Skip to main content

Advertisement

Log in

Integrated toxicity assessment of DEHP and DBP toward aquatic ecosystem based on multiple trophic model assays

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

To comprehensively understand the toxic risks of phthalates to aquatic ecosystems, we examined the acute toxicity of di-(2-ethylhexyl) phthalate (DEHP) and di-butyl phthalate (DBP) on multiple trophic models, including algae (Chlorella vulgaris), Daphnia magna and fish (Danio rerio, Pseudorasbora parva). Thus, a 15-day zebrafish exposure was conducted to trace the dynamic changes of phthalate-induced toxic effects. Among the four species, D. magna exhibited the strongest sensitivity to both DEHP and DBP, followed by D. rerio and P. parva. C. vulgaris exhibited the lowest sensitivity to phthalates. The sub-chronic zebrafish assay demonstrated that 1000 μg/L DBP induced significant mortality at 15 days post-exposure (dpe), and DEHP exhibited no lethality at the tested concentrations (10–5000 μg/L). Zebrafish hepatic SOD activity and sod transcription levels were inhibited by DBP from 3 dpe, which was accompanied by increased malondialdehyde level, while zebrafish exposed to DEHP exhibited less oxidative damage. Both DEHP and DBP induced time-dependent alterations on Ache activity in zebrafish brains, thus indicating the potential neurotoxicity toward aquatic organisms. Additionally, 1000 μg/L and higher concentration of DBP caused hepatic DNA damage in zebrafish from 7 dpe. These results provide a better understanding of the health risks of phthalate to water environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  • Aly HA, Hassan MH, El-Beshbishy HA, Alahdal AM, Osman AMM (2016) Dibutyl phthalate induces oxidative stress and impairs spermatogenesis in adult rats. Toxicol Ind Health 32(8):1467–1477

    Article  CAS  Google Scholar 

  • Chen Y, Li C, Song P, Yan B et al (2019) Hepatic and renal tissue damage in Balb/c mice exposed to diisodecyl phthalate: the role of oxidative stress pathways. Food Chem Toxicol 132:110600

    Article  CAS  Google Scholar 

  • Cheng Z, Liu JB, Gao M, Shi GZ et al (2019) Occurrence and distribution of phthalate esters in freshwater aquaculture fish ponds in Pearl River Delta, China. Environ Pollut 245:883–888

    Article  CAS  Google Scholar 

  • Choi S, Kim MJ, Park YJ, Kim S, Choi K, Cheon GJ, Cho YH, Jeon HL, Yoo J, Park J (2020) Thyroxine-binding globulin, peripheral deiodinase activity, and thyroid autoantibody status in association of phthalates and phenolic compounds with thyroid hormones in adult population. Environ Int. https://doi.org/10.1016/j.envint.2020.105783

    Article  Google Scholar 

  • Cui Y, Zhang XT, Yin K, Qi X, Zhang Y, Zhang JX, Li S, Lin HJ (2021) Dibutyl phthalate-induced oxidative stress, inflammation and apoptosis in grass carp hepatocytes and the therapeutic use of taxifolin. Sci Total Environ 764:142880

    Article  CAS  Google Scholar 

  • Daniel S, Balalian AA, Insel BJ, Liu X, Whyatt RM, Calafat AM, Rauh VA, Perera FP, Hoepner LA, Herbstman J, Factor-Litvak P (2020) Prenatal and early childhood exposure to phthalates and childhood behavior at age 7 years. Environ Int 143:105894

    Article  CAS  Google Scholar 

  • Dong R, Chen J, Zheng J, Zhang M, Zhang H, Wu M, Li S, Chen B (2018) The role of oxidative stress in cardiometabolic risk related to phthalate exposure in elderly diabetic patients from Shanghai. Environ Int 121(Pt 1):340–348

    Article  CAS  Google Scholar 

  • Du L, Li G, Liu M, Li Y, Yin S, Zhao J, Zhang X (2015) Evaluation of DNA damage and antioxidant system induced by di-n-butyl phthalates exposure in earthworms (Eisenia fetida). Ecotoxicol Environ Saf 115:75–82

