Skip to main content

Advertisement

Log in

Nanosilver-functionalized polysaccharides as a platform for wound dressing

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Polysaccharides that are naturally sourced have enormous promise as wound dressings, due to their wider availability and reasonable cost and good biocompatibility. Furthermore, nanosilver extensively applied in wound treatment is attributed to its broad spectrum of antimicrobial effects and lesser drug resistance. Consequently, wound dressings in corporating nanosilver have attracted wide-scale interest in wound healing, and nanosilver-functionalized polysaccharide-based wound dressings present an affordable option for healing of chronic wounds. This review encompasses preparation methods, classification, and antibacterial performances of nanosilver wound dressings. The prospective research arenas of nanosilver-based wound polysaccharide dressings are also elaborated. The review attempts to include a summary of the most recent advancements in silver nanotechnology as well as guidance for the investigation of nanosilver-functionalized polysaccharide-based wound dressings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

WHS:

Wound Healing Society

Hh:

Hedgehog

CS:

Chitosan

FDA:

Food and Drug Administration

MW:

Molecular weight

CDs:

Cyclodextrins

GAG:

Glycosaminoglycan

HSV:

Herpes simplex virus

NPs:

Nanoparticles

Ag-NPs:

Silver nanoparticles

MMP:

Matrix metalloproteinase

PS-AgNPs:

Polysaccharides silver nanoparticles

NHEK:

Natural human epidermal keratinocytes

SSD:

Silver sulfadiazine

PEH:

Polyelectrolyte hydrogels

References

  • Abouelkheir SS, Kamara MS, Atia SM, Amer SA, Youssef MI, Abdelkawy RS et al (2020) Novel research on nanocellulose production by a marine Bacillus velezensis strain SMR: a comparative study. Sci Rep 10(1):1–14

    Google Scholar 

  • Ahmed F, Arbab AA, Jatoi AW, Khatri M, Memon N, Khatri Z, Kim IS (2017) Ultrasonic-assisted deacetylation of cellulose acetate nanofibers: a rapid method to produce cellulose nanofibers. UltrasonSonochem 36:319–325

    CAS  Google Scholar 

  • Alberti T, Coelho SD, Voytena A, Pitz H, de Pra M, Mazzarino L et al (2017) Nanotechnology: a promising tool towards wound healing. Curr Pharm Des 23(24):3515–3528

    CAS  Google Scholar 

  • Albino S, Vieira T, Silva JC (2022) Silver nanoparticles formation and PVP crosslinking using UV-radiation. Mater Proc 8(1):86

    Google Scholar 

  • Alizadeh L, Zarebkohan A, Salehi R, Ajjoolabady A, Rahmati-Yamchi M (2019) Chitosan-based nanotherapeutics for ovarian cancer treatment. J Drug Target 27(8):839–852

    CAS  Google Scholar 

  • Allard J, Mogilner A (2013) Traveling waves in actin dynamics and cell motility. CurrOpin Cell Biol 25(1):107–115

    CAS  Google Scholar 

  • Apasuthirat A, Rungsilp S (2015) US Patent Application No 14/402503

  • Baltzis D, Eleftheriadou I, Veves A (2014) Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Adv Ther 31(8):817–836

    CAS  Google Scholar 

  • Banks SR, Enck K, Wright M, Opara EC, Welker ME (2019) Chemical modification of alginate for controlled oral drug delivery. J Agric Food Chem 67(37):10481–10488

    CAS  Google Scholar 

  • Bapat RA, Chaubal TV, Joshi CP, Bapat PR, Choudhury H, Pandey M et al (2018) An overview of application of silver nanoparticles for biomaterials in dentistry. Mater Sci Engg C 91:881–898

    CAS  Google Scholar 

  • Barrientos S, Brem H, Stojadinovic O, Tomic-Canic M (2014) Clinical application of growth factors and cytokines in wound healing. Wound Repair Regen 22(5):569–578

    Google Scholar 

  • Bioster AS (2021) Traumacel FAM trium in the post-market surveillance phase. NCT05177874

  • BuganzaTepole A, Kuhl E (2016) Computational modeling of chemo-bio-mechanical coupling: a systems-biology approach toward wound healing. Comput Methods Biomech Biomed Engg 19(1):13–30

    CAS  Google Scholar 

  • Burgert L, Hrdina R, Velebny V, Abdel-Lattif AM, Sulakova R, Sobotka L, et al (2015) Methods and compositions for wound healing. US patent application No 14/400111

  • Buruaga-Ramiro C, Valenzuela SV, Valls C, Roncero MB, Pastor FJ, Díaz P, Martinez J (2020) Development of an antimicrobial bioactive paper made from bacterial cellulose. Int J BiolMacromol 158:587–594

