Microchem J 145. https://doi.org/10.1016/j.microc.2018.11.022

  • Guan Z, Ying S, Ofoegbu PC, Clubb P, Rico C, He F, Hong J (2022) Green synthesis of nanoparticles: current developments and limitations. Environ Technol Innov 102336

  • Guerrini L, Alvarez-Puebla RA, Pazos-Perez N (2018) Surface modifications of nanoparticles for stability in biological fluids. Materials 11(7):1154

    Article  Google Scholar 

  • Gupta R, Xie H (2018) Nanoparticles in daily life: applications, toxicity and regulations. J Environ Pathol Toxicol Oncol 37. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009

  • Gupta K, Chundawat TS (2019) Bio-inspired synthesis of platinum nanoparticles from fungus Fusarium oxysporum: its characteristics, potential antimicrobial, antioxidant and photocatalytic activities. Mater Res Express 6(10):1050d6. https://doi.org/10.1088/2053-1591/ab4219

    Article  CAS  Google Scholar 

  • Habibullah G, Viktorova J, Ulbrich P, Ruml T (2022) Effect of the physicochemical changes in the antimicrobial durability of green synthesized silver nanoparticles during their long-term storage. RSC Adv 12(47):30386–30403

    Article  CAS  Google Scholar 

  • Hennebel T, Van Nevel S, Verschuere S, De Corte S, De Gusseme B, Cuvelier C, Fitts J, Lelie D, Boon N, Verstraete W (2011) Palladium nanoparticles produced by fermentatively cultivated bacteria as catalyst for diatrizoate removal with biogenic hydrogen. Appl Microbiol Biotechnol 91:1435–1445. https://doi.org/10.1007/s00253-011-3329-9

    Article  CAS  Google Scholar 

  • Hernández-Díaz JA, Garza-García JJ, Zamudio-Ojeda A, León-Morales JM, López-Velázquez JC, García-Morales S (2021) Plant-mediated synthesis of nanoparticles and their antimicrobial activity against phytopathogens. J Sci Food Agric 101(4):1270–1287. https://doi.org/10.1002/jsfa.10767

    Article  CAS  Google Scholar 

  • Ho PL, Chow KH, Yuen KY, Ng WS, Chau PY (1998) Comparison of a novel, inhibitor-potentiated disc-diffusion test with other methods for the detection of extended-spectrum beta-lactamases in Escherichia coli and Klebsiella pneumoniae. J Antimicrob Chemother 42(1):49–54. https://doi.org/10.1093/jac/42.1.49

    Article  CAS  Google Scholar 

  • Hosny M, Fawzy M, El-Badry YA, Hussein EE, Eltaweil AS (2022) Plant-assisted synthesis of gold nanoparticles for photocatalytic, anticancer, and antioxidant applications. J Saudi Chem Soc 26(2):101419. https://doi.org/10.1016/j.jscs.2022.101419

    Article  CAS  Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18(10):105104. https://doi.org/10.1088/0957-4484/18/10/105104

    Article  CAS  Google Scholar 

  • Huang H, Steiniger KA, Lambert TH (2022) Electrophotocatalysis: combining light and electricity to catalyze reactions. J Am Chem Soc 144(28):12567–12583

    Article  CAS  Google Scholar 

  • Ijaz I, Gilani E, Nazir A, Bukhari A (2020) Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem Lett Rev 13(3):223–245

    Article  CAS  Google Scholar 

  • Iqtedar M, Aslam M, Farrukh MA, Shahzad A, Abdullah R, Kaleem A (2019) Extracellular biosynthesis, characterization, optimization of silver nanoparticles (AgNPs) using Bacillus mojavensis BTCB15 and its antimicrobial activity against multidrug resistant pathogens. Prep Biochem Biotechnol 49:1–7. https://doi.org/10.1080/10826068.2018.1550654

    Article  CAS  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650

    Article  CAS  Google Scholar 

  • Jafarzadeh S, Jafari SM (2021) Impact of metal nanoparticles on the mechanical, barrier, optical and thermal properties of biodegradable food packaging materials. Crit Rev Food Sci Nutr 61(16):2640–2658

    Article  CAS  Google Scholar 

  • Jalal M, Ansari MA, Alzohairy MA, Ali SG, Khan HM, Almatroudi A, Raees K (2018) Biosynthesis of silver nanoparticles from oropharyngeal Candida glabrata isolates and their antimicrobial activity against clinical strains of bacteria and fungi. Nanomaterials 8(8):586. https://doi.org/10.3390/nano8080586

    Article  CAS  Google Scholar 

  • Javed R, Zia M, Naz S, Aisida SO, Ain N, ul, & Ao, Q. (2020) Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J Nanobiotechnol 18:1–15

    Article  Google Scholar 

  • Jenning V, Gohla SH (2001) Encapsulation of retinoids in solid lipid nanoparticles (SLN). J Microencapsul 18(2):149–158

    Article  CAS  Google Scholar 

  • Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano- and micro-scaled oxide particles. (Environ Pollut Barking, EssexL 1987) 157(5):1619–1625. https://doi.org/10.1016/j.envpol.2008.12.025

    Article  CAS  Google Scholar 

  • Kahsay MH, RamaDevi D, Kumar YP, Mohan BS, Tadesse A, Battu G, Basavaiah K (2018) Synthesis of silver nanoparticles using aqueous extract of Dolichos lablab for reduction of 4-nitrophenol, antimicrobial and anticancer activities. OpenNano 3:28–37. https://doi.org/10.1016/j.onano.2018.04.001

