Skip to main content
Log in

Performance of alkali-activated slag individually incorporated with two nanozinc sources

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The role of nanozinc source (nanohydrozincite: nHZ; nanozinc oxide: nZO) on the performance of alkali-activated slag (AAS) was explored for the first time in the present work. The results showed that nHZ with different contents (0.5, 1.0, and 1.5 wt%) retards the early hydration rate of AAS, whereas nZO showed the lowest retardation effect. Zn(OH)2 is the main retarder inside AAS-nZO and AAS-nHZ, which consumes the dissolved Ca2+ (responsible for the early hardening of AAS) from slag to yield calcium zincate hydrate (CZH). The high retardation rate of nHZ is originated from its high affinity to consume much Ca2+ through the formation of additional pirssonite (Na2CO3.CaCO3.2H2O) double salt. Although adding nHZ induced the drying shrinkage of AAS, it improved the later compressive strengths (28 to 365 days), especially at low nHZ content (0.5 wt%), via the formation of CASH with lower Ca/Si ratio and higher binding capacity compared to that formed inside AAS and AAS-nZO. A further research is needed to reduce the drying shrinkage and to accelerate the early strength of AAS containing nHZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data and materials will be available upon request.

References

  • Abdel daiem MM, Rashad AM, Said N, Abdel-Gawwad HA (2021) An initial study about the effect of activated carbon nano-sheets from residual biomass of olive trees pellets on the properties of alkali-activated slag pastes. J Build Eng 44:102661

    Article  Google Scholar 

  • Abdel-Gawwad HA, Mohammed MS, Alomayri T (2019) Single and dual effects of magnesia and alumina nano-particles on strength and drying shrinkage of alkali activated slag. Constr Build Mater 228:116827

    Article  CAS  Google Scholar 

  • Abdel-Gawwad HA et al (2020) Biocarbonation: A novel method for synthesizing nano-zinc/zirconium carbonates and oxides. Arab J Chem 13(11):8092–8099

    Article  CAS  Google Scholar 

  • Abdel-Gawwad HA, Khalil KA, Gouda AA, Elkhoresy AH, Arif MA (2022) Understanding the effect of hydrozincite and witherite nanominerals on the performance and phase composition of alkali-activated slag. J Build Eng 48:103963

    Article  Google Scholar 

  • Adesina A (2021) Performance and sustainability overview of sodium carbonate activated slag materials cured at ambient temperature. Res Environ Sustain 3:100016

    Google Scholar 

  • ASTM C109M. Standard test method for compressive strength of hydraulic cement mortars (2021).

  • ASTM C490/C490M. Standard Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete (2021).

  • Atiş CD, Bilim C, Çelik Ö, Karahan O (2009a) Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr Build Mater 23(1):548–555

    Article  Google Scholar 

  • Atiş CD et al (2009b) Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Construc Build Mater 23(1):548–555

    Article  Google Scholar 

  • Aydın S, Baradan B (2012) Mechanical and microstructural properties of heat cured alkali-activated slag mortars. Mater Des 35:374–383

    Article  Google Scholar 

  • Aydın S, Baradan B (2014) Effect of activator type and content on properties of alkali-activated slag mortars. Compos B Eng 57:166–172

    Article  Google Scholar 

  • Aydın S, Baradan B (2021) Sulfate resistance of alkali-activated slag and Portland cement based reactive powder concrete. J Build Eng 43:103205

    Article  Google Scholar 

  • Behfarnia K, Rostami M (2017) Effects of micro and nanoparticles of SiO2 on the permeability of alkali activated slag concrete. Constr Build Mater 131:205–213

    Article  CAS  Google Scholar 

  • Bílek V Jr, Kalina L, Markusík D (2022) Fresh properties of alkali-activated slag pastes with sodium and potassium hydroxide. Special Publication 355:19–28

    Google Scholar 

  • Cartwright C, Rajabipour F, Radlińska A (2015) Shrinkage characteristics of alkali-activated slag cements. J Mater Civ Eng 27(7):B4014007

    Article  Google Scholar 

  • Dai X, Aydin S, Yardimci MY, De Schutter G (2022) Early structural build-up, setting behavior, reaction kinetics and microstructure of sodium silicate-activated slag mixtures with different retarder chemicals. Cem Concr Res 159:106872