    Article  CAS  Google Scholar 

  • Gao D, Li Z, Wen Z, Ren N (2014) Occurrence and fate of phthalate esters in fullscale domestic wastewater treatment plants and their impact on receiving waters along the Songhua River in China. Chemosphere 95:24–32

    Article  CAS  Google Scholar 

  • Gao M, Liu Y, Dong Y, Song Z (2018) Photosynthetic and antioxidant response of wheat to di(2-ethylhexyl) phthalate (DEHP) contamination in the soil. Chemosphere 209:258–267

    Article  CAS  Google Scholar 

  • Gao M, Xu Y, Dong Y, Song Z, Liu Y (2019a) Accumulation and metabolism of di(n-butyl) phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) in mature wheat tissues and their effects on detoxification and the antioxidant system in grain. Sci Total Environ 697:133981

    Article  CAS  Google Scholar 

  • Gao X, Li J, Wang X, Zhou J, Fan B, Li W, Liu Z (2019b) Exposure and ecological risk of phthalate esters in the Taihu Lake basin, China. Ecotoxicol Environ Saf 171:564–570

    Article  CAS  Google Scholar 

  • Ghorpade N, Mehta V, Khare M, Sinkar P, Krishnan S, Rao CV (2002) Toxicity study of diethyl phthalate on freshwater fish Cirrhina mrigala. Ecotoxicol Environ Saf 53(2):255–258

    Article  CAS  Google Scholar 

  • Gu S, Zheng H, Xu Q, Sun C, Shi M, Wang Z, Li F (2017) Comparative toxicity of the plasticizer dibutyl phthalate to two freshwater algae. Aquat Toxicol 191:122–130

    Article  CAS  Google Scholar 

  • Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P (2018) An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mat 344:179–199

    Article  CAS  Google Scholar 

  • Hamid N, Junaid M, Manzoor R, Jia P, Pei D (2020) Prioritizing phthalate esters (PAEs) using experimental in vitro/vivo toxicity assays and computational in silico approaches. J Hazard Mat 398:122851

    Article  CAS  Google Scholar 

  • Hauser R, Meeker JD, Singh NP, Silva MJ, Ryan L, Duty S et al (2007) DNA damage in human sperm is related to urinary levels of phthalate monoester and oxidative metabolites. Hum Reprod 22(3):688–695

    Article  CAS  Google Scholar 

  • Huang B, Li D, Yang Y (2016) Joint toxicity of two phthalates with waterborne copper to Daphnia magna and Photobacterium phosphoreum. Bull Environ Contam Toxicol 97:380–386

    Article  CAS  Google Scholar 

  • Joensen UN, Frederiksen H, Blomberg Jensen M, Lauritsen MP, Olesen IA, Lassen TH, Andersson AM, Jørgensen N (2012) Phthalate excretion pattern and testicular function: a study of 881 healthy Danish men. Environ Health Perspect 120(10):1397–1403

    Article  Google Scholar 

  • Kang JC, Jee JH, Koo JG, Keum YH, Jo SG, Park KH (2010) Anti-oxidative status and hepatic enzymes following acute administration of diethyl phthalate in olive flounder Paralichthys olivaceus, a marine culture fish. Ecotoxicol Environ Saf 73(6):1449–1455

    Article  CAS  Google Scholar 

  • Kim JH, Park HY, Bae S, Lim YH, Hong YC (2013) Diethylhexyl phthalates is associated with insulin resistance via oxidative stress in the elderly: a panel study. PLoS One 8(8):e71392

    Article  Google Scholar 

  • Kim K, Kim HY, Lim Y, Shin CH, Johanna Kim JI, Kim B, Lee YA, Hong Y (2020) Prenatal and early childhood phthalate exposures and thyroid function among school-age children. Environ Int 141:105782