    Article  Google Scholar 

  • Kalimuthu K, Suresh Babu R, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B, Biointerfaces 65(1):150–153. https://doi.org/10.1016/j.colsurfb.2008.02.018

    Article  CAS  Google Scholar 

  • Kamran U, Bhatti HN, Iqbal M, Nazir A (2019) Green synthesis of metal nanoparticles and their applications in different fields: a review. Z Phys Chem 233(9):1325–1349. https://doi.org/10.1515/zpch-2018-1238

    Article  CAS  Google Scholar 

  • Kartha B, Thanikachalam K, Vijayakumar N, Alharbi NS, Kadaikunnan S, Khaled JM, Gopinath K, Govindarajan M (2022) Synthesis and characterization of Ce-doped TiO2 nanoparticles and their enhanced anticancer activity in Y79 retinoblastoma cancer cells. Green Process Synth 11(1):143–149. https://doi.org/10.1515/gps-2022-0011

    Article  CAS  Google Scholar 

  • Katta VKM, Dubey RS (2021) Green synthesis of silver nanoparticles using Tagetes erecta plant and investigation of their structural, optical, chemical and morphological properties. Mater Today: Proceedings 45:794–798. https://doi.org/10.1016/j.matpr.2020.02.809

    Article  CAS  Google Scholar 

  • Koul B, Poonia AK, Yadav D, Jin J-O (2021) Microbe-mediated biosynthesis of nanoparticles: applications and future prospects. Biomolecules 11(6):886. https://doi.org/10.3390/biom11060886

    Article  CAS  Google Scholar 

  • Kumar M, Mehta A, Mishra A, Singh J, Rawat M, Basu S (2018) Biosynthesis of tin oxide nanoparticles using Psidium Guajava leave extract for photocatalytic dye degradation under sunlight. Mater Lett 215:121–124. https://doi.org/10.1016/j.matlet.2017.12.074

    Article  CAS  Google Scholar 

  • Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – an updated report. Saudi Pharm J 24(4):473–484. https://doi.org/10.1016/j.jsps.2014.11.013

    Article  Google Scholar 

  • Laokul P, Klinkaewnarong J, Phokha S, Seraphin S (2008) Indium oxide (In2O3) nanoparticles using aloe vera plant extract: synthesis and optical properties. Optoelectron Adv Mater Rapid Commun 2

  • Laouini SE, Bouafia A, Soldatov AV, Algarni H, Tedjani ML, Ali GAM, Barhoum A (2021) Green synthesized of Ag/Ag2O nanoparticles using aqueous leaves extracts of Phoenix dactylifera L. and their azo dye photodegradation. Membranes, 11(7), Article 7. https://doi.org/10.3390/membranes11070468

  • Levard C, Hotze EM, Lowry GV, Brown GE Jr (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46(13):6900–6914

    Article  CAS  Google Scholar 

  • Liang T, Qiu X, Ye X, Liu Y, Li Z, Tian B, Yan D (2020) Biosynthesis of selenium nanoparticles and their effect on changes in urinary nanocrystallites in calcium oxalate stone formation. 3 Biotech, 10. https://doi.org/10.1007/s13205-019-1999-7

  • Liu L, Corma A (2021) Structural transformations of solid electrocatalysts and photocatalysts. Nat Rev Chem 5(4):256–276

    Article  CAS  Google Scholar 

  • López-Miranda JL, Esparza R, Rosas G, Pérez R, Estévez-González M (2019) Catalytic and antibacterial properties of gold nanoparticles synthesized by a green approach for bioremediation applications. 3 Biotech 9(4):135. https://doi.org/10.1007/s13205-019-1666-z

    Article  Google Scholar 

  • Love AJ, Makarov VV, Sinitsyna OV, Shaw J, Yaminsky IV, Kalinina NO, Taliansky ME (2015) A genetically modified tobacco mosaic virus that can produce gold nanoparticles from a metal salt precursor. Front Plant Sci 6. https://doi.org/10.3389/fpls.2015.00984

  • Lukman AI, Gong B, Marjo CE, Roessner U, Harris AT (2011) Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. J Colloid Interface Sci 353(2):433–444. https://doi.org/10.1016/j.jcis.2010.09.088

    Article  CAS  Google Scholar 

  • Lv Q, Zhang B, Xing X, Zhao Y, Cai R, Wang W, Gu Q (2018) Biosynthesis of copper nanoparticles using Shewanella loihica PV-4 with antibacterial activity: novel approach and mechanisms investigation. J Hazard Mater 347:141–149. https://doi.org/10.1016/j.jhazmat.2017.12.070

    Article  CAS  Google Scholar 

  • Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA (2007) The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv Coll Interface Sci 134–135:167–174. https://doi.org/10.1016/j.cis.2007.04.021

    Article  CAS  Google Scholar 

  • Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63(1–2):24–46

    Article  CAS  Google Scholar 

  • Malik AQ, Singh H, Kumar A, Aepuru R, Kumar D, Mir ul TG, ul Ain Q, Bhat AA, Mubayi A (2022a) An overview on magnetic separable spinel as a promising materials for photocatalysis and waste water treatment. ES Energy Environ

  • Malik AQ, Tahir ul Gani M, Amin O, Sathish M, Kumar D (2022b) Synthesis, characterization, photocatalytic effect of CuS-ZnO nanocomposite on photodegradation of Congo Red and phenol pollutant. Inorg Chem Commun 109797

  • Malik AQ, Lokhande P, Kumar D, Mooney J, Sharma A, Gani Mir TU (2023) Photocatalytic 1 and antimicrobial activity study for cadmium sulphide quantum dots. Mater Res Innov 1–9