    CAS  Google Scholar 

  • Carrion CC, Nasrollahzadeh M, Sajjadi M, Jaleh B, Soufi GJ, Iravani S (2021) Lignin lipid protein hyaluronic acid starch cellulose gum pectin alginate and chitosan-based nanomaterials for cancer nanotherapy: challenges and opportunities. Int J BiolMacromol 178:193–228

    CAS  Google Scholar 

  • Chen S, Chen H, Tian J, Wang Y, Xing L, Wang J (2013) Chemical modification antioxidant and α-amylase inhibitory activities of corn silk polysaccharides. CarbohydrPolym 98(1):428–437

    CAS  Google Scholar 

  • Chen C, Wu W, Xu X, Zhang L, Liu Y, Wang K (2014a) Chain conformation and anti-tumor activity of derivatives of polysaccharide from RhizomaPanacisJaponici. CarbohydrPolym 105:308–316

    CAS  Google Scholar 

  • Chen Y, Zhang H, Wang Y, Nie S, Li C, Xie M (2014b) Acetylation and carboxymethylation of the polysaccharide from Ganoderma atrum and their antioxidant and immunomodulating activities. Food Chem 156:279–288

    CAS  Google Scholar 

  • Chen Y, Yao F, Ming K, Wang D, Hu Y, Liu J (2016) Polysaccharides from traditional Chinese medicines: extraction purification modification and biological activity. Molecules 21(12):1705

    Google Scholar 

  • Chen K, Sivaraj D, Davitt MF, Leeolou MC, Henn D, Steele SR et al (2022) Pullulan-collagen hydrogel wound dressing promotes dermal remodelling and wound healing compared to commercially available collagen dressings. Wound Repair Regen 30(3):397–408

    Google Scholar 

  • Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB (2016) Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front Endocrinol 7:30

    Google Scholar 

  • Concórdio-Reis P, Pereira CV, Batista MP, Sevrin C, Grandfils C, Marques AC et al (2020) Silver nanocomposites based on the bacterial fucose-rich polysaccharide secreted by Enterobacter A47 for wound dressing applications: synthesis characterization and in vitro bioactivity. Int J BiolMacromol 163:959–969

    Google Scholar 

  • Dev SK, Choudhury PK, Srivastava R, Sharma M (2019) Antimicrobial anti-inflammatory and wound healing activity of polyherbal formulation. Biomed Pharmacother 111:555–567

    CAS  Google Scholar 

  • Devaraj V, Bose B (2019) Morphological state transition dynamics in EGF-induced epithelial to mesenchymal transition. J Clin Med 8(7):911

    CAS  Google Scholar 

  • Donati I, Marsich E, Travan A, Paoletti S (2011) Wound dressing comprising bio - cellulose and silver nanoparticles. US Patent Application No 13/055349

  • Du X, Zhang J, Lv Z, Ye L, Yang Y, Tang Q (2014) Chemical modification of an acidic polysaccharide (TAPA1): from Tremella aurantialba and potential biological activities. Food Chem 143:336–340

    CAS  Google Scholar 

  • Duan H, Donovan M, Foucher A, Schultze X, Lecommandoux S (2018) Multivalent and multifunctional polysaccharide-based particles for controlled receptor recognition. Sci Rep 8(1):1–9

    Google Scholar 

  • Duda M (2020) US Patent No 10639469 Washington DC: US Patent and Trademark Office

  • El-Deeb NM, Abo-Eleneen MA, Al-Madboly LA, Sharaf MM, Othman SS, Ibrahim OM, Mubarak MS (2020) Biogenically synthesized polysaccharides-capped silver nanoparticles: immunomodulatory and antibacterial potentialities against resistant Pseudomonas aeruginosa. Front BioengBiotechnol 8:643

    Google Scholar 

  • Eng Kean Yeong (2014) To study the effect of β-glucans on wound healing. NCT02078128

  • Fan R, Zhu C, Qiu D, Mao G, Zeng J (2020) Activation of RAW264 7 macrophages by an acidic polysaccharide derived from Citrus grandis ‘Tomentosa.’ Int J BiolMacromol 156:1323–1329

    CAS  Google Scholar 

  • Fontana F, Mori M, Riva F, Makila E, Liu D, Salonen J et al (2016) Platelet lysate-modified porous silicon microparticles for enhanced cell proliferation in wound healing applications. ACS Appl Mater Interfaces 8(1):988–996

    CAS  Google Scholar 

  • Foy M, Anézo O, Saule S, Planque N (2017) PRL-3/PTP4A3 phosphatase regulates integrin β1 in adhesion structures during migration of human ocular melanoma cells. Exp Cell Res 353(2):88–99

    CAS  Google Scholar 

  • Franková J, Pivodová V, Vágnerová H, Juráňová J, Ulrichová J (2016) Effects of silver nanoparticles on primary cell cultures of fibroblasts and keratinocytes in a wound-healing model. J ApplBiomaterFunct Mater 14(2):137–142