    Article  CAS  Google Scholar 

  • Kobrosly RW, Evans S, Miodovnik A, Barrett ES, Thurston SW, Calafat AM, Swan SH (2014) Prenatal phthalate exposures and neurobehavioral development scores in boys and girls at 6–10 years of age. Environ Health Perspect 122(5):521–528

    Article  Google Scholar 

  • Lee YM, Lee JE, Choe W, Kim T, Lee JY, Kho Y, Choi K, Zoh KD (2019) Distribution of phthalate esters in air, water, sediments, and fish in the Asan Lake of Korea. Environ Int 126:635–643

    Article  CAS  Google Scholar 

  • Li R, Liang J, Gong Z, Zhang N, Duan H (2017) Occurrence, spatial distribution, historical trend and ecological risk of phthalate esters in the Jiulong River, Southeast China. Sci Total Environ 580:388–397

    Article  CAS  Google Scholar 

  • Lien Y, Ku H, Su P, Chen S, Chen H, Liao P, Chen W, Wang S (2015) Prenatal exposure to phthalate esters and behavioral syndromes in children at 8 years of age: Taiwan maternal and infant cohort study. Environ Health Perspect 123(1):95–100

    Article  Google Scholar 

  • Liu C, Duan P, Chen Y, Deng YJ et al (2019) Mediation of the relationship between phthalate exposure and semen quality by oxidative stress among 1034 reproductive-aged Chinese men. Environ Res. https://doi.org/10.1016/j.envres.2019.108778

    Article  Google Scholar 

  • Liu C, Deng Y, Zheng T, Yang P, Jiang X, Liu E, Miao X, Wang L, Jiang M, Zeng Q (2020) Urinary biomarkers of phthalates exposure and risks of thyroid cancer and benign nodule. J Hazard Mat 383:121189

    Article  CAS  Google Scholar 

  • Lu Y, Lin M, Aitken RJ (2017) Exposure of spermatozoa to dibutyl phthalate induces abnormal embryonic development in a marine invertebrate Galeolaria caespitosa (Polychaeta: Serpulidae). Aquat Toxicol 191:189–200

    Article  CAS  Google Scholar 

  • Luo Y, Li X, Zhao Y, Du Z, Li J (2019) DEHP triggers cerebral mitochondrial dysfunction and oxidative stress in quail (Coturnix japonica) via modulating mitochondrial dynamics and biogenesis and activating Nrf2-mediated defense response. Chemosphere 224:626–633

    Article  CAS  Google Scholar 

  • Minier C, Forget-Leray J, Bjørnstad A, Camus L (2008) Multixenobiotic resistance, acetyl-choline esterase activity and total oxyradical scavenging capacity of the Arctic spider crab, Hyasaraneus, following exposure to bisphenol A, tetra bromo diphenyl ether and diallyl phthalate. Mar Pollut Bull 56(8):1410–1415

    Article  CAS  Google Scholar 

  • Mu X, Wang K, Chen X, Pang S, Zhu L, Yang Y, Zhang J, Li X, Wang C (2014) Impact of environmental concentrations of betacypermethrin on the antioxidant system in the brain and liver of zebrafish (Danio rerio). Chem Ecol 30:643–652

    Article  CAS  Google Scholar 

  • Mu X, Shen G, Huang Y, Luo J, Zhu L, Qi S, Li Y, Wang C, Li X (2017) The enantioselective toxicity and oxidative stress of betacypermethrin on zebrafish. Environ Pollut 229:312–320

    Article  CAS  Google Scholar 

  • Mu X, Liu J, Yuan L, Yang K, Huang Y, Wang C, Wenbo Yang W, Shen G, Li Y (2019) The mechanisms underlying the developmental effects of bisphenol F on zebrafish. Sci Total Environ 687:877–884

    Article  CAS  Google Scholar 

  • Mu X, Chen X, Liu J et al (2020) A multi-omics approach reveals molecular mechanisms by which phthalates induce cardiac defects in zebrafish (Danio rerio). Environ Pollut 265:113876