  • Malik AQ, Kumar D (2023) An overview of paclitaxel and molecular imprinted polymers capped with quantum dots as an alternative approach for paclitaxel extraction and detection. Curr Mater Sci: Formerly: Recent Patents on Materials Science 16(2):185–216

    CAS  Google Scholar 

  • Mallikarjunaswamy C, Lakshmi Ranganatha V, Ramu R, Udayabhanu, Nagaraju G (2020) Facile microwave-assisted green synthesis of ZnO nanoparticles: application to photodegradation, antibacterial and antioxidant. J Mater Sci: Mater Electron 31(2):1004–1021. https://doi.org/10.1007/s10854-019-02612-2

    Article  CAS  Google Scholar 

  • Manjunath HulikereJoshi MC (2017) Characterization, antioxidant and antimicrobial activity of silver nanoparticles synthesized using marine endophytic fungus- Cladosporium cladosporioides. Biochem Biophys Rep. https://doi.org/10.1016/j.bbrep.2017.08.011

    Article  Google Scholar 

  • Masoumbaigi H, Rezaee A, Hosseini H, Hashemi S (2015) Water disinfection by zinc oxide nanoparticle prepared with solution combustion method. Desalin Water Treat 56(9):2376–2381. https://doi.org/10.1080/19443994.2014.961556

    Article  CAS  Google Scholar 

  • Menon S, Devi S, Agarwal H, Kumar V (2019) Efficacy of biogenic selenium nanoparticles from an extract of ginger towards evaluation on anti-microbial and anti-oxidant activities. Colloid Interface Sci Commun 29:1–8. https://doi.org/10.1016/j.colcom.2018.12.004

    Article  CAS  Google Scholar 

  • Mir ul TG, Shukla S, Malik AQ, Singh J, Kumar D (2023) Microwave-assisted synthesis of N-doped carbon quantum dots for detection of methyl orange in saffron. Chem Pap 1–9

  • Mishra D, Rajurkar S, Mishra N, Jadhav N, Ballurkar B (2017) Green synthesis of gold nanoparticles by Azadirachta indica leaf extract and coating with Morinda citrifolia fruit extract: their characterization. Int J Livest Res 1. https://doi.org/10.5455/ijlr.20170306091736

  • Mohammadi A, Hashemi M, Hosseini SM (2015) Chitosan nanoparticles loaded with Cinnamomum zeylanicum essential oil enhance the shelf life of cucumber during cold storage. Postharvest Biol Technol 110:203–213

    Article  CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3):507–517. https://doi.org/10.1007/s11051-007-9275-x

    Article  CAS  Google Scholar 

  • Mohanta YK, Nayak D, Biswas K, Singdevsachan SK, Abd-Allah EF, Hashem A, Alqarawi AA, Yadav D, Mohanta TK (2018) Silver nanoparticles synthesized using wild mushroom show potential antimicrobial activities against food borne pathogens. Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry 23(3):655. https://doi.org/10.3390/molecules23030655

    Article  CAS  Google Scholar 

  • Mohmed A, Fouda A, Abdel-Rahman M, Hassan S, Gamal S, Salah Salem S, Shaheen Th I (2019). Fungal strain impacts the shape, bioactivity and multifunctional properties of green synthesized zinc oxide nanoparticle. Biocatal Agric Biotechnol 19. https://doi.org/10.1016/j.bcab.2019.101103

  • Monowar T, Rahman MS, Bhore SJ, Raju G, Sathasivam KV (2018) Silver nanoparticles synthesized by using the endophytic bacterium pantoea ananatis are promising antimicrobial agents against multidrug resistant bacteria. Molecules (basel, Switzerland) 23(12):E3220. https://doi.org/10.3390/molecules23123220

    Article  CAS  Google Scholar 

  • Mukarram M, Khan MM, Corpas F (2021) Silicon nanoparticles elicit an increase in lemongrass (Cymbopogon flexuosus (Steud.) Wats) agronomic parameters with a higher essential oil yield. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2021.125254

    Article  Google Scholar 

  • Muñiz Diaz R, Cardoso-Avila PE, Pérez Tavares JA, Patakfalvi R, Villa Cruz V, Ladrón P, de Guevara H, Gutiérrez Coronado O, Arteaga Garibay RI, Saavedra Arroyo QE, Marañón-Ruiz VF, Castañeda Contreras J (2021) Two-step triethylamine-based synthesis of MgO nanoparticles and their antibacterial effect against pathogenic bacteria. Nanomaterials 11(2):410. https://doi.org/10.3390/nano11020410

    Article  CAS  Google Scholar 

  • Muthukumar H, Palanirajan SK, Shanmugam MK, Arivalagan P, Gummadi SN (2022) Photocatalytic degradation of caffeine and E. coli inactivation using silver oxide nanoparticles obtained by a facile green co-reduction method. Clean Technol Environ Policy 24(4):1087–1098. https://doi.org/10.1007/s10098-021-02135-7

    Article  CAS  Google Scholar 

  • Nagajyothi PC, Prabhakar Vattikuti SV, Devarayapalli KC, Yoo K, Shim J, Sreekanth TVM (2020) Green synthesis: photocatalytic degradation of textile dyes using metal and metal oxide nanoparticles-latest trends and advancements. Crit Rev Environ Sci Technol 50(24):2617–2723. https://doi.org/10.1080/10643389.2019.1705103

    Article  CAS  Google Scholar 

  • Nasrollahzadeh M, Sajjadi M, Iravani S, Varma R (2020) Green-synthesized nanocatalysts and nanomaterials for water treatment: current challenges and future perspectives. J Hazard Mater 401:123401. https://doi.org/10.1016/j.jhazmat.2020.123401

