Skip to main content
Log in

Estimation of multi-media metal(loid)s around abandoned mineral processing plants using hyperspectral technology and extreme learning machine

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Hyperspectral techniques are promising alternatives to traditional methods of investigating potentially toxic metal(loid) contamination. In this study, hyperspectral technology combined with partial least squares regression (PLSR) and extreme learning machine (ELM) established estimation models to predict the contents of copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), lead (Pb) and tin (Sn) in multi-media environments (mine tailings, soils and sediments) surrounding abandoned mineral processing plants in a typical tin-polymetallic mineral agglomeration in Guangxi Autonomous Region. Four spectral preprocessing methods, Savitzky-Golay (SG) smoothing, continuum removal (CR), first derivative (FD) and continuous wavelet transform (CWT), were used to eliminate noise and highlight spectral features. The optimum combinations of spectral preprocessing and machine learning algorithms were explored, then the estimation models with best accuracy were obtained. CWT and CR were excellent spectral pretreatments for the hyperspectral data regardless of the applied algorithms. The coefficients of determination (R2) of estimation models for the best accuracy of various metals (loid) are as follows: Cu (CWT-ELM:0.85), Zn (CR-PLSR:0.93), As (CWT-ELM: 0.86), Cd (CR-PLSR: 0.89), Pb (CWT-PLSR: 0.75) and Sn (CR-ELM: 0.81). In contrast, ELM models had higher accuracy with R2 > 0.80 (except Cd and Pb). In conclusion, ELM-based spectral estimation models are able to predict metal (loid) concentrations with high accuracy and efficiency, providing a potential new combinatorial approach for estimating toxic metal contamination in multi-media environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

All data generated or analysed during this study are included in this article.

References

  • Acosta JA, Faz A, Martínez-Martínez S, Zornoza R, Carmona DM, Kabas S (2011) Multivariate statistical and GIS-based approach to evaluate heavy metals behavior in mine sites for future reclamation. J Geochem Explor 109(1–3):8–17

    Article  CAS  Google Scholar 

  • Antonucci F, Menesatti P, Holden NM, Canali E, Giorgi S, Maienza A, Stazi SR (2012) Hyperspectral visible and near-infrared determination of copper concentration in agricultural polluted soils. Commun Soil Sci Plant Anal 43(10):1401–1411

    Article  CAS  Google Scholar 

  • Al Maliki A, Bruce D, Owens G (2014) Prediction of lead concentration in soil using reflectance spectroscopy. Environ Technol Innov 1:8–15

    Article  Google Scholar 

  • Baumgardner MF et al (1969) "Effects of organic matter on the multispectral properties of soils." Proc Indiana Acad Sci 79:

  • Bellon-Maurel V, Fernandez-Ahumada E, Palagos B, Roger JM, McBratney A (2010) Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC, Trends Anal Chem 29(9):1073–1081

    Article  CAS  Google Scholar 

  • Ben-Dor E (2002) "Quantitative remote sensing of soil properties.": 173–243

  • Bian Z, Sun L, Tian K, Liu B, Zhang X, Mao Z, Huang B, Wu L (2021) Estimation of heavy metals in tailings and soils using hyperspectral technology: a case study in a tin-polymetallic mining area. Bull Environ Contam Toxicol 107(6):1022–1031

    Article  CAS  Google Scholar 

  • Brewer R, Peard J, Heskett M (2017) A critical review of discrete soil sample data reliability: Part 1—field study results. Soil and Sediment Contamination: an International Journal 26(1):1–22

    Article  CAS  Google Scholar 

  • Chakraborty S, Weindorf DC, Deb S, Li B, Paul S, Choudhury A, Ray DP (2017) Rapid assessment of regional soil arsenic pollution risk via diffuse reflectance spectroscopy. Geoderma 289:72–81

    Article  CAS  Google Scholar 

  • Chen H, Teng Y, Lu S, Wang Y, Wang J (2015) Contamination features and health risk of soil heavy metals in China. Sci Total Environ 512:143–153

