Skip to main content
Log in

Synthesis and visible-light photocatalytic property of spinel CuAl2O4 for vehicle emissions

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Photodegradation of vehicle emissions is a promising approach for dealing with atmospheric pollution in road tunnels. In this research, copper aluminate nanoparticles (CuAl2O4) were prepared by the sol–gel method using copper nitrate, aluminum nitrate, and citric acid as precursor materials. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV–Vis spectroscopy to validate their structure, surface morphology, and optical properties, respectively. The XRD and SEM results confirm that the CuAl2O4 powder has a particle size of 20–37 nm and exhibits a spinel-type structure. The upper limit of the stimulation wavelength in the UV–Vis diffuse reflectance spectrum is located at 725 nm with a band gap (Eg) of about 1.50 eV, which is suitable for effective visible-light degradation. Photocatalytic performance of the CuAl2O4 nanoparticles was analyzed by investigating the effects of light source, calcination temperature, and catalyst loading amount on the degradation of vehicle emissions (CO, HC, and NO). Best results were obtained under fluorescent light irradiation by CuAl2O4 nanoparticles calcined at 700 °C. The optimum catalyst amount for decomposing CO, HC, and NO were determined as 0.5 g, 0.5 g, and 2 g, respectively. Overall, the photocatalytic performance study verifies that spinel CuAl2O4 photocatalyst is a valuable material for next-generation technologies aimed at reducing harmful emissions from vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 1

Similar content being viewed by others

Data availability

Not applicable.

References

  • Acharya R, Pati S, Parida K (2022) A review on visible light driven spinel ferrite-g-C3N4 photocatalytic systems with enhanced solar light utilization. J Mol Liq 357:119105

    Article  CAS  Google Scholar 

  • Andal V, Buvaneswari G, Lakshmipathy R (2021) Synthesis of CuAl2O4 nanoparticle and its conversion to CuO nanorods. J Nanomater 8082522:1–7. https://doi.org/10.1155/2021/8082522

  • Anucha CB, Altin I, Bacaksiz E et al (2022) Titanium dioxide (TiO2)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies. Chem Eng J Adv 10:100262

    Article  CAS  Google Scholar 

  • Balbuena J, Carraro G, Cruz M et al (2016) Advances in photocatalytic NO x abatement through the use of Fe 2 O 3/TiO 2 nanocomposites. RSC Adv 6(78):74878–74885

    Article  CAS  Google Scholar 

  • Bandara J, Udawatta C, Rajapakse C (2005) Highly stable CuO incorporated TiO 2 catalyst for photocatalytic hydrogen production from H2O. Photochem Photobiol Sci 4(11):857–861

    Article  CAS  Google Scholar 

  • Boonen E, Beeldens A (2014) Recent photocatalytic applications for air purification in Belgium. Coatings 4(3):553–573

    Article  CAS  Google Scholar 

  • Boudjemaa A, Popescu I, Juzsakova T et al (2016) M-substituted (M= Co, Ni and Cu) zinc ferrite photo-catalysts for hydrogen production by water photo-reduction. Int J Hydrogen Energy 41(26):11108–11118

    Article  CAS  Google Scholar 

  • Chaudhary RG, Sonkusare VN, Bhusari GS et al (2018) Microwave-mediated synthesis of spinel CuAl2O4 nanocomposites for enhanced electrochemical and catalytic performance. Res Chem Intermed 44(3):2039–2060

    Article  CAS  Google Scholar 

  • Chen M, Baglee D, Chu JW et al (2017) Photocatalytic oxidation of NOx under visible light on asphalt pavement surface. J Mater Civ Eng 29(9):1

    Article  Google Scholar 

  • Ding X, Ho W, Shang J et al (2016) Self doping promoted photocatalytic removal of no under visible light with bi2moo6: Indispensable role of superoxide ions. Appl Catal B 182:316–325

    Article  CAS  Google Scholar 

  • Dong H, Zeng G, Tang L et al (2015) An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res 79:128–146

    Article  CAS  Google Scholar 

  • European Environment Agency (2019) Air quality in Europe – 2019 report. EEA Report No 10/2019, Publications Office of the European Union, Luxembourg. https://doi.org/10.2800/822355

  • Gherbi R, Nasrallah N, Amrane A et al (2011) Photocatalytic reduction of Cr (VI) on the new hetero-system CuAl2O4/TiO2. J Hazard Mater 186(2–3):1124–1130

    Article  CAS  Google Scholar 

  • Gholami T, Salavati-Niasari M, Varshoy S (2016) Investigation of the electrochemical hydrogen storage and photocatalytic properties of CoAl2O4 pigment: Green synthesis and characterization. Int J Hydrogen Energy 41(22):9418–9426