    Article  CAS  Google Scholar 

  • Nayantara, Kaur P (2018) Biosynthesis of nanoparticles using eco-friendly factories and their role in plant pathogenicity: a review. Biotechnol Res Innov 2(1):63–73. https://doi.org/10.1016/j.biori.2018.09.003

    Article  Google Scholar 

  • Ndwandwe BK, Malinga SP, Kayitesi E, Dlamini BC (2021) Advances in green synthesis of selenium nanoparticles and their application in food packaging. Int J Food Sci Technol 56:2640–2650. https://doi.org/10.1111/ijfs.14916

  • Onitsuka S, Hamada T, Okamura H (2018) Preparation of antimicrobial gold and silver nanoparticles from tea leaf extracts. Colloids Surfaces B: Biointerfaces, 173. https://doi.org/10.1016/j.colsurfb.2018.09.055

  • Ovais M, Khalil AT, Ayaz M, Ahmad I, Nethi SK, Mukherjee S (2018) Biosynthesis of Metal nanoparticles via microbial enzymes: a mechanistic approach. Int J Mol Sci 19(12):4100. https://doi.org/10.3390/ijms19124100

    Article  Google Scholar 

  • Pandit C, Roy A, Ghotekar S, Khusro A, Islam MN, Emran TB, Lam SE, Khandaker MU, Bradley DA (2022) Biological agents for synthesis of nanoparticles and their applications. J King Saud Univ-Sci 34(3):101869. https://doi.org/10.1016/j.jksus.2022.101869

    Article  Google Scholar 

  • Pantidos N, Horsfall L (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5. https://doi.org/10.4172/2157-7439.1000233

  • Parmar M, Sanyal M (2022) Extensive study on plant mediated green synthesis of metal nanoparticles and their application for degradation of cationic and anionic dyes. Environ Nanotechnol Monit Manag 17:100624. https://doi.org/10.1016/j.enmm.2021.100624

    Article  CAS  Google Scholar 

  • Parveen K, Banse V, Ledwani L (2016) Green synthesis of nanoparticles: their advantages and disadvantages. 1724(1):020048

  • Patra JK, Baek K-H (2015) Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater 2014(219):219. https://doi.org/10.1155/2014/417305

    Article  CAS  Google Scholar 

  • Petla RK, Vivekanandhan S, Misra M, Mohanty A, Satyanarayana N (2012) Soybean (glycine max) leaf extract based green synthesis of palladium nanoparticles. J Biomater Nanobiotechnol 03. https://doi.org/10.4236/jbnb.2012.31003

  • Phan HT, Haes AJ (2019) What does nanoparticle stability mean? J Phys Chem C 123(27):16495–16507

    Article  CAS  Google Scholar 

  • Pollmann K, Raff J, Merroun M, Fahmy K, Selenska-Pobell S (2006) Metal binding by bacteria from uranium mining waste piles and its technological applications. Biotechnol Adv 24(1):58–68. https://doi.org/10.1016/j.biotechadv.2005.06.002

    Article  CAS  Google Scholar 

  • Prabhu P, Jose V, Lee J (2020) Heterostructured catalysts for electrocatalytic and photocatalytic carbon dioxide reduction. Adv Func Mater 30(24):1910768

    Article  CAS  Google Scholar 

  • Prabhu DM, Cheng J, Chen W, Sunkara A, Mane S, RamKumar DasM, Hozzein W, Duan Y-Q, Li W-J (2016) Sunlight mediated synthesis of silver nanoparticles by a novel actinobacterium (Sinomonas mesophila MPKL 26) and its antimicrobial activity against multi drug resistant Staphylococcus aureus. J Photochem Photobiol B Biol

  • Pugazhenthiran N, Anandan S, Kathiravan G, Udaya Prakash NK, Crawford S, Ashokkumar M (2009) Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanopart Res 11(7):1811. https://doi.org/10.1007/s11051-009-9621-2

    Article  CAS  Google Scholar 

  • Pulit-Prociak J, Banach M (2016) Silver nanoparticles – a material of the future…? Open Chem 14(1):76–91. https://doi.org/10.1515/chem-2016-0005

    Article  CAS  Google Scholar 

  • Qureshi A, Blaisi NI, Abbas AAO, Khan NA, Rehman S (2021) Prospectus and development of microbes mediated synthesis of nanoparticles. In Ansari MA, Rehman S (Eds.), Microbial Nanotechnology: Green Synthesis and Applications. Springer, pp. 1–15, https://doi.org/10.1007/978-981-16-1923-6_1

  • Rai R, JamunaBai A (2011) Nanoparticles and their potential application as antimicrobials. Undefined. https://www.semanticscholar.org/paper/Nanoparticles-and-their-potential-application-as-Rai-JamunaBai/386a4fd085f3d53f8cdd53a4f75a4d276aaa4960

  • Rajabairavi N, Chellappan SR, Raju C, Karthikeyan K, Varutharaju S, Nethaji A, Hameed H, Hameed A, Shajahan, Rajabairavi N, Raju C, Karthikeyan C, Hameed Á, Varutharaju K, Shajahan A, Nethaji S (2017) Biosynthesis of novel zinc oxide nanoparticles (ZnO NPs) using endophytic bacteria Sphingobacterium thalpophilum, pp. 245–254. https://doi.org/10.1007/978-3-319-44890-9_23