    Article  Google Scholar 

  • Chen HM, Zhu YG (1999) Heavy metal pollution in soils in China: status and coutermeasures. Ambio 28:130–134

    Google Scholar 

  • Cheng T, Rivard B, Sánchez-Azofeifa A (2010) Spectroscopic determination of leaf water content using continuous wavelet analysis. Remote Sens Environ 115.2:659–670

    Google Scholar 

  • Clark RN, Roush TL (1984) Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J Geophys Res: Solid Earth 89(B7):6329–6340

    Article  CAS  Google Scholar 

  • Cittadino A, Ocello N, Majul MV, Ajhuacho R, Dietrich P, Igarzabal MA (2020) Heavy metal pollution and health risk assessment of soils from open dumps in the metropolitan area of Buenos Aires Argentina. Environ Monit Assess 192(5):1–9

    Article  Google Scholar 

  • CNEMC C (1990) The background concentrations of soil elements of China. China Environmental Science Press, Beijing, China

    Google Scholar 

  • Demková L, Jezný T, Bobuľská L (2017) Assessment of soil heavy metal pollution in a former mining area–before and after the end of mining activities. Soil and Water Research 12(4):229–236

    Article  Google Scholar 

  • Diwu PY, Bian XH, Wang ZF, Liu W (2019) Study on the selection of spectral preprocessing methods. Spectroscopy and Spectral Analysis

  • Fearn T, Riccioli C, Garrido-Varo A, Guerrero-Ginel JE (2009) On the geometry of SNV and MSC. Chemom Intell Lab Syst 96(1):22–26

    Article  CAS  Google Scholar 

  • Gan FP, Wang RS, Ma AN (2003) Spectral identification tree (SIT) for mineral extraction using AVIRIS data. In multispectral and hyperspectral remote sensing instruments and applications (Vol. 4897, pp. 203–210). International Society for Optics and Photonics

  • Gholizadeh A, Saberioon M, Ben-Dor E, Borůvka L (2018) Monitoring of selected soil contaminants using proximal and remote sensing techniques: Background, state-of-the-art and future perspectives. Crit Rev Environ Sci Technol 48(3):243–278

    Article  CAS  Google Scholar 

  • Gholizadeh A, Saberioon M, Ben-Dor E, Rossel RAV, Borůvka L (2020) Modelling potentially toxic elements in forest soils with vis–NIR spectra and learning algorithms. Environ Pollut 267:115574

    Article  CAS  Google Scholar 

  • Gu X, Wang Y, Sun Q, Yang G, Zhang C (2019) Hyperspectral inversion of soil organic matter content in cultivated land based on wavelet transform. Comput Electron Agric 167:105053

    Article  Google Scholar 

  • Hong Y, Chen S, Zhang Y, Chen Y, Yu L, Liu Y, Liu Y (2018) Rapid identification of soil organic matter level via visible and near-infrared spectroscopy: Effects of two-dimensional correlation coefficient and extreme learning machine. Sci Total Environ 644:1232–1243

    Article  CAS  Google Scholar 

  • Hong Y, Chen S, Chen Y, Linderman M, Mouazen AM, Liu Y, Liu Y (2020) Comparing laboratory and airborne hyperspectral data for the estimation and mapping of topsoil organic carbon: Feature selection coupled with random forest. Soil and Tillage Research 199:104589

    Article  Google Scholar 

  • Hong Y, Chen Y, Shen R, Chen S, Xu G, Cheng H, Mouazen AM (2021) Diagnosis of cadmium contamination in urban and suburban soils using visible-to-near-infrared spectroscopy. Environ Pollut 291:118128

    Article  CAS  Google Scholar 

  • Hou L, Li X, Li F (2019) Hyperspectral-based inversion of heavy metal content in the soil of coal mining areas. J Environ Qual 48(1):57–63

    Article  CAS  Google Scholar 

  • Hu B, Shao S, Ni H, Fu Z, Hu L, Zhou Y, Shi Z (2020) Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level. Environ Pollut 266:114961