    Article  CAS  Google Scholar 

  • Davidovits J (2020) Geopolymer chemistry and applications. Institut, Saint-Quentin, France

    Google Scholar 

  • El-Hassan H, Shehab E, Al-Sallamin A (2021) Effect of curing regime on the performance and microstructure characteristics of alkali-activated slag-fly ash blended concrete. J Sustain Cement-Based Mater 10(5):289–317

    Article  CAS  Google Scholar 

  • Eren NA, Alzeebaree R, Çevik A, Niş A, Mohammedameen A, Gülşan ME (2021) Fresh and hardened state performance of self-compacting slag based alkali activated concrete using nanosilica and steel fiber. Journal of Composite Materials. 00219983211032390

  • Garg N, White CE (2017) Mechanism of zinc oxide retardation in alkali-activated materials: an in situ X-ray pair distribution function investigation. Journal of Materials Chemistry A 5(23):11794–11804

    Article  CAS  Google Scholar 

  • Gu YM, Fang YH, You D, Gong YF, Zhu CH (2015) Properties and microstructure of alkali-activated slag cement cured at below-and about-normal temperature. Constr Build Mater 79:1–8

    Article  Google Scholar 

  • He J, Zheng W, Bai W, Hu T, He J, Song X (2021) Effect of reactive MgO on hydration and properties of alkali-activated slag pastes with different activators. Constr Build Mater 271:121608

    Article  CAS  Google Scholar 

  • Hu X, Shi C, Zhang Z, Hu Z (2019) Autogenous and drying shrinkage of alkali-activated slag mortars. J Am Ceram Soc 102(8):4963–4975

    Article  CAS  Google Scholar 

  • Jin F, Gu K, Al-Tabbaa A (2014) Strength and drying shrinkage of reactive MgO modified alkali-activated slag paste. Constr Build Mater 51:395–404

    Article  Google Scholar 

  • Júnior NTA, Lima VM, Torres SM, Basto PE, Neto AAM (2021) Experimental investigation of mix design for high-strength alkali-activated slag concrete. Constr Build Mater 291:123387

    Article  Google Scholar 

  • Krizan D, Zivanovic B (2002) Effects of dosage and modulus of water glass on early hydration of alkali–slag cements. Cem Concr Res 32(8):1181–1188

    Article  CAS  Google Scholar 

  • Kumarappa DB, Peethamparan S, Ngami M (2018) Autogenous shrinkage of alkali activated slag mortars: Basic mechanisms and mitigation methods. Cem Concr Res 109:1–9

    Article  Google Scholar 

  • Kunther W et al (2017) Influence of the Ca/Si ratio on the compressive strength of cementitious calcium–silicate–hydrate binders. J Mater Chem A 5(33):17401–17412

    Article  CAS  Google Scholar 

  • Liang G, Liu T, Li H, Wu K (2022) Shrinkage mitigation, strength enhancement and microstructure improvement of alkali-activated slag/fly ash binders by ultrafine waste concrete powder. Compos B Eng 231:109570

    Article  CAS  Google Scholar 

  • Liu B, Yang J, Li D, Xing F, Fang Y (2018) Effect of a synthetic nano-CaO-Al2O3-SiO2-H2O gel on the early-stage shrinkage performance of alkali-activated sag mortars. Materials 11:1128

    Article  Google Scholar 

  • Majhi RK, Nayak AN (2019) Bond, durability and microstructural characteristics of ground granulated blast furnace slag based recycled aggregate concrete. Constr Build Mater 212:578–595

    Article  Google Scholar 

  • Majhi RK, Nayak AN, Mukharjee BB (2020) Characterization of lime activated recycled aggregate concrete with high-volume ground granulated blast furnace slag. Constr Build Mater 259:119882

    Article  CAS  Google Scholar 

  • Majhi RK, Nayak AN, Swain RB (2021) Structural performance of RC beams containing high-volume ground granulated blast furnace slag and recycled coarse aggregate with lime. Constr Build Mater 307:124907

    Article  Google Scholar 

  • Matalkah F, Ababneh A, Aqel R (2022) Effects of nanomaterials on mechanical properties, durability characteristics and microstructural features of alkali-activated binders: a comprehensive review. Constr Build Mater 336:127545