  • Ramteke C, Chakrabarti T, Sarangi BK, Pandey R-A (2012) Synthesis of silver nanoparticles from the aqueous extract of leaves of Ocimum sanctum for enhanced antibacterial activity. J Chem 2013:e278925. https://doi.org/10.1155/2013/278925

    Article  CAS  Google Scholar 

  • Rasheed P, Haq S, Waseem M, Rehman S, Rehman W, Bibi N, Shah SA (2020) Green synthesis of vanadium oxide-zirconium oxide nanocomposite for the degradation of methyl orange and picloram. Mater Res Express 7. https://doi.org/10.1088/2053-1591/ab6fa2

  • Rashmi BN, Harlapur SF, Avinash B, Ravikumar CR, Nagaswarupa HP, Anil Kumar MR, Gurushantha K, Santosh MS (2020) Facile green synthesis of silver oxide nanoparticles and their electrochemical, photocatalytic and biological studies. Inorg Chem Commun 111:107580. https://doi.org/10.1016/j.inoche.2019.107580

    Article  CAS  Google Scholar 

  • Razavi R, Molaei R, Moradi M, Tajik H, Ezati P, Shafipour Yordshahi A (2020) Biosynthesis of metallic nanoparticles using mulberry fruit (Morus alba L.) extract for the preparation of antimicrobial nanocellulose film. Appl Nanosc. https://doi.org/10.1007/s13204-019-01137-8

    Article  Google Scholar 

  • Reischauer S, Pieber B (2021) Emerging concepts in photocatalytic organic synthesis. Iscience 24(3):102209

    Article  CAS  Google Scholar 

  • Restrepo CV, Villa CC (2021) Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: a review. Environ Nanotechnol Monit Manag 15:100428

    CAS  Google Scholar 

  • Rice C, Ha S, Masel RI, Waszczuk P, Wieckowski A, Barnard T (2002) Direct formic acid fuel cells. J Power Sources 111(1):83–89. https://doi.org/10.1016/S0378-7753(02)00271-9

    Article  CAS  Google Scholar 

  • Roopan S, Annadurai B, Rajendran K, Khanna G, Arunachalam P (2012) Acaricidal, insecticidal and Larvicidal efficacy of aqueous extract of Annona squamosa peel as biomaterial for the reduction of palladium salts into nanoparticles. Colloids Surf, B 92:209–212. https://doi.org/10.1016/j.colsurfb.2011.11.044

    Article  CAS  Google Scholar 

  • Roy A, Elzaki A, Tirth V, Kajoak S, Osman H, Algahtani A, Islam S, Faizo NL, Khandaker MU, Islam MN, Emran TB, Bilal M (2021) Biological synthesis of nanocatalysts and their applications. Catalysts 11(12), Article 12. https://doi.org/10.3390/catal11121494

  • Sadegh H, Ali GAM, Gupta VK, Makhlouf ASH, Shahryari-Ghoshekandi R, Nadagouda MN, Sillanpää M, Megiel E (2017) The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J Nanostruct Chem 7(1), Article 1. https://cyberleninka.org/article/n/1479098

  • Safaepour M, Shahverdi AR, Shahverdi H, Khorramizadeh MR, Gohari A (2009) Green synthesis of small silver nanoparticles using geraniol and its cytotoxicity against fibrosarcoma-Wehi 164. Avicenna J Med Biotechnol 1:111–115

    CAS  Google Scholar 

  • Salem TA, Fetian NA, Elsheery NI (2019) Nanotechnology for Polluted soil remediation. In Panpatte DG, Jhala YK (Eds.), Nanotechnology for Agriculture: Advances for Sustainable Agriculture. Springer, pp. 285–305, https://doi.org/10.1007/978-981-32-9370-0_15

  • Salem SS, Fouda A (2021) Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res 199:344–370

    Article  CAS  Google Scholar 

  • Salimi M, Rassi Y, Chatrabgoun O, Kamali A, Oshaghi MA, Shiri-Ghaleh V, Moradi M, Rafizadeh S, Akbarzadeh K, Parkhideh SZ (2018) Toxicological analysis of insects on the corpse: a valuable source of information in forensic investigations. J Arthropod-Borne Dis 12(3):219–231. https://doi.org/10.18502/jad.v12i3.74. (Scopus)

    Article  Google Scholar 

  • Sangaru SS, Rai A, Ahmad A, Sastry M (2004) Biosynthesis of silver and gold nanoparticles from extracts of different parts of the geranium plant. Appl Nanosci 1:69–77

    Google Scholar 

  • Santhosh C, Velmurugan V, Jacob G, Jeong SK, Grace AN, Bhatnagar A (2016) Role of nanomaterials in water treatment applications: a review. Chem Eng J 306:1116–1137. https://doi.org/10.1016/j.cej.2016.08.053

    Article  CAS  Google Scholar 

  • Saratale RG, Saratale GD, Shin HS, Jacob JM, Pugazhendhi A, Bhaisare M, Kumar G (2018) New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications. Environ Sci Pollut Res 25:10164–10183

    Article  CAS  Google Scholar 

  • Sarathy V, Tratnyek PG, Nurmi JT, Baer DR, Amonette JE, Chun CL, Penn RL, Reardon EJ (2008) Aging of iron nanoparticles in aqueous solution: effects on structure and reactivity. J Phys Chem C 112(7):2286–2293. https://doi.org/10.1021/jp0777418

    Article  CAS  Google Scholar 

  • Saravanakumar K, Hu X, Chelliah R, Oh D-H, Kathiresan K, Wang M-H (2020) Biogenic silver nanoparticles-polyvinylpyrrolidone based glycerosomes coating to expand the shelf life of fresh-cut bell pepper (Capsicum annuum L. var. Grossum (L.) Sendt). Postharvest Biol Technol 160:111039