    Article  CAS  Google Scholar 

  • Nelli G, Pamanji SR (2017) Di-n-butyl phthalate prompts interruption of spermatogenesis, steroidogenesis, and fertility associated with increased testicular oxidative stress in adult male rats. Environ Sci Pollut Res Int 24(22):18563–18574

    Article  CAS  Google Scholar 

  • OECD (1992) OECD guidelines for the testing of chemicals. In: Section 2: Effects on biotic systems test no. 203: acute toxicity for fish. Organization for Economic Cooperation and Development, Paris, France

  • OECD (2004) OECD guidelines for the testing of chemicals. In: Section 2: Effects on biotic systems test no. 202: Daphnia sp. acute immobilisation test. Organization for Economic Cooperation and Development, Paris, France

  • OECD (2006) OECD Guidelines for the testing of chemicals. In: Section 2: Effects on biotic systems test no. 201: freshwater alga and cyanobacteria, growth inhibition test. Organization for Economic Cooperation and Development, Paris, France.

  • Pant N, Shukla M, Kumar Patel D, Shukla Y, Mathur N, Kumar Gupta Y (2008) Correlation of phthalate exposures with semen quality. Toxicol and Appl Pharmacol 231(1):112–116

    Article  CAS  Google Scholar 

  • Ping LW, Li XX, Zhang C, Song PP, Wang JH, Zhu LS, Wang J (2018) Oxidative stress and DNA damage induced by DEP exposure in earthworms. Huan Jing Ke Xue 39(10):4825–4833

    Google Scholar 

  • Planelló R, Herrero O, Martínez-Guitarte JL, Morcillo G (2011) Comparative effects of butyl benzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP) on the aquatic larvae of Chironomus riparius based on gene expression assays related to the endocrine system, the stress response and ribosomes. Aquat Toxicol 105(1–2):62–70

    Article  Google Scholar 

  • Qian X, Li J, Xu S et al (2019) Prenatal exposure to phthalates and neurocognitive development in children at two years of age. Environ Int 131:105023

    Article  CAS  Google Scholar 

  • Qian L, Liu J, Lin Z, Chen X, Yuan L, Shen G, Yang W, Wang D, Huang Y, Pang S, Mu X, Wang C, Li Y (2020) Evaluation of the spinal effects of phthalates in a zebrafish embryo assay. Chemosphere 249:126144

    Article  CAS  Google Scholar 

  • Schettler T (2006) Human exposure to phthalates via consumer products. Int J Androl 29:134–139

  • Seyoum A, Pradhan A (2019) Effect of phthalates on development, reproduction, fat metabolism and lifespan in Daphnia magna. Sci Total Environ 654:969–977

    Article  CAS  Google Scholar 

  • Sha Y, Xia X, Xiao X (2006) Distribution characters of phthalic acid ester in the waters middle and lower reaches of the Yellow River. China Environ Sci 26(1):120–124

    CAS  Google Scholar 

  • She Y, Jiang L, Zheng L, Zuo H et al (2017) The role of oxidative stress in DNA damage in pancreatic β cells induced by di-(2-ethylhexyl) phthalate. Chem-Biol Interact 265:8–15

    Article  CAS  Google Scholar 

  • Sohn J, Kim S, Koschorreck J, Kho Y, Choi K (2016) Alteration of sex hormone levels and steroidogenic pathway by several low molecular weight phthalates and their metabolites in male zebrafish (Danio rerio) and/or human adrenal cell (H295R) line. J Hazard Mat 320:45–54

    Article  CAS  Google Scholar 

  • Song P, Gao J, Li X, Zhang C, Zhu L, Wang J, Jun W (2019) Phthalate induced oxidative stress and DNA damage in earthworms (Eisenia fetida). Environ Int 129:10–17

    Article  CAS  Google Scholar 

  • Specht IO, Toft G, Hougaard KS, Lindh CH, Lenters V, Jönsson BA, Heederik D, Giwercman A, Bonde JP (2014) Associations between serum phthalates and biomarkers of reproductive function in 589 adult men. Environ Int 66:146–156