    Article  CAS  Google Scholar 

  • Gobara HM, Nassar IM, El Naggar AM et al (2017) Nanocrystalline spinel ferrite for an enriched production of hydrogen through a solar energy stimulated water splitting process. Energy 118:1234–1242

    Article  CAS  Google Scholar 

  • Gonçalves AA, Costa MJ, Zhang L et al (2018) One-pot synthesis of MeAl2O4 (Me= Ni Co, or Cu) supported on γ-Al2O3 with ultralarge mesopores: enhancing interfacial defects in γ-Al2O3 to facilitate the formation of spinel structures at lower temperatures. Chem Mater 30(2):436–446

    Article  Google Scholar 

  • Harb M, Jeantelot G, Basset J-M (2019) Insights into the Most Suitable TiO2 Surfaces for Photocatalytic O2 and H2 Evolution Reactions from DFT Calculations. J Phys Chem C 123(46):28210–28218

    Article  CAS  Google Scholar 

  • Hossain SS, Roy PK (2021) Preparation of multi-layered (dense-porous) lightweight magnesium-aluminum spinel refractory. Ceram Int 47(9):13216–13220

    Article  CAS  Google Scholar 

  • Huang Y, Wang P, Wang Z et al (2019) Protonated g-C3N4/Ti3+ self-doped TiO2 nanocomposite films: Room-temperature preparation, hydrophilicity, and application for photocatalytic NOx removal. Appl Catal B 240:122–131

    Article  CAS  Google Scholar 

  • Hui Wang J-ZX, Zhu J-J, Chen H-Y (2002) Preparation of CuO nanoparticles by microwave irradiation. J Cryst Growth 244(1):88–94

    Article  Google Scholar 

  • Huy TH, Kang F, Wang Y-F et al (2019) SnO2/TiO2 nanotube heterojunction: The first investigation of NO degradation by visible light-driven photocatalysis. Chemosphere 215:323–332

    Article  CAS  Google Scholar 

  • Jenkins R, Snyder RL (1996) Introduction to X-ray Powder Diffractometry. John Wiley & Sons, New York, vol. 138.  https://doi.org/10.1002/9781118520994

  • Jiang S, Tan X, Hu P et al (2022) Air pollution and economic growth under local government competition: Evidence from China, 2007–2016. J Clean Prod 334:130231

    Article  CAS  Google Scholar 

  • Jiang Y, Li J, Ning G et al (2006) Preparation and Visible Light Photocatalytic Property of Spinel CuAl~ 2O–4 Nanoparticles. J Chinese Ceram Soc 34(9):1084

    CAS  Google Scholar 

  • Jin Z, Zhang X, Li Y et al (2007) 5.1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation. Catal Commun 8(8):1267–1273

    Article  CAS  Google Scholar 

  • John H, Seinfeld SNP (2016) Atmospheric chemistry and physics : from air pollution to climate change. John Wiley & Sons Inc, Hoboken, New Jersey

    Google Scholar 

  • Kaci MM, Nasrallah N, Djaballah AM et al (2022) Insights into the optical and electrochemical features of CuAl2O4 nanoparticles and it use for methyl violet oxidation under sunlight exposure. Opt Mater 126:112198

    Article  Google Scholar 

  • Kirankumar V, Mayank N, Sumathi S (2019) Photocatalytic performance of cerium doped copper aluminate nanoparticles under visible light irradiation. J Taiwan Inst Chem Eng 95:602–615

    Article  CAS  Google Scholar 

  • Kumar A, Pandey G (2017) A review on the factors affecting the photocatalytic degradation of hazardous materials. Mater Sci Eng Int J 1(3):1–10

    CAS  Google Scholar 

  • Lin H-H, Chih-Yuan W, Shih HC, Jin-Ming C, Chien-Te H (2004) Characterizing well-ordered CuO nanofibrils synthesized through gas-solid reactions. J Appl Phys 95(10):5889–5895

    Article  CAS  Google Scholar 

  • Liu G, Li H, Zheng H et al (2022) Mechanism of in-situ formation of spinel and its effect on the mechanical properties of Al2O3–C refractories. Ceram Int. https://doi.org/10.1016/j.ceramint.2022.11.087

    Article  Google Scholar 

  • Marinello S, Lolli F, Gamberini R (2020) Roadway tunnels: A critical review of air pollutant concentrations and vehicular emissions. Transp Res Part D: Transp Environ 86:102478

    Article  Google Scholar 

  • Monga D, Ilager D, Shetti NP et al (2020) 2D/2d heterojunction of MoS2/g-C3N4 nanoflowers for enhanced visible-light-driven photocatalytic and electrochemical degradation of organic pollutants. J Environ Manage 274:111208