    Article  CAS  Google Scholar 

  • Mohebi R, Behfarnia K, Shojaei M (2015) Abrasion resistance of alkali-activated slag concrete designed by Taguchi method. Constr Build Mater 98:792–798

    Article  Google Scholar 

  • Mohsen A et al (2020) Performance, radiation shielding, and anti-fungal activity of alkali-activated slag individually modified with zinc oxide and zinc ferrite nano-particles. Construc Build Mater 257:119584

    Article  CAS  Google Scholar 

  • Neto AAM, Cincotto MA, Repette W (2008) Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cem Concr Res 38(4):565–574

    Article  Google Scholar 

  • Niş A, Eren NA, Çevik A (2021) Effects of nanosilica and steel fibers on the impact resistance of slag based self-compacting alkali-activated concrete. Ceram Int 47(17):23905–23918

    Article  Google Scholar 

  • Ortega-López V, Revilla-Cuesta V, Santamaría A, Orbe A, Skaf M (2022) Microstructure and dimensional stability of slag-based high-workability concrete with steelmaking slag aggregate and fibers. J Mater Civ Eng 34(9):04022224

    Article  Google Scholar 

  • Ou Z, Feng R, Li F, Liu G, Li N (2022) Development of drying shrinkage model for alkali-activated slag concrete. Constr Build Mater 323:126556

    Article  CAS  Google Scholar 

  • Panda B, Ruan S, Unluer C, Tan MJ (2020) Investigation of the properties of alkali-activated slag mixes involving the use of nanoclay and nucleation seeds for 3D printing. Compos B Eng 186:107826

    Article  CAS  Google Scholar 

  • Ramezanianpour AA, Moeini MA (2018) Mechanical and durability properties of alkali activated slag coating mortars containing nanosilica and silica fume. Constr Build Mater 163:611–621

    Article  CAS  Google Scholar 

  • Ren J, Sun H, Li Q, Li Z, Ling L, Zhang X, ..., Xing F (2021) Experimental comparisons between one-part and normal (two-part) alkali-activated slag binders. Constr Build Mater 309:125177

  • Revilla-Cuesta V, Evangelista L, de Brito J, Skaf M, Ortega-López V (2022a) Mechanical performance and autogenous and drying shrinkage of MgO-based recycled aggregate high-performance concrete. Constr Build Mater 314:125726

    Article  CAS  Google Scholar 

  • Revilla-Cuesta V, Ortega-López V, Skaf M, Manso JM (2022b) Deformational behavior of self-compacting concrete containing recycled aggregate, slag cement and green powders under compression and bending: Description and prediction adjustment. J Build Eng 54:104611

    Article  Google Scholar 

  • Revilla-Cuesta V, Skaf M, Santamaría A, Romera JM, Ortega-López V (2022c) Elastic stiffness estimation of aggregate–ITZ system of concrete through matrix porosity and volumetric considerations: explanation and exemplification. Archives of Civil and Mechanical Engineering 22(2):1–17

    Article  Google Scholar 

  • Saleh AA et al (2021) The sustainable utilization of weathered cement kiln dust in the cleaner production of alkali activated binder incorporating glass sludge. Construc Build Mater 300:124308

    Article  CAS  Google Scholar 

  • Shahrajabian F, Behfarnia K (2018) The effects of nano particles on freeze and thaw resistance of alkali-activated slag concrete. Constr Build Mater 176:172–178

    Article  CAS  Google Scholar 

  • Shariati M, Shariati A, Trung NT, Shoaei P, Ameri F, Bahrami N, Zamanabadi SN (2021) Alkali-activated slag (AAS) paste: Correlation between durability and microstructural characteristics. Constr Build Mater 267:120886

    Article  CAS  Google Scholar 

  • Tong S et al (2021a) Recent advances in chemical admixtures for improving the workability of alkali-activated slag-based material systems. Construc Build Mater 272:121647

    Article  CAS  Google Scholar 

  • Tong S, Yuqi Z, Qiang W (2021b) Recent advances in chemical admixtures for improving the workability of alkali-activated slag-based material systems. Constr Build Mater 272:121647