    Google Scholar 

  • Fuenzalida PJ, Goycoolea MF (2015) Polysaccharide-protein nanoassemblies: novel soft materials for biomedical and biotechnological applications. Curr Protein Pept Sci 16(2):89–99

    CAS  Google Scholar 

  • Fumakia M, Ho EA (2016) Nanoparticles encapsulated with LL37 and serpin A1 promotes wound healing and synergistically enhances antibacterial activity. Mol Pharm 13(7):2318–2331

    CAS  Google Scholar 

  • Garcia-Orue I, Santos-Vizcaino E, Etxabide A, Uranga J, Bayat A, Guerrero P et al (2019) Development of bioinspired gelatin and gelatin/chitosan bilayer hydrofilms for wound healing. Pharmaceutics 11(7):314

    CAS  Google Scholar 

  • Ghosh S, Turner RJ (2021) Nanomicrobiology: emerging trends in microbial synthesis of nanomaterials and their applications. Front Microbiol 12:751693

    Google Scholar 

  • Gomathysankar S, Halim AS, Yaacob NS (2014) Proliferation of keratinocytes induced by adipose-derived stem cells on a chitosan scaffold and its role in wound healing a review. Arch Plast Surg 41(05):452–457

    Google Scholar 

  • Gonzalez ACDO, Costa TF, Andrade ZDA, Medrado ARAP (2016) Wound healing-a literature review. Anbras Dermatol 91:614–620

    Google Scholar 

  • Guo R, Chen M, Ding Y, Yang P, Wang M, Zhang H, et al (2022) Polysaccharides as potential anti-tumor biomacromolecules—a review. Front Nutr 9:9838179

  • Hashimoto Y, Mukai SA, Sasaki Y, Akiyoshi K (2018) Nanogel tectonics for tissue engineering: protein delivery systems with nanogel chaperones. Adv Health Mater 7(23):1800729

    Google Scholar 

  • Hurlow J, Couch K, Laforet K, Bolton L, Metcalf D, Bowler P (2015) Clinical biofilms: a challenging frontier in wound care. Adv Wound Care 4(5):295–301

    Google Scholar 

  • Jahromi MAM, Zangabad PS, Basri SMM, Zangabad KS, Ghamarypour A, Aref AR et al (2018) Nanomedicine and advanced technologies for burns: preventing infection and facilitating wound healing. Adv Drug Deliv Rev 123:33–64

    Google Scholar 

  • Jung HY, Bae IY, Lee S, Lee HG (2011) Effect of the degree of sulfation on the physicochemical and biological properties of Pleurotuseryngii polysaccharides. Food Hydrocoll 25(5):1291–1295

    CAS  Google Scholar 

  • Junker JP, Kamel RA, Caterson EJ, Eriksson E (2013) Clinical impact upon wound healing and inflammation in moist wet and dry environments. Adv Wound Care 2(7):348–356

    Google Scholar 

  • Kanwal S, Joseph TP, Owusu L, Xiaomeng R, Meiqi L, Yi X (2018) A polysaccharide isolated from Dictyophoraindusiata promotes recovery from antibiotic-driven intestinal dysbiosis and improves gut epithelial barrier function in a mouse model. Nutrients 10(8):1003

    Google Scholar 

  • Karaki N, Aljawish A, Humeau C, Muniglia L, Jasniewski J (2016) Enzymatic modification of polysaccharides: Mechanisms properties and potential applications: A review. Enzyme Microb Technol 90:1–18

    CAS  Google Scholar 

  • Kazachenko AS, Malyar YN, Vasilyeva NY, Borovkova VS, Issaoui N (2021) Optimization of guar gum galactomannan sulfation process with sulfamic acid. Biomass Convers Biorefin 11(5):1–10

    Google Scholar 

  • Khuntia A, Martorell M, Ilango K, Bungau SG, Radu AT, Behl T, Sharifi-Rad J (2022) Theoretical evaluation of Cleome species’ bioactive compounds and therapeutic potential: a literature review. Biomed Pharmacother 151:113161

    CAS  Google Scholar 

  • Kirtane AR, Verma M, Karandikar P, Furin J, Langer R, Traverso G (2021) Nanotechnology approaches for global infectious diseases. Nat Nanotechnol 16(4):369–384

    CAS  Google Scholar 

  • Krylova NV, Ermakova SP, Lavrov VF, Leneva IA, Kompanets GG, Iunikhina OV et al (2020) The comparative analysis of antiviral activity of native and modified fucoidans from brown algae Fucus evanescens in vitro and in vivo. Mar Drugs 18(4):224