    Article  CAS  Google Scholar 

  • Morales VV, Bonnel P (2018). On-road testing with Portable Emissions Measurement Systems (PEMS)-Guidance note for light-duty vehicles. EUR 29029 EN, Publications Office of the European Union, Luxembourg. https://doi.org/10.2760/08294JRC109812

  • Moma J, Baloyi J (2019) Modified titanium dioxide for photocatalytic applications. Photocatalysts-Applications and Attributes, IntechOpen, London, UK, pp 38–56. https://doi.org/10.5772/intechopen.79374

  • Mosleh M (2017) Auto-combustion preparation and characterization of CoAl2O4 nanoparticles with different morphologies and its photocatalyst application. J Mater Sci: Mater Electron 28(1):773–777

    CAS  Google Scholar 

  • Ministry of Transport of the People’s Republic of China (2016) Statistical Bulletin of Transportation Industry in 2015 (In Chinese). 000019713O04/2016-00749, Ministry of Transport Development Unit: Academy of Transport Sciences, Beijing. https://xxgk.mot.gov.cn/2020/jigou/zhghs/202006/t20200630_3319677.html

  • Mousavi M, Habibi-Yangjeh A, Abitorabi M (2016) Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation. J Colloid Interface Sci 480:218–231

    Article  CAS  Google Scholar 

  • Potbhare AK, Chauke PB, Zahra S et al (2019) Microwave-mediated fabrication of mesoporous Bi-doped CuAl2O4 nanocomposites for antioxidant and antibacterial performances. Mater Today: Proc 15:454–463

    CAS  Google Scholar 

  • Qiu X, Miyauchi M, Yu H et al (2010) Visible-Light-Driven Cu (II)−(Sr1− y Na y)(Ti1− x Mo x) O3 Photocatalysts Based on Conduction Band Control and Surface Ion Modification. J Am Chem Soc 132(43):15259–15267

    Article  CAS  Google Scholar 

  • Rahnamaeiyan S, Nasiri M, Talebi R et al (2015) Novel sol–gel method for synthesis of cobalt aluminate and its photocatalyst application. J Mater Sci: Mater Electron 26(11):8720–8725

    CAS  Google Scholar 

  • Reddy CV, Reddy IN, Harish V et al (2020a) Efficient removal of toxic organic dyes and photoelectrochemical properties of iron-doped zirconia nanoparticles. Chemosphere 239:124766

    Article  CAS  Google Scholar 

  • Reddy CV, Reddy KR, Va H et al (2020b) Metal-organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: synthesis, properties and its applications in photocatalytic hydrogen generation, CO2 reduction and photodegradation of organic dyes. Int J Hydrogen Energy 45(13):7656–7679

    Article  CAS  Google Scholar 

  • Reddy CV, Reddy KR, Shetti NP et al (2020c) Hetero-nanostructured metal oxide-based hybrid photocatalysts for enhanced photoelectrochemical water splitting–a review. Int J Hydrogen Energy 45(36):18331–18347

    Article  CAS  Google Scholar 

  • Regulska E, Breczko J, Basa A et al (2022) Photocatalytic degradation of oxytetracycline with the REMs (Er, Tm, Yb)-doped nickel and copper aluminates. Mater Sci Eng, B 285:115959

    Article  CAS  Google Scholar 

  • Renukadevi S, Jeyakumari AP (2022) Microwave induced inverse spinel NiFe2O4 decorated g-C3N4 nanosheet for enhanced visible light photocatalytic activity. J Cluster Sci 33(5):2019–2029

    Article  CAS  Google Scholar 

  • Riderelli L, Bocci E, Bocci M et al (2015) Airborne pollutant inside a highway tunnel coated with a photocatalytic mortar. Energy Environ Eng 3(2):23–31

    Article  CAS  Google Scholar 

  • Rodríguez-Rodríguez AA, Moreno-Trejo MB, Meléndez-Zaragoza MJ et al (2019) Spinel-type ferrite nanoparticles: synthesis by the oil-in-water microemulsion reaction method and photocatalytic water-splitting evaluation. Int J Hydrogen Energy 44(24):12421–12429

    Article  Google Scholar 

  • Salavati-Niasari M, Davar F, Farhadi M (2009) Synthesis and characterization of spinel-type CuAl2O4 nanocrystalline by modified sol–gel method. J Sol-Gel Sci Technol 51(1):48–52

    Article  CAS  Google Scholar 

  • Sedelnikova MB, Liseenko NV, Pautova YI, Pogrebenkov VM (2013) Heat-resistant ceramic pigments on the base of waste vanadium catalyst and alumina. J Waste Manag 1–6. https://doi.org/10.1155/2013/369174

  • Shah P, Joshi K, Shah M et al (2022a) Photocatalytic dye degradation using nickel ferrite spinel and its nanocomposite. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-21248-0