    Article  CAS  Google Scholar 

  • Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501

    Article  Google Scholar 

  • Huang G, Huang GB, Song S, You K (2015) Trends in extreme learning machines: A review. Neural Netw 61:32–48

    Article  Google Scholar 

  • Jia X, O’Connor D, Shi Z, Hou D (2021) VIRS based detection in combination with machine learning for mapping soil pollution. Environ Pollut 268:115845

    Article  CAS  Google Scholar 

  • Jiang Q, Li Q, Wang X, Wu Y, Yang X, Liu F (2017) Estimation of soil organic carbon and total nitrogen in different soil layers using VNIR spectroscopy: Effects of spiking on model applicability. Geoderma 293:54–63

    Article  CAS  Google Scholar 

  • Kemper T, Sommer S (2002) Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy. Environ Sci Technol 36(12):2742–2747

    Article  CAS  Google Scholar 

  • Kebonye NM, John K, Chakraborty S, Agyeman PC, Ahado SK, Eze PN et al (2021) Comparison of multivariate methods for arsenic estimation and mapping in floodplain soil via portable X-ray fluorescence spectroscopy. Geoderma 384:114792

    Article  CAS  Google Scholar 

  • Khosravi V, Ardejani FD, Yousefi S, Aryafar A (2018) Monitoring soil lead and zinc contents via combination of spectroscopy with extreme learning machine and other data mining methods. Geoderma 318:29–41

    Article  CAS  Google Scholar 

  • Lee DT, Yamamoto A (1994) Wavelet analysis: theory and applications. Hewlett Packard J 45:44–44

    Google Scholar 

  • Li H, Jia S, Le Z (2019) Quantitative analysis of soil total nitrogen using hyperspectral imaging technology with extreme learning machine. Sensors 19(20):4355

    Article  CAS  Google Scholar 

  • Li Z, Ma Z, van der Kuijp TJ, Yuan Z, Huang L (2014) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468:843–853

    Article  Google Scholar 

  • Liu G, Zhou X, Li Q, Shi Y, Guo G, Zhao L, Zhang C (2020a) Spatial distribution prediction of soil As in a large-scale arsenic slag contaminated site based on an integrated model and multi-source environmental data. Environ Pollut 267:115631

    Article  CAS  Google Scholar 

  • Liu W, Li M, Zhang M, Long S, Guo Z, Wang H, Yang S (2020b) Hyperspectral inversion of mercury in reed leaves under different levels of soil mercury contamination. Environ Sci Pollut Res 27(18):22935–22945

    Article  CAS  Google Scholar 

  • Liu WD (2002) Study on extraction of soil information and data mining by hyperspectral remote sensing. (Doctoral dissertation)

  • Liu WD, Frédéric B, Zhang B, Zheng LF, Tong QX (2004) Extraction of soil moisture information by hyperspectral remote sensing. Acta Pedol Sin 41(5):706–713

    Google Scholar 

  • Ma WB, Ta K, Li HD, Yan QW (2016) Hyperspectral inversion of heavy metals in soil of a mining area using extreme learning machine. J Ecol Rural Environ 32(2):213–218

    Google Scholar 

  • Malmir M, Tahmasbian I, Xu Z, Farrar MB, Bai SH (2019) Prediction of soil macro-and micro-elements in sieved and ground air-dried soils using laboratory-based hyperspectral imaging technique. Geoderma 340:70–80

    Article  CAS  Google Scholar 

  • Montgomery OL (1976) An investigation of the relationship between spectral reflectance and chemical, physical, and genetic characteristics of soils. West Lafayette, Purdue University. Diss. Tese de Doutorado

  • Mouazen AM, Kuang B, De Baerdemaeker J, Ramon H (2010) Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma 158(1–2):23–31

    Article  CAS  Google Scholar 

  • Oves M, Khan MS, Zaidi A, Ahmad E (2012) Soil contamination, nutritive value, and human health risk assessment of heavy metals: an overview. Toxicity of heavy metals to legumes and bioremediation 1–27