    Article  CAS  Google Scholar 

  • Saravanan M, Barik SK, MubarakAli D, Prakash P, Pugazhendhi A (2018) Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb Pathog 116:221–226. https://doi.org/10.1016/j.micpath.2018.01.038

    Article  CAS  Google Scholar 

  • Schlüter M, Hentzel T, Suarez C, Koch M, Lorenz W, Böhm L, Duering R-A, Koinig K, Bunge M (2014) Synthesis of novel palladium(0) nanocatalysts by microorganisms from heavy-metal-influenced high-alpine sites for dehalogenation of polychlorinated dioxins. Chemosphere 117C:462–470. https://doi.org/10.1016/j.chemosphere.2014.07.030

    Article  CAS  Google Scholar 

  • Schubert J, Chanana M (2019) Coating matters: Review on colloidal stability of nanoparticles with biocompatible coatings in biological media, living cells and organisms. Curr Med Chem 25(35):4556

    Google Scholar 

  • Seifunnisha O, Jayaraj S (2020) Aloe vera mediated green synthesis of ZnO nanostructure under sol-gel method: effect of antimicrobial activity. J Nano-Electron Phys 12:02041–1. https://doi.org/10.21272/jnep.12(2).02041

    Article  CAS  Google Scholar 

  • Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomed 7:2767–2781. https://doi.org/10.2147/IJN.S24805

    Article  CAS  Google Scholar 

  • Shahzad A, Iqtedar M, Saeed H, Hussain SZ, Chaudhary A, Abdullah R, Kaleem A (2019) Mycosynthesis of size-controlled silver nanoparticles through optimization of process variables by response surface methodology. Polish J Microbiol 68(1):35–42. https://doi.org/10.21307/pjm-2019-004

    Article  Google Scholar 

  • Shamprasad BR, Lotha R, Nagarajan S, Sivasubramanian A (2022) Metal nanoparticles functionalized with nutraceutical Kaempferitrin from edible Crotalaria juncea, exert potent antimicrobial and antibiofilm effects against Methicillin-resistant Staphylococcus aureus. Sci Rep 12. https://doi.org/10.1038/s41598-022-11004-2

  • Shehab MM, Elbialy ZI, Tayel AA, Moussa SH, Al-Hawary II (2022) Quality boost and shelf-life prolongation of african catfish fillet using Lepidium sativum mucilage extract and selenium nanoparticles. J Food Qual 2022

  • Shipley HJ, Engates KE, Guettner AM (2011) Study of iron oxide nanoparticles in soil for remediation of arsenic. J Nanopart Res 13(6):2387–2397. https://doi.org/10.1007/s11051-010-9999-x

    Article  CAS  Google Scholar 

  • Shubha JP, Kavalli K, Adil SF, Assal ME, Hatshan MR, Dubasi N (2022) Facile green synthesis of semiconductive ZnO nanoparticles for photocatalytic degradation of dyes from the textile industry: a kinetic approach. J King Saud Univ-Sci 34(5):102047. https://doi.org/10.1016/j.jksus.2022.102047

    Article  Google Scholar 

  • Singh M, Kalaivani R, Manikandan S, Sangeetha N, Kumaraguru AK (2013) Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga. Appl Nanosci 3(2):145–151. https://doi.org/10.1007/s13204-012-0115-7

    Article  CAS  Google Scholar 

  • Singh K, Panghal M, Kadyan S, Chaudhary U, Yadav JP (2014) Green silver nanoparticles of Phyllanthus amarus: as an antibacterial agent against multi drug resistant clinical isolates of Pseudomonas aeruginosa. J Nanobiotechnol 12:40. https://doi.org/10.1186/s12951-014-0040-x

    Article  CAS  Google Scholar 

  • Singh J, Dutta T, Kim K-H, Rawat M, Samddar P, Kumar P (2018) ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16(1):84. https://doi.org/10.1186/s12951-018-0408-4

    Article  CAS  Google Scholar 

  • Sintubin L, De Windt W, Dick J, Mast J, van der Ha D, Verstraete W, Boon N (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84(4):741–749. https://doi.org/10.1007/s00253-009-2032-6

    Article  CAS  Google Scholar 

  • Siripireddy B, Mandal BK (2017) Facile green synthesis of zinc oxide nanoparticles by Eucalyptus globulus and their photocatalytic and antioxidant activity. Adv Powder Technol 28(3):785–797. https://doi.org/10.1016/j.apt.2016.11.026

    Article  CAS  Google Scholar 

  • Song Y, Chen L (2015) Effect of net surface charge on physical properties of the cellulose nanoparticles and their efficacy for oral protein delivery. Carbohyd Polym 121:10–17. https://doi.org/10.1016/j.carbpol.2014.12.019

    Article  CAS  Google Scholar 

  • Soto-Robles CA, Luque PA, Gómez-Gutiérrez CM, Nava O, Vilchis-Nestor AR, Lugo-Medina E, Ranjithkumar R, Castro-Beltrán A (2019) Study on the effect of the concentration of Hibiscus sabdariffa extract on the green synthesis of ZnO nanoparticles. Results Phys 15:102807. https://doi.org/10.1016/j.rinp.2019.102807

    Article  Google Scholar 

  • Soundarrajan C, Sankari A, Dhandapani P, Maruthamuthu S, Ravichandran S, Sozhan G, Palaniswamy N (2011) Rapid biological synthesis of platinum nanoparticles using Ocimum sanctum for water electrolysis applications. Bioprocess Biosyst Eng 35:827–833. https://doi.org/10.1007/s00449-011-0666-0