    Article  CAS  Google Scholar 

  • Stales CA, Peterson DR, Parkerton TF, Adams WJ (1997) The environmental fate of phthalate esters: a literature review. Chemosphere 35(4):667–749

    Article  Google Scholar 

  • Tang Z, Chai M, Wang Y, Cheng J (2020) Phthalates in preschool children’s clothing manufactured in seven Asian countries: occurrence, profiles and potential health risks. J Hazard Mat 387:121681

    Article  CAS  Google Scholar 

  • Uren-Webster TM, Lewis C, Filby AL, Paull GC, Santos EM (2010) Mechanism of toxicity of di(2-ethylhexyl) phthalate on the reproductive health of male zebrafish. Aquat Toxicol 99:360–369

  • Waits A, Chen H, Kuo P, Wang C, Huang H, Chang W, Shih S, Huang P (2020) Urinary phthalate metabolites are associated with biomarkers of DNA damage and lipid peroxidation in pregnant women—Tainan Birth Cohort Study (TBCS). Environ Res 188:109863

    Article  CAS  Google Scholar 

  • Wang X, Jiang L, Ge L et al (2015) Oxidative DNA damage induced by di-(2-ethylhexyl) phthalate in HEK-293 cell line. Environ Toxicol Phar 39(3):1099–1106

    Article  CAS  Google Scholar 

  • Wang Y, Zeng Q, Sun Y, You L, Wang P, Li M, Yang P, Li J, Huang Z, Wang C, Li S, Dan Y, Li Y, Lu W (2016) Phthalate exposure in association with serum hormone levels, sperm DNA damage and spermatozoa apoptosis: a cross-sectional study in China. Environ Res 150:557–565

    Article  CAS  Google Scholar 

  • Wang Y, Wang T, Ban Y, Shen C, Shen Q, Chai X et al (2018) Di-(2-ethylhexyl) phthalate exposure modulates antioxidant enzyme activity and gene expression in juvenile and adult Daphnia magna. Arch Environ Contam Toxicol 75:145–156

    Article  CAS  Google Scholar 

  • Wu M, Xu L, Teng C, Xiao X, Hu W, Chen J, Tu W (2019) Involvement of oxidative stress in di-2-ethylhexyl phthalate (DEHP)-induced apoptosis of mouse NE-4C neural stem cells. Neurotoxicology 70:41–47

    Article  CAS  Google Scholar 

  • Xu Y, Gye MC (2018) Developmental toxicity of dibutyl phthalate and citrate ester plasticizers in Xenopus laevis embryos. Chemosphere 204:523–534

    Article  CAS  Google Scholar 

  • Xu H, Shao X, Zhang Z, Zou Y, Wu X, Yang L (2013) Oxidative stress and immune related gene expression following exposure to di-n-butyl phthalate and diethyl phthalate in zebrafish embryos. Ecotox Environ Safe 93:39–44

    Article  CAS  Google Scholar 

  • Xu Z, Xiong X, Zhao Y, Xiang W, Wu C (2020) Pollutants delivered every day: phthalates in plastic express packaging bags and their leaching potential. J Hazard Mat 384:121282

    Article  CAS  Google Scholar 

  • Yan B, Guo J, Liu X et al (2016) Oxidative stress mediates dibutyl phthalate induced anxiety-like behavior in Kunming mice. Environ Toxicol Phar 45:45–51

    Article  CAS  Google Scholar 

  • Yang WK, Chiang LF, Tan SW, Chen PJ (2018) Environmentally relevant concentrations of di(2-ethylhexyl)phthalate exposure alter larval growth and locomotion in medaka fish via multiple pathways. Sci Total Environ 640–641:512–522

    Article  Google Scholar 

  • Yang T, Wang H, Zhang X, Xiong J, Huang S, Koutrakis P (2020) Characterization of phthalates in sink and source materials: measurement methods and the impact on exposure assessment. J Hazard Mat 396:122689

    Article  CAS  Google Scholar 

  • Yu Y, Peng M, Liu Y, Ma J, Wang N, Ma S, Feng N, Lu S (2021) Co-exposure to polycyclic aromatic hydrocarbons and phthalates and their associations with oxidative stress damage in school children from South China. J Hazard Mat 401:123390