  • Qiao P, Yang S, Lei M, Chen T, Dong N (2019) Quantitative analysis of the factors influencing spatial distribution of soil heavy metals based on geographical detector. Sci Total Environ 664:392–413

    Article  CAS  Google Scholar 

  • Qin G, Niu Z, Yu J, Li Z, Ma J, Xiang P (2021) Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere 267:129205

    Article  CAS  Google Scholar 

  • Qu M, Chen J, Huang B, Zhao Y (2020) Enhancing apportionment of the point and diffuse sources of soil heavy metals using robust geostatistics and robust spatial receptor model with categorical soil-type data. Environ Pollut 265:114964

    Article  CAS  Google Scholar 

  • Ren HY, Zhuang DF, Singh AN, Pan JJ, Qiu DS, Shi RH (2009) Estimation of As and Cu contamination in agricultural soils around a mining area by reflectance spectroscopy: A case study. Pedosphere 19(6):719–726

    Article  CAS  Google Scholar 

  • Rinnan Å, Van Den Berg F, Engelsen SB (2009) Review of the most common pre-processing techniques for near-infrared spectra. Trends in Analytical Chemistry (TrAC) 28(10):1201–1222

    Article  CAS  Google Scholar 

  • Savitzky A, Golay MJ (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36(8):1627–1639

    Article  CAS  Google Scholar 

  • Solgi E, Esmaili-Sari A, Riyahi-Bakhtiari A, Hadipour M (2012) Soil contamination of metals in the three industrial estates, Arak Iran. Bull Environ Contam Toxicol 88(4):634–638

    Article  CAS  Google Scholar 

  • Song SQ, Liang LF, Zhou YZ, Wu H, Zhou X, Zhang XY (2003) The situation and remedial measures of the cropland polluted by heavy metals from mining along the Diaojiang River. Bulletin of Mineralogy, Petrology and Geochemistry 22(2):152–155

    CAS  Google Scholar 

  • Song L, Jian J, Tan DJ, Xie HB, Luo ZF, Gao B (2015) Estimate of heavy metals in soil and streams using combined geochemistry and field spectroscopy in Wan-sheng mining area, Chongqing, China. Int J Appl Earth Obs Geoinf 34:1–9

    CAS  Google Scholar 

  • Stazi SR, Antonucci F, Pallottino F, Costa C, Marabottini R, Petruccioli M, Menesatti P (2014) Hyperspectral visible–near infrared determination of arsenic concentration in soil. Commun Soil Sci Plant Anal 45(22):2911–2920

    Article  CAS  Google Scholar 

  • Sun L, Guo D, Liu K, Meng H, Zheng Y, Yuan F, Zhu G (2019) Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan, China. CATENA 175:101–109

    Article  CAS  Google Scholar 

  • Tan K, Wang H, Zhang Q, Jia X (2018) An improved estimation model for soil heavy metal (loid) concentration retrieval in mining areas using reflectance spectroscopy. J Soils Sediments 18(5):2008–2022

    Article  CAS  Google Scholar 

  • Tan K, Wang H, Chen L, Du Q, Du P, Pan C (2020) Estimation of the spatial distribution of heavy metal in agricultural soils using airborne hyperspectral imaging and random forest. J Hazard Mater 382:120987

    Article  CAS  Google Scholar 

  • Viscarra Rossel RA, Taylor HJ, McBratney AB (2007) Multivariate calibration of hyperspectral γ-ray energy spectra for proximal soil sensing[J]. Eur J Soil Sci 58(1):343–353

    Article  Google Scholar 

  • Vohland M, Ludwig M, Harbich M, Emmerling C, Thiele-Bruhn S (2016) Using variable selection and wavelets to exploit the full potential of visible–near infrared spectra for predicting soil properties. J near Infrared Spectrosc 24(3):255–269

    Article  CAS  Google Scholar 

  • Wang F, Li C, Wang J, Cao W, Wu Q (2017) Concentration estimation of heavy metal in soils from typical sewage irrigation area of Shandong Province, China using reflectance spectroscopy. Environ Sci Pollut Res 24(20):16883–16892