    CAS  Google Scholar 

  • Kumar M, Sarma DK, Shubham S, Kumawat M, Verma V, Nina PB et al (2021) Futuristic non-antibiotic therapies to combat antibiotic resistance: a review. Front Microbiol 12:609459

    Google Scholar 

  • Kurita O, Miyake Y, Yamazaki E (2012) Chemical modification of citrus pectin to improve its dissolution into water. CarbohydrPolym 87(2):1720–1727

    CAS  Google Scholar 

  • Li S, Shah NP (2014) Antioxidant and antibacterial activities of sulphated polysaccharides from Pleurotuseryngii and Streptococcus thermophilus ASCC 1275. Food Chem 165:262–270

    CAS  Google Scholar 

  • Li S, Xiong Q, Lai X, Li X, Wan M, Zhang J et al (2016) Molecular modification of polysaccharides and resulting bioactivities. Compr Rev Food Sci Food Saf 15(2):237–250

    CAS  Google Scholar 

  • Li J, He J, Huang Y (2017) Role of alginate in antibacterial finishing of textiles. Int J BiolMacromol 94:466–473

    CAS  Google Scholar 

  • Li XX, Dong JY, Li YH, Zhong J, Yu H, Yu QQ et al (2020) Fabrication of Ag–ZnO@ carboxymethyl cellulose/K-carrageenan/graphene oxide/konjac glucomannan hydrogel for effective wound dressing in nursing care for diabetic foot ulcers. ApplNanosci 10(3):729–738

    CAS  Google Scholar 

  • Ligacheva AA, Sherstoboev EY, Danilets MG, Trofimova ES, Krivoshchekov SV, Gur’ev AM et al (2020) Study of immunotropic properties of water-soluble polysaccharides isolated from Conium maculatum grass. Bull Exp Biol Med 170(2):203–206. https://doi.org/10.1007/s10517-020-05033-y

    Article  CAS  Google Scholar 

  • Liu H, Wang J, Zhou W, Wang Y, Yang L (2013) Systems approaches and polypharmacology for drug discovery from herbal medicines: an example using licorice. J Ethnopharmacol 146(3):773–793

    CAS  Google Scholar 

  • Liu Z, Xu D, Xia N, Zhao X, Kong F, Wang S, Fatehi P (2018) Preparation and application of phosphorylated xylan as a flocculant for cationic ethyl violet dye. Polymers 10(3):317

    Google Scholar 

  • Liu H, Li F, Luo P (2019) Effect of carboxymethylation and phosphorylation on the properties of polysaccharides from Sepia esculenta ink: antioxidation and anticoagulation in vitro. Mar Drugs 17(11):626

    Google Scholar 

  • Liu D, Ma X, Ji Y, Chen R, Zhou S, Yao H et al (2022) Bioresponsivenanotherapy for preventing dental caries by inhibiting multispecies cariogenic biofilms. Bioact Mater 14:1–14

    Google Scholar 

  • Liu M, Xu W, Su M, Fan P (2020) REC8 suppresses tumor angiogenesis by inhibition of NF-κB-mediated vascular endothelial growth factor expression in gastric cancer cells. Biol Res 53:41

  • Ma L, Chen H, Zhang Y, Zhang N, Fu L (2012) Chemical modification and antioxidant activities of polysaccharide from mushroom Inonotus obliquus. CarbohydrPolym 89(2):371–378

    CAS  Google Scholar 

  • McAnulty JF, Murphy C, Abbott N (2014) US Patent No 8709393 Washington DC: US Patent and Trademark Office

  • Mehwish HM, Liu G, Rajoka MSR, Cai H, Zhong J, Song X et al (2021) Therapeutic potential of Moringa oleifera seed polysaccharide embedded silver nanoparticles in wound healing. Int J BiolMacromol 184:144–158

    CAS  Google Scholar 

  • Miao T, Wang J, Zeng Y, Liu G, Chen X (2018) Polysaccharide-based controlled release systems for therapeutics delivery and tissue engineering: from bench to bedside. Adv Sci 5(4):1700513

    Google Scholar 

  • Millar NL, Gilchrist DS, Akbar M, Reilly JH, Kerr SC, Campbell AL et al (2015) MicroRNA29a regulates IL-33-mediated tissue remodelling in tendon disease. Nat Commun 6(1):1–13

    Google Scholar 

  • Mohammadinejad R, Kumar A, Ranjbar-Mohammadi M, Ashrafizadeh M, Han SS, Khang G, Roveimiab Z (2020) Recent advances in natural gum-based biomaterials for tissue engineering and regenerative medicine: a review. Polymers 12(1):176

    CAS  Google Scholar 

  • Mohammed ASA, Naveed M, Jost N (2021) Polysaccharides; classification chemical properties and future perspective applications in fields of pharmacology and biological medicine (a review of current applications and upcoming potentialities). J Polym Environ 29(8):2359–2371