    Article  CAS  Google Scholar 

  • Yuan L, Qian L, Qian Y et al (2019) Bisphenol F-induced neurotoxicity toward zebrafish embryos. Environ Sci Technol 53(24):14638–14648

  • Zhang C, Yang X, He Z, Zhong Q, Guo J, Hu XJ, Xiong L, Liu D (2014) Influence of BBP exposure on nervous system and antioxidant system in zebrafish. Ecotoxicology 23(10):1854–1857

    Article  CAS  Google Scholar 

  • Zhang Y, Cao Y, Shi H, Jiang X, Zhao Y, Fang X, Xie C (2015) Could exposure to phthalates speed up or delay pubertal onset and development? A 1.5-year follow-up of a school-based population. Environ Int 83:41–49

    Article  CAS  Google Scholar 

  • Zhang L, Liu J, Liu H, Wan G, Zhang S (2016) The occurrence and ecological risk assessment of phthalate esters (PAEs) in urban aquatic environments of China. Ecotoxicol 24:967–984

    Article  Google Scholar 

  • Zhang Z, Zhang H, Zhang J, Wang Q, Yang G (2018) Occurrence, distribution, and ecological risks of phthalate esters in the seawater and sediment of Changjiang River Estuary and its adjacent area. Sci Total Environ 619–620:93–102

    Article  Google Scholar 

  • Zhang Q, Chen X, Huang X, Wang M, Wu J (2019) The association between prenatal exposure to phthalates and cognition and neurobehavior of children-evidence from birth cohorts. Neurotoxicology 73:199–212

    Article  CAS  Google Scholar 

  • Zhao X, Gao Y, Qi M (2014) Toxicity of phthalate esters exposure to carp (Cyprinus carpio) and antioxidant response by biomarker. Ecotoxicology 23:626–663

    Article  CAS  Google Scholar 

  • Zhao Y, Du ZH, Talukder M, Lin J, Li XN, Zhang C, Li JL (2018) Crosstalk between unfolded protein response and Nrf2-mediated antioxidant defense in Di-(2-ethylhexyl) phthalate-induced renal injury in quail (Coturnix japonica). Environ Pollut 242:1871–1879

    Article  CAS  Google Scholar 

  • Zhu Y, Wu X, Yan S, Huang K, Tong J, Gao H, Xie Y, Tao S, Ding P, Zhu P, Tao F (2020) Domain- and trimester-specific effect of prenatal phthalate exposure on preschooler cognitive development in the Ma’anshan Birth Cohort (MABC) study. Environ Int 142:105882

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our contributors for their dedication and compliance through the many stages of this research as well as the editors and reviewers whose comments helped to greatly improve this paper.

Funding

This work was supported by the Central Public-interest Scientific Institution Basal Research Fund, CAFS (NO. 2017HY-ZD0201, 2019ZY07, 2020TD11), the Central Public-interest Scientific Institution Basal Research Fund (No. Y2022QC18) and the Young Elite Scientists Sponsorship Program by CAST (2018QNRC001).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, methodology and investigation were performed by Lilai Yuan, Jia Liu, Ying Huang and Sen Pang; data analysis was performed by Gongming Shen, Chengju Wang, Yingren Li and Xiyan Mu. The first draft of the manuscript was written by Lilai Yuan and Xiyan Mu. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiyan Mu.

Ethics declarations

Ethics approval

All animal experiments were performed in accordance with current Chinese legislation and approved by the independent Animal Ethical Committee at the Chinese Academy of Fishery Sciences.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Bruno Nunes

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 249 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, L., Liu, J., Huang, Y. et al. Integrated toxicity assessment of DEHP and DBP toward aquatic ecosystem based on multiple trophic model assays. Environ Sci Pollut Res 29, 87402–87412 (2022). https://doi.org/10.1007/s11356-022-21863-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-21863-x

Keywords

Navigation