    Article  CAS  Google Scholar 

  • Wang F, Gao J, Zha Y (2018) Hyperspectral sensing of heavy metals in soil and vegetation: Feasibility and challenges. ISPRS J Photogramm Remote Sens 136:73–84

    Article  Google Scholar 

  • Wang JN, Zheng LF, Tong QX (1996) Spectral absorption identification model and mapping mineral mapping by airborne high spectral resolution remote sensing data. Proceedings of the Eleventh Thematic Conference-Geologic Remote Sensing: Practical Solutions for Real World Problems

  • Wold S, Albano C, Dunn WJ, Esbensen K, Hellberg S, Johansson E, Sjöström M (1983) Pattern recognition: finding and using regularities in multivariate data. Food Res Data Anal 3:183–185

    Google Scholar 

  • Xie XL, Sun B, Hao HT (2007) Relationship between visible-near infrared reflectance spectroscopy and heavy metal of soil concentration. Acta Pedofil Sin 44:982–993

    CAS  Google Scholar 

  • Xie Y, Chen TB, Lei M, Yang J, Guo QJ, Song B, Zhou XY (2011) Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: Accuracy and uncertainty analysis. Chemosphere 82(3):468–476

    Article  CAS  Google Scholar 

  • Yang Q, Li Z, Lu X, Duan Q, Huang L, Bi J (2018) A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci Total Environ 642:690–700

    Article  CAS  Google Scholar 

  • Yu DS, Zhang ZQ, Hao Y, Xue-Zheng SHI, Man-Zhi TAN, Wei-Xia SUN, Wang HJ (2011) Effect of soil sampling density on detected spatial variability of soil organic carbon in a red soil region of China. Pedosphere 21(2):207–213

    Article  Google Scholar 

  • Zhang B, Guo B, Zou B et al (2022) Retrieving soil heavy metals concentrations based on GaoFen-5 hyperspectral satellite image at an opencast coal mine, Inner Mongolia, China[J]. Environ Pollut 300:118981

    Article  CAS  Google Scholar 

  • Zhai M, Hu R, Wang Y, Jiang S et al (2021) Mineral resource science in china: Review and perspective. Geography and Sustainability 2(2):107–114

    Article  Google Scholar 

  • Zhang S, Shen Q, Nie C, Huang Y, Wang J, Hu Q, Chen Y (2019) Hyperspectral inversion of heavy metal content in reclaimed soil from a mining wasteland based on different spectral transformation and modeling methods. Spectrochim Acta Part A Mol Biomol Spectrosc 211:393–400

    Article  CAS  Google Scholar 

  • Zhou W, Zhang J, Zou M, Liu X, Du X, Wang Q, Li J (2019) Feasibility of using rice leaves hyperspectral data to estimate CaCl 2-extractable concentrations of heavy metals in agricultural soil. Sci Rep 9(1):1–9

    Article  Google Scholar 

  • Zhou W, Yang H, Xie L, Li H, Huang L, Zhao Y, Yue T (2021) Hyperspectral inversion of soil heavy metals in three-river source region based on random forest model. CATENA 202:105222

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Key Research and Development Project of China (2018YFC1802600).

Author information

Authors and Affiliations

Authors

Contributions

Zijin Bian performed the experiments, data analyses and wrote the manuscript; Kang Tian and Lina Sun helped revise the manuscript; Lina Sun, Biao Huang and Longhua Wu helped with the constructive discussion; Benle Liu helped with the experiments.

Corresponding author

Correspondence to Lina Sun.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Written informed consent was obtained from individual or guardian participants.

Consent to Publish

Not applicable.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Responsible Editor: Marcus Schulz

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, Z., Sun, L., Tian, K. et al. Estimation of multi-media metal(loid)s around abandoned mineral processing plants using hyperspectral technology and extreme learning machine. Environ Sci Pollut Res 30, 19495–19512 (2023). https://doi.org/10.1007/s11356-022-22904-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-22904-1

Keywords

Navigation