    CAS  Google Scholar 

  • Monsuur HN, Boink MA, Weijers EM, Roffel S, Breetveld M, Gefen A et al (2016) Methods to study differences in cell mobility during skin wound healing in vitro. J Biomech 49(8):1381–1387

    Google Scholar 

  • Mourdikoudis S, Pallares RM, Thanh NT (2018) Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10(27):12871–12934

    CAS  Google Scholar 

  • Mundsinger K, Müller A, Beyer R, Hermanutz F, Buchmeiser MR (2015) Multifilament cellulose/chitin blend yarn spun from ionic liquids. CarbohydrPolym 131:34–40

    CAS  Google Scholar 

  • Narayanan N, Jiang C, Wang C, Uzunalli G, Whittern N, Chen D et al (2020) Harnessing fiber diameter-dependent effects of myoblasts toward biomimetic scaffold-based skeletal muscle regeneration. Front BioenggBiotechnol 8:203

    Google Scholar 

  • Nawaz A, Zaman SS, Sikandar S, Zeeshan R, Zulfiqar S, Mehmood N et al (2022) Heparin-loaded alginate hydrogels: characterization and molecular mechanisms of their angiogenic and anti-microbial potential. Materials 15(19):6683

    CAS  Google Scholar 

  • Nour S, Baheiraei N, Imani R, Khodaei M, Alizadeh A, Rabiee N et al (2019) A review of accelerated wound healing approaches: biomaterial-assisted tissue remodeling. J Mater Sci Mater Med 30(10):1–15

    CAS  Google Scholar 

  • Nqakala ZB, Sibuyi NRS, Fadaka AO, Meyer M, Onani MO, Madiehe AM (2021) Advances in nanotechnology towards development of silver nanoparticle-based wound-healing agents. Int J Mol Sci 22(20):11272

    CAS  Google Scholar 

  • Omer AM, Tamer TM, Khalifa RE, Eltaweil AS, Agwa MM, Sabra S et al (2021) Formulation and antibacterial activity evaluation of quaternizedaminochitosan membrane for wound dressing applications. Polymers 13(15):2428

    CAS  Google Scholar 

  • Ortega MA, Fraile-Martínez O, García-Montero C, Álvarez-Mon MA, Chaowen C, Ruiz-Grande F et al (2021) Understanding chronic venous disease: a critical overview of its pathophysiology and medical management. J Clin Med 10(15):3239

    Google Scholar 

  • Pachuau L (2015) Recent developments in novel drug delivery systems for wound healing. Expert Opin Drug Deliv 12(12):1895–1909

    CAS  Google Scholar 

  • Pazyar N, Houshmand G, Yaghoobi R, Hemmati AA, Zeineli Z, Ghorbanzadeh B (2019) Wound healing effects of topical vitamin K: a randomized controlled trial. Indian J Pharmacol 51(2):88

    CAS  Google Scholar 

  • Petkova MD, Tkačik G, Bialek W, Wieschaus EF, Gregor T (2019) Optimal decoding of cellular identities in a genetic network. Cell 176(4):844–855

    CAS  Google Scholar 

  • Qiu A, Wang Y, Zhang G, Wang H (2022) Natural polysaccharide-based nanodrug delivery systems for treatment of diabetes. Polymers 14(15):3217

    CAS  Google Scholar 

  • Rajendran NK, Kumar SSD, Houreld NN, Abrahamse H (2018) A review on nanoparticle based treatment for wound healing. J Drug Deliv Sci Technol 44:421–430

    CAS  Google Scholar 

  • Rakita A, Nikolić N, Mildner M, Matiasek J, Elbe-Bürger A (2020) Re-epithelialization and immune cell behaviour in an ex vivo human skin model. Sci Rep 10(1):1–11

    CAS  Google Scholar 

  • Rao KM, Kumar A, Haider A, Han SS (2016) Polysaccharides based antibacterial polyelectrolyte hydrogels with silver nanoparticles. Mater Lett 184:189–192

    CAS  Google Scholar 

  • Rath G, Hussain T, Chauhan G, Garg T, Goyal AK (2016) Development and characterization of cefazolin loaded zinc oxide nanoparticles composite gelatin nanofiber mats for postoperative surgical wounds. Mater Sci Eng C 58:242–253

    CAS  Google Scholar 

  • Roshidi MDA, Fen YW, Daniyal WMEMM, Omar NAS, Zulholinda M (2019) Structural and optical properties of chitosan–poly (amidoamine): dendrimer composite thin film for potential sensing Pb2+ using an optical spectroscopy. Optik 185:351–358

    CAS  Google Scholar 

  • Sachdeva R, Fleming T, Schumacher D, Homberg S, Stilz K, Mohr F et al (2019) Methylglyoxal evokes acute Ca2+ transients in distinct cell types and increases agonist-evoked Ca2+ entry in endothelial cells via CRAC channels. Cell Calcium 78:66–75