    Article  CAS  Google Scholar 

  • Wang J, Zhou T, Xu D, Zhou Z, Du P, Xie N, Cheng X, Liu Y (2018) Effect of nano-silica on the efflorescence of waste based alkali-activated inorganic binder. Constr Build Mater 167:381–390

    Article  CAS  Google Scholar 

  • Wang J, Du P, Zhou Z, Xu D, Xie N, Cheng X (2019) Effect of nano-silica on hydration, microstructure of alkali-activated slag. Constr Build Mater 220:110–118

    Article  CAS  Google Scholar 

  • Yang L, Jia ZJ, Zhang YM, Dai JG (2015) Effects of nano-TiO2 on strength, shrinkage and microstructure of alkali activated slag pastes. Cem Concr Compos 57:1–7

    Article  Google Scholar 

  • Yang J, Snoeck D, De Belie N, Sun Z (2021) Effect of superabsorbent polymers and expansive additives on the shrinkage of alkali-activated slag. Cement Concr Compos 123:104218

    Article  CAS  Google Scholar 

  • Ye H, Radlińska A (2016) Shrinkage mechanisms of alkali-activated slag. Cem Concr Res 88:126–135

    Article  CAS  Google Scholar 

  • Yuan Q, Huang YL, Huang TJ, Yao H, Wu QH (2022) Effect of activator on rheological properties of alkali-activated slag-fly ash pastes. Journal of Central South University 29(1):282–295

    Article  Google Scholar 

  • Zamanabadi SN, Zareei SA, Shoaei P, Ameri F (2019) Ambient-cured alkali-activated slag paste incorporating micro-silica as repair material: effects of alkali activator solution on physical and mechanical properties. Constr Build Mater 229:116911

    Article  Google Scholar 

  • Zhang G, Yang H, Ju C, Yang Y (2020) Novel selection of environment-friendly cementitious materials for winter construction: alkali-activated slag/Portland cement. J Clean Prod 258:120592

    Article  CAS  Google Scholar 

  • Zhang B, Zhu H, Cheng Y, Huseien GF, Shah KW (2022a) Shrinkage mechanisms and shrinkage-mitigating strategies of alkali-activated slag composites: a critical review. Constr Build Mater 318:125993

    Article  CAS  Google Scholar 

  • Zhang B, Zhu H, Feng P, Zhang P (2022b) A review on shrinkage-reducing methods and mechanisms of alkali-activated/geopolymer systems: effects of chemical additives. J Build Eng 104056

  • Zhao J, Li S (2022) Study on processability, compressive strength, drying shrinkage and evolution mechanisms of microstructures of alkali-activated slag-glass powder cementitious material. Constr Build Mater 344:128196

    Article  CAS  Google Scholar 

  • Zhao L, Ma X, Song S, You P, Wu H (2022) Activating effect of potassium silicate solution in low portland cement binder. Constr Build Mater 319:126091

    Article  CAS  Google Scholar 

  • Zuo Y (2022) Thermodynamic modelling of the phase evolution in alkali activated slag cements with sulfate salt exposure. J Am Ceram Soc

Download references

Funding

The authors express their sincere gratitude for the financial support provided by the Deanship of The Scientific Research at the University of Jordan.

Author information

Authors and Affiliations

Authors

Contributions

Hussein Al-kroom: methodology; formal analysis; data curation; funding acquisition. Mohamed Abd Elrahman: methodology; investigation; formal analysis. Mohammed A. Arif: validation; resources; software; formal analysis. Aya H. Mohammed: methodology; funding acquisition. Salomon R. Vasquez-Garcia: investigation; funding acquisition. Hamdy A. Abdel-Gawwad: conceptualization; original draft; writing—review & editing; methodology; project administration.

Corresponding author

Correspondence to Hamdy A. Abdel-Gawwad.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

All authors agree about submission to the journal.

Competing interests

The author declared no competing interests.

Additional information

Responsible Editor: George Z. Kyzas

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-kroom, H., Elrahman, M.A., Arif, M.A. et al. Performance of alkali-activated slag individually incorporated with two nanozinc sources. Environ Sci Pollut Res 30, 24088–24100 (2023). https://doi.org/10.1007/s11356-022-23933-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-23933-6

Keywords

Navigation