    Article  CAS  Google Scholar 

  • Sreekanth TVM, Nagajyothi PC, Muthuraman P, Enkhtaivan G, Vattikuti SVP, Tettey CO, Kim DH, Shim J, Yoo K (2018) Ultra-sonication-assisted silver nanoparticles using Panax ginseng root extract and their anti-cancer and antiviral activities. J Photochem Photobiol, B 188:6–11. https://doi.org/10.1016/j.jphotobiol.2018.08.013

    Article  CAS  Google Scholar 

  • Srinath BS, Namratha K, Byrappa K (2018) Eco-friendly synthesis of gold nanoparticles by Bacillus subtilis and their environmental applications. Adv Sci Lett 24(8):5942–5946. https://doi.org/10.1166/asl.2018.12224

    Article  Google Scholar 

  • Subba Rao Y, Kotakadi VS, Prasad TNVKV, Reddy AV, Sai Gopal DVR (2013) Green synthesis and spectral characterization of silver nanoparticles from Lakshmi tulasi (Ocimum sanctum) leaf extract. Spectrochim Acta Part A Mol Biomol Spectrosc 103:156–159. https://doi.org/10.1016/j.saa.2012.11.028

    Article  CAS  Google Scholar 

  • Subhapriya S, Gomathipriya P (2018) Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microb Pathog 116:215–220. https://doi.org/10.1016/j.micpath.2018.01.027

    Article  CAS  Google Scholar 

  • Sumi MB, Devadiga A, Vidya Shetty K, Saidutta MB (2017) Solar photocatalytically active, engineered silver nanoparticle synthesis using aqueous extract of mesocarp of Cocos nucifera (Red Spicata Dwarf). J Exp Nanosci 12(1):14–32. https://doi.org/10.1080/17458080.2016.1251622

    Article  CAS  Google Scholar 

  • Suriyaprom S, Kaewkod T, Promputtha I, Desvaux M, Tragoolpua Y (2021) Evaluation of antioxidant and antibacterial activities of white mulberry (Morus alba L.) fruit extracts. Plants 10(12):2736. https://doi.org/10.3390/plants10122736

    Article  CAS  Google Scholar 

  • Suryavanshi P, Pandit R, Gade A, Derita M, Zachino S, Rai M (2017) Colletotrichum sp.- mediated synthesis of sulphur and aluminium oxide nanoparticles and its in vitro activity against selected food-borne pathogens. LWT - Food Sci Technol 81. https://doi.org/10.1016/j.lwt.2017.03.038

  • Tagad CK, Dugasani SR, Aiyer R, Park S, Kulkarni A, Sabharwal S (2013) Green synthesis of silver nanoparticles and their application for the development of optical fiber based hydrogen peroxide sensor. Sens Actuators, B Chem 183:144–149

    Article  CAS  Google Scholar 

  • Tahir K, Nazir S, Ahmad A, Li B, Khan AU, Khan ZUH, Khan F, Khan Q, Khan A, Rehman A (2016) Facile and green synthesis of phytochemicals capped platinum nanoparticles and in vitro their superior antibacterial activity. J Photochem Photobiol B, Biology 166:246–251. https://doi.org/10.1016/j.jphotobiol.2016.12.016

    Article  CAS  Google Scholar 

  • Tahir M, Sagir M, Abas N (2019) Enhanced photocatalytic performance of CdO-WO3 composite for hydrogen production. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2019.07.220

    Article  Google Scholar 

  • Taran M, Rad M, Alavi M (2018) Biosynthesis of TiO2 and ZnO nanoparticles by Halomonas elongata IBRC-M 10214 in different conditions of medium. BioImpacts: BI 8(2):81–89. https://doi.org/10.15171/bi.2018.10

    Article  CAS  Google Scholar 

  • Thangavelu RM, Ganapathy R, Ramasamy P, Krishnan K (2020) Fabrication of virus metal hybrid nanomaterials: an ideal reference for bio semiconductor. Arab J Chem 13(1):2750–2765. https://doi.org/10.1016/j.arabjc.2018.07.006

    Article  CAS  Google Scholar 

  • Thomas R, Janardhanan A, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK (2014) Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp. Braz J Microbiol: [publication of the Brazilian Society for Microbiology] 45(4):1221–1227. https://doi.org/10.1590/s1517-83822014000400012

    Article  CAS  Google Scholar 

  • Tiu BDB, Kernan DL, Tiu SB, Wen AM, Zheng Y, Pokorski JK, Advincula RC, Steinmetz NF (2017) Electrostatic layer-by-layer construction of fibrous TMV biofilms. Nanoscale 9(4):1580–1590. https://doi.org/10.1039/c6nr06266k

    Article  CAS  Google Scholar 

  • Tripathi A, Liu S, Singh PK, Kumar N, Pandey AC, Tripathi DK, Chauhan DK, Sahi S (2017) Differential phytotoxic responses of silver nitrate (AgNO3) and silver nanoparticle (AgNps) in Cucumis sativus L. Plant Gene. https://doi.org/10.1016/j.plgene.2017.07.005

    Article  Google Scholar 

  • Tungittiplakorn W, Lion LW, Cohen C, Kim J-Y (2004) Engineered polymeric nanoparticles for soil remediation. Environ Sci Technol 38(5):1605–1610. https://doi.org/10.1021/es0348997