    CAS  Google Scholar 

  • Saghazadeh S, Rinoldi C, Schot M, Kashaf SS, Sharifi F, Jalilian E et al (2018) Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev 127:138–166

    CAS  Google Scholar 

  • Saito-Diaz K, Chen TW, Wang X, Thorne CA, Wallace HA, Page-McCaw A et al (2013) The way Wnt works: components and mechanism. Growth Factors 31(1):1–31

    CAS  Google Scholar 

  • Sajjad W, Khan T, Ul-Islam M, Khan R, Hussain Z, Khalid A, Wahid F (2019) Development of modified montmorillonite-bacterial cellulose nanocomposites as a novel substitute for burn skin and tissue regeneration. CarbohydrPolym 206:548–556

    CAS  Google Scholar 

  • Sanchis-Gomar F, Arnau-Moyano M, Daimiel L, Lippi G, Leischik R, Vallecillo N et al (2021) Circulating microRNAs fluctuations in exercise-induced cardiac remodeling: a systematic review Am J. Transl Res 13(12):13298

    CAS  Google Scholar 

  • Santos R, Gomes D, Macedo H, Barros D, Tibério C, Veiga AS et al (2016) Guar gum as a new antimicrobial peptide delivery system against diabetic foot ulcers Staphylococcus aureus isolates. J Med Microbiol 65(10):1092–1099

    CAS  Google Scholar 

  • Sarder R, Piner E, Rios DC, Chacon L, Artner MA, Barrios N, Argyropoulos D (2022) Copolymers of starch a sustainable template for biomedical applications: a review. CarbohydrPolym 278:118973

    CAS  Google Scholar 

  • Saxena SK, Nyodu R, Kumar S, Maurya VK (2020) Current advances in nanotechnology and medicine. In: Saxena S, Khurana S (eds) NanoBioMedicine. Springer, Singapore, pp 3–16. https://doi.org/10.1007/978-981-32-9898-9_1

    Chapter  Google Scholar 

  • Shankar PD, Shobana S, Karuppusamy I, Pugazhendhi A, Ramkumar VS, Arvindnarayan S, Kumar G (2016) A review on the biosynthesis of metallic nanoparticles (gold and silver): using bio-components of microalgae: Formation mechanism and applications. Enzyme Microb Technol 95:28–44

    CAS  Google Scholar 

  • Sharma V, Gautam DNS, Radu AF, Behl T, Bungau SG, Vesa CM (2022) Reviewing the traditional/modern uses, phytochemistry, essential oils/extracts and pharmacology of embelia ribes burm. Antioxidants 11(7):1359

    CAS  Google Scholar 

  • Shrivastav A, Mishra AK, Ali SS, Ahmad A, Abuzinadah MF, Khan NA (2018) In vivo models for assesment of wound healing potential: a systematic review. Wound Med 20:43–53

    Google Scholar 

  • Singh D, Han SS, Shin EJ (2014) Polysaccharides as nanocarriers for therapeutic applications. J Biomed Nanotechnol 10(9):2149–2172

    CAS  Google Scholar 

  • Sinha S, Astani A, Ghosh T, Schnitzler P, Ray B (2010) Polysaccharides from Sargassum tenerrimum: structural features chemical modification and anti-viral activity. Phytochemistry 71(2–3):235–242

    CAS  Google Scholar 

  • Soto-Cruz J, Mukwaya V, Naz M, Zhang P, López-Brenes MJ, Sáenz-Arce G et al (2022) Polysaccharide/lipid nanoconjugates as alternative building blocks for highly biocompatible microcapsules. Langmuir 38(31):9556–9566

    CAS  Google Scholar 

  • Spallotta F, Cencioni C, Straino S, Sbardella G, Castellano S, Capogrossi MC et al (2013) Enhancement of lysine acetylation accelerates wound repair. CommunIntegr Biol 6(5):e25466

    Google Scholar 

  • Stettler H, Kurka P, Wagner C, Sznurkowska K, Czernicka O, Böhling A et al (2017) A new topical panthenol-containing emollient: skin-moisturizing effect following single and prolonged usage in healthy adults and tolerability in healthy infants. J Dermatolog Treat 28(3):251–257

    CAS  Google Scholar 

  • Sun Y, Ma X, Hu H (2021) Marine polysaccharides as a versatile biomass for the construction of nano drug delivery systems. Mar Drugs 19(6):345

    CAS  Google Scholar 

  • Taghipour YD, Hokmabad VR, Bakhshayesh D, Rahmani A, Asadi N, Salehi R, Nasrabadi HT (2020) The application of hydrogels based on natural polymers for tissue engineering. Curr Med Chem 27(16):2658–2680