    Article  Google Scholar 

  • Shah P, Unnarkat A, Patel F et al (2022b) A comprehensive review on spinel based novel catalysts for visible light assisted dye degradation. Process Saf Environ Prot 161:703–722

    Article  CAS  Google Scholar 

  • Tan R, Hwang SW, Sivanantham A et al (2021) Solution synthesis and activation of spinel CuAl2O4 film for solar water-splitting. J Catal 400:218–227

    Article  CAS  Google Scholar 

  • Tangcharoen T, Kongmark C (2019) Effect of calcination temperature on structural and optical properties of MAl2O4 (M= Ni, Cu, Zn) aluminate spinel nanoparticles. J Adv Ceram 8(3):352–366

    Article  CAS  Google Scholar 

  • Tasbihi M, Călin I, Šuligoj A et al (2017) Photocatalytic degradation of gaseous toluene by using TiO2 nanoparticles immobilized on fiberglass cloth. J Photochem Photobiol A 336:89–97

    Article  CAS  Google Scholar 

  • Tatarchuk T, Al-Najar B, Bououdina M et al (2019) Catalytic and photocatalytic properties of oxide spinels. Handbook of Ecomaterials 3:1701–1750

    Article  Google Scholar 

  • Vieira Y, Leichtweis J, Foletto EL et al (2020) Reactive oxygen species-induced heterogeneous photocatalytic degradation of organic pollutant Rhodamine B by copper and zinc aluminate spinels. J Chem Technol Biotechnol 95(3):791–797

    Article  CAS  Google Scholar 

  • Wang L, Han K, Song G et al (2006). Characterization of electro-deposited CuO as a low-cost material for high-efficiency solar cells. In 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, Waikoloa, HI, USA, pp 130–133. https://doi.org/10.1109/WCPEC.2006.279381

  • Wang W, Li D, Wang Z et al (2002) Study on the morphology and infrared spectrum behavior of ultrafine powder CuO. Chin J Inorg Chem 18(8):823–826

    CAS  Google Scholar 

  • Wang Y, Cui Y, Chen F et al (2020) An “illumination moving with the vehicle” intelligent control system of road tunnel lighting. Sustainability 12(18):7314

    Article  Google Scholar 

  • Wang Y, Wang Q, Zhan X et al (2013) Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 5(18):8326–8339

    Article  CAS  Google Scholar 

  • Wang Z, Liang K, Chan S-W et al (2019) Fabrication of nano CuAl2O4 spinel for copper stabilization and antibacterial application. J Hazard Mater 371:550–557

    Article  CAS  Google Scholar 

  • Wood D, Shaw S, Cawte T et al (2020) An overview of photocatalyst immobilization methods for air pollution remediation. Chem Eng J 391:123490

    Article  CAS  Google Scholar 

  • Xu Y, Lin Z, Zheng Y et al (2019) Mechanism and kinetics of catalytic ozonation for elimination of organic compounds with spinel-type CuAl2O4 and its precursor. Sci Total Environ 651:2585–2596

    Article  CAS  Google Scholar 

  • Yanyan J, Jinggang L, Xiaotao S et al (2007) CuAl2O4 powder synthesis by sol-gel method and its photodegradation property under visible light irradiation. J Sol-Gel Sci Technol 42(1):41–45

    Article  Google Scholar 

  • Yu J, Wang S, Low J et al (2013) Enhanced photocatalytic performance of direct Z-scheme gC 3 N 4–TiO 2 photocatalysts for the decomposition of formaldehyde in air. Phys Chem Chem Phys 15(39):16883–16890

    Article  CAS  Google Scholar 

  • Zhao L, Cui T, Li Y et al (2015) Efficient visible light photocatalytic activity of p–n junction CuO/TiO 2 loaded on natural zeolite. RSC Adv 5(79):64495–64502

    Article  CAS  Google Scholar 

  • Zhao W, Ma W, Chen C et al (2004) Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-x B x under visible irradiation. J Am Chem Soc 126(15):4782–4783

    Article  CAS  Google Scholar 

  • Zou Z, Ye J, Sayama K et al (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414(6864):625–627

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 51308061). The authors are grateful for their funding.

Author information

Authors and Affiliations

Authors

Contributions

Zhuohong Cong: conceptualization; methodology; investigation; writing, original draft; writing, review and editing. Liang Zhou: data curation; formal analysis. Nanxiang Zheng: resources, supervision, visualization. Taiwo Sesay: formal analysis, visualization, writing—review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhuohong Cong.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Sami Rtimi

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cong, Z., Zhou, L., Zheng, N. et al. Synthesis and visible-light photocatalytic property of spinel CuAl2O4 for vehicle emissions. Environ Sci Pollut Res 30, 64123–64136 (2023). https://doi.org/10.1007/s11356-023-26814-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-26814-8

Keywords

Navigation