Skip to main content

Advertisement

Log in

Modeling and assessment of CO2 geological storage in the Eastern Deccan Basalt of India

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, the CO2 carbonatization potential of the Deccan basalt formation in Eastern India is evaluated by establishing a hydro-chemical field-scale model based on the geological, hydrological, and geochemical parameter of the basalt in the Mandla lobe. The reliable initial mineral thermodynamic parameters are obtained by validating the laboratory scale experiment of CO2-water-basalt reaction with a numerical method. Over 50% of injected carbon mineralized within 140 days for the Deccan basalt in the Mandla lobe, and the majority of CO2 is sequestered as ankerite, siderite, and calcite, which occupy a percent of 65%, 28%, and 7%, respectively. Clay minerals, including smectite and chlorite, are important secondary minerals contributing to the process of CO2 storage in the basaltic reservoir. Clay precipitation can promote the dissolution of silica- and aluminum-rich plagioclase and release Ca2+ to enhance the carbonatization of CO2 to Ca carbonates but competes for Fe2+ and Mg2+ from siderite and magnesite. Clay precipitation also impacts the CO2 carbonatization efficiency by changing the basalt conductivity. CO2 carbonatization efficiency was found to increase with the reduction of injection rate. However, slow flow rate can increase the pore clogging risk and induce large pressure build-up. This is the first field-scale assessment of CO2 mineralization potential of the Deccan basalt, which is one of the largest terrestrial flood basalt formations in the world. The results can provide valuable information and scientific support for India and global carbon mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

source minerals (f, g, h, i) for base_case, case_sm, case_chl and case_ncwp

Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

\({r}_{n}\) :

The kinetic reaction rate

\({k}_{n}\) :

The rate constant which is temperature and pH dependent

\({k}_{25}\) :

The reaction rate constant at 25ºC

\({\mathrm{A}