    CAS  Google Scholar 

  • Thiruvoth FM, Mohapatra DP, Kumar D, Chittoria SRK, Nandhagopal V (2015) Current concepts in the physiology of adult wound healing. PlastAesthet Res 2:250–256

    Google Scholar 

  • Thuy TTT, Ly BM, Van TTT, Van Quang N, Tu HC, Zheng Y et al (2015) Anti-HIV activity of fucoidans from three brown seaweed species. CarbohydrPolym 115:122–128

    CAS  Google Scholar 

  • Ting-Chang C (2019) EGF-loaded chitosan to facilitate healing and prevent scar formation of cesarean wound. NCT04211597

  • Tiwari G, Yadav D, Singh B, Kumar A, Wal P, Tiwari R (2022) Development and assessment of phytophospholipid nanovesicular systems for treatment of diabetic neuropathy. Pharmacognosy Res 14(4):360–368

  • Toppo FA, Pawar RS (2015) Novel drug delivery strategies and approaches for wound healing managements. J Crit Rev 2(2):12À20

    Google Scholar 

  • Traore YL, Fumakia M, Gu J, Ho EA (2018) Dynamic mechanical behaviour of nanoparticle loaded biodegradable PVA films for vaginal drug delivery. Jbiomater Appl 32(8):1119–1126

    CAS  Google Scholar 

  • Tummino ML, Tolardo V, Malandrino M, Sadraei R, Magnacca G, Laurenti E (2020) A way to close the loop: physicochemical and adsorbing properties of soybean hulls recovered after soybean peroxidase extraction. Front Chem 8:763

    CAS  Google Scholar 

  • Uddin TM, Chakraborty AJ, Khusro A, Zidan BRM, Mitra S, Emran TB et al (2021) Antibiotic resistance in microbes: History mechanisms therapeutic strategies and future prospects. J Infect Public Health 14(12):1750–1766

    Google Scholar 

  • Ud-Din S, Bayat A (2017) Non-animal models of wound healing in cutaneous repair: in silico in vitro ex vivo and in vivo models of wounds and scars in human skin. Wound Repair Regen 25(2):164–176

    Google Scholar 

  • Vasconcelos AFD, Dekker RF, Barbosa AM, Carbonero ER, Silveira JL, Glauser B et al (2013) Sulfonation and anticoagulant activity of fungal exocellular β-(1→ 6):-D-glucan (lasiodiplodan). CarbohydrPolym 92(2):1908–1914

    CAS  Google Scholar 

  • Velnar T, Gradisnik L (2018) Tissue augmentation in wound healing: the role of endothelial and epithelial cells. Med Arch 72(6):444

    Google Scholar 

  • Vitali F, Mulas F, Marini P, Bellazzi R (2013) Network-based target ranking for polypharmacological therapies. J Biomed Inform 46(5):876–881

    Google Scholar 

  • Wal P, Saraswat N, Vig H (2022) A detailed insight onto the molecular and cellular mechanism of action of the antifungal drugs used in the treatment of superficial fungal infections. Curr Drug Ther 17(3):148–159

    Google Scholar 

  • Wal P, Wal A, Pal RS, Pal Y, Saraswat N (2021) An ayurvedic based dermal treatment for skin sanitization. Open Dermatol J 15(1):59–64

    CAS  Google Scholar 

  • Wan W, Guhados G (2015) US Patent No 9200086 Washington DC: US Patent and Trademark Office

  • Wang H, Dai T, Li S, Zhou S, Yuan X, You J et al (2018) Scalable and cleavable polysaccharide nanocarriers for the delivery of chemotherapy drugs. Acta Biomater 72:206–216

    CAS  Google Scholar 

  • Wang J, Li Y, Nie G (2021) Multifunctional biomolecule nanostructures for cancer therapy. Nat Rev Mater 6(9):766–783

    CAS  Google Scholar 

  • Wasef LG, Shaheen HM, El-Sayed YS, Shalaby TI, Samak DH, El-Hack A et al (2020) Effects of silver nanoparticles on burn wound healing in a mouse model. Biol Trace Elem Res 193(2):456–465

    CAS  Google Scholar 

  • Wen Y, Oh JK (2014) Recent strategies to develop polysaccharide-based nanomaterials for biomedical applications. Macromol Rapid Commun 35(21):1819–1832

    CAS  Google Scholar 

  • Wilhelm KP, Wilhelm D, Bielfeldt S (2017) Models of wound healing: an emphasis on clinical studies. Skin Res Technol 23(1):3–12

    Google Scholar 

  • Xie G, Diehl AM (2013) Evidence for and against epithelial-to-mesenchymal transition in the liver. Am J Physiol Gastrointest Liver Physiol 305(12):G881–G890