    Article  CAS  Google Scholar 

  • ul Gani Mir T, Malik AQ, Singh J, Shukla S, Kumar D (2022) An overview of molecularly imprinted polymers embedded with quantum dots and their implementation as an alternative approach for extraction and detection of Crocin. ChemistrySelect 7(21):e202200829

    Article  CAS  Google Scholar 

  • Valodkar M, Jadeja RN, Thounaojam MC, et al (2011) Biocompatible synthesis of peptide capped copper nanoparticles and their biological effect on tumor cells. Mater Chem Phys 128:83–89. https://doi.org/10.1016/j.matchemphys.2011.02.039

  • Velayutham K, Rahuman AA, Rajakumar G, Santhoshkumar T, Marimuthu S, Jayaseelan C, Bagavan A, Kirthi AV, Kamaraj C, Zahir AA, Elango G (2012) Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis. Parasitol Res 111(6):2329–2337. https://doi.org/10.1007/s00436-011-2676-x

    Article  Google Scholar 

  • Waglewska E, Pucek-Kaczmarek A, Bazylińska U (2020) Novel surface-modified bilosomes as functional and biocompatible nanocarriers of hybrid compounds. Nanomaterials 10(12):2472

    Article  CAS  Google Scholar 

  • Wang W, Xu X, Zhou W, Shao Z (2017) Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Adv Sci 4(4):1600371

    Article  Google Scholar 

  • Wang Y, O’Connor D, Shen Z, Lo IMC, Tsang DCW, Pehkonen S, Pu S, Hou D (2019) Green synthesis of nanoparticles for the remediation of contaminated waters and soils: constituents, synthesizing methods, and influencing factors. J Clean Prod 226:540–549. https://doi.org/10.1016/j.jclepro.2019.04.128

    Article  CAS  Google Scholar 

  • Wang P, Wang F, Jiang H, Zhang Y, Zhao M, Xiong R, Ma J (2020) Strong improvement of nanofiltration performance on micropollutant removal and reduction of membrane fouling by hydrolyzed-aluminum nanoparticles. Water Res 175:115649. https://doi.org/10.1016/j.watres.2020.115649

    Article  CAS  Google Scholar 

  • Wang W-N, Tarafdar J, Biswas P (2013) Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanopart Res 15. https://doi.org/10.1007/s11051-013-1417-8

  • Wani AK, Akhtar N, Mir ul TG, Singh R, Jha PK, Mallik SK, Sinha S, Tripathi SK, Jain A, Jha A (2023) Targeting apoptotic pathway of cancer cells with phytochemicals and plant-based nanomaterials. Biomolecules 13(2):194

    Article  CAS  Google Scholar 

  • Wypij M, Czarnecka J, Świecimska M, Dahm H, Rai M, Golinska P (2018) Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain. World J Microbiol Biotechnol 34(2):23. https://doi.org/10.1007/s11274-017-2406-3

    Article  CAS  Google Scholar 

  • Xiao Q, Jaatinen E, Zhu H (2014) Direct photocatalysis for organic synthesis by using plasmonic-metal nanoparticles irradiated with visible light. Chem–An Asian J 9(11):3046–3064

    Article  CAS  Google Scholar 

  • Xu J, Huang Y, Zhu S, Abbes N, Jing X, Zhang L (2021) A review of the green synthesis of ZnO nanoparticles using plant extracts and their prospects for application in antibacterial textiles. J Eng Fibers Fabr 16:15589250211046242. https://doi.org/10.1177/15589250211046242

    Article  CAS  Google Scholar 

  • Yurekli Y (2016) Removal of heavy metals in wastewater by using zeolite nano-particles impregnated polysulfone membranes. J Hazard Mater 309:53–64. https://doi.org/10.1016/j.jhazmat.2016.01.064

    Article  CAS  Google Scholar 

  • Zhang W, Xiao B, Fang T (2018a) Chemical transformation of silver nanoparticles in aquatic environments: mechanism, morphology and toxicity. Chemosphere 191:324–334

    Article  CAS  Google Scholar 

  • Zhang Y, Dong Y, Zhou J, Li X, Wang F (2018b) Application of plant viruses as a biotemplate for nanomaterial fabrication. Molecules 23(9), Article 9. https://doi.org/10.3390/molecules23092311

  • Zhang D, Ma X, Gu Y, Huang H, Zhang G (2020) Green Synthesis of metallic nanoparticles and their potential applications to treat cancer. Front Chem 8. https://www.frontiersin.org/articles/10.3389/fchem.2020.00799

  • Zhao C, Wang B, Theng BKG, Wu P, Liu F, Wang S, Lee X, Chen M, Li L, Zhang X (2021) Formation and mechanisms of nano-metal oxide-biochar composites for pollutants removal: a review. Sci Total Environ 767:145305. https://doi.org/10.1016/j.scitotenv.2021.145305

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Azad Qayoom Malik, Tahir ul Gani Mir; data collection: Azad Qayoom Malik, Adfar Rashid, Mehnaz Ayoub, Irtiqa Ashraf Mir; draft manuscript preparation: Tahir ul Gani Mir, Azad Qayoom Malik; review and editing: Deepak Kumar, Saurabh Shukla; supervision/visualization: Deepak Kumar, Saurabh Shukla.

Corresponding author

Correspondence to Azad Qayoom Malik.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors reviewed and approved the final version of the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: George Z. Kyzas

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, A.Q., Mir, T.u.G., Kumar, D. et al. A review on the green synthesis of nanoparticles, their biological applications, and photocatalytic efficiency against environmental toxins. Environ Sci Pollut Res 30, 69796–69823 (2023). https://doi.org/10.1007/s11356-023-27437-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-27437-9

Keywords

Navigation