    CAS  Google Scholar 

  • Xu Y, Wu YJ, Sun PL, Zhang FM, Linhardt RJ, Zhang AQ (2019) Chemically modified polysaccharides: synthesis characterization structure activity relationships of action. Int J BiolMacromol 132:970–977

    CAS  Google Scholar 

  • Yadav SK, Singla R, Kumari A (2019) Nanocomposite materials based on metallic NPs stabilized with branched polysaccharides. US Patent No 10426809 Washington DC: US Patent and Trademark Office

  • Yadi M, Mostafavi E, Saleh B, Davaran S, Aliyeva I, Khalilov R et al (2018) Current developments in green synthesis of metallic nanoparticles using plant extracts: a review. Artif Cells NanomedBiotechnol 46(sup3):S336–S343

    Google Scholar 

  • Yamazaki T, Mukouyama YS (2018) Tissue specific origin development and pathological perspectives of pericytes. Front Cardiovasc Med 5:78

    Google Scholar 

  • Yan JK, Pei JJ, Ma HL, Wang ZB (2015) Effects of ultrasound on molecular properties structure chain conformation and degradation kinetics of carboxylic curdlan. CarbohydrPolym 121:64–70

    CAS  Google Scholar 

  • Yang J, Yang H (2021) Non-antibiotic therapy for Clostridioides difficile infection: a review. Crit Rev Clin Lab Sci 56(7):493–509

    Google Scholar 

  • Yang X, Shi X, D’arcy R, Tirelli N, Zhai G (2018) Amphiphilic polysaccharides as building blocks for self-assembled nanosystems: molecular design and application in cancer and inflammatory diseases. J Control Release 272:114–144

    CAS  Google Scholar 

  • Yazdi MK, Ganjali MR, Zarrintaj P, Bagheri B, Kim YC, Saeb MR (2021) Ionically gelled carboxymethyl polysaccharides for drug delivery. ionically gelled biopolysaccharide based systems in drug delivery. Springer, Singapore, pp 93–103

    Google Scholar 

  • Ye H, Cheng J, Yu K (2019) In situ reduction of silver nanoparticles by gelatin to obtain porous silver nanoparticle/chitosan composites with enhanced antimicrobial and wound-healing activity. Int J BiolMacromol 121:633–642

    CAS  Google Scholar 

  • Yu X, Zhou C, Yang H, Huang X, Ma H, Qin X, Hu J (2015) Effect of ultrasonic treatment on the degradation and inhibition cancer cell lines of polysaccharides from Porphyrayezoensis. CarbohydrPolym 117:650–656

    CAS  Google Scholar 

  • Zhang N, Chen H, Ma L, Zhang Y (2013) Physical modifications of polysaccharide from Inonotus obliquus and the antioxidant properties. Int J BiolMacromol 54:209–215

    Google Scholar 

  • Zhang M, Su N, Huang Q, Zhang Q, Wang Y, Li J, Ye M (2017) Phosphorylation and antiaging activity of polysaccharide from Trichosanthes peel. J Food Drug Anal 25(4):976–983

    CAS  Google Scholar 

  • Zhang Y, Wang X, Zhang Y, Liu Y, Wang D, Yu X et al (2021) Endothelial cell migration regulated by surface topography of poly (ε-caprolactone): nanofibers. ACS Biomater Sci Eng 7(10):4959–4970

    CAS  Google Scholar 

  • Zhang Z, Wang X, Zhao M, Qi H (2014) O-acetylation of low-molecular-weight polysaccharide from Enteromorpha linza with antioxida activity. Int J Biol Macromol 69:39–45

    CAS  Google Scholar 

  • Zhang X, Xu R, Hu X, Luo G, Wu J, He WA (2015) systematic and quantitative method for wound-dressing evaluation. Burns Trauma 3:1–8

    Google Scholar 

  • Zhang J, Shachaf C (2018) Sock for treatment of foot and leg wounds, methods of use and manufacture. US Patent No 10064793 Washington DC: US Patent and Trademark Office

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number ISP22-10.

Funding

This research was funded by Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia through the project number ISP22-10.

Author information

Authors and Affiliations

Authors

Contributions

PW, KP, SM, and TB: Conceived the study and wrote the first draft of the paper; MK, SM and HAA: Data compilation; GK and AK: Editing; TB and SM: Proof Read.

Corresponding author

Correspondence to Tapan Behl.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

All the authors have approved the manuscript for publication.

Competing interests

The authors’ declare no competing interests.

Additional information

Responsible Editor: Lotfi Aleya

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, S., Wal, P., Pathak, K. et al. Nanosilver-functionalized polysaccharides as a platform for wound dressing. Environ Sci Pollut Res 30, 54385–54406 (2023). https://doi.org/10.1007/s11356-023-26450-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-26450-2

Keywords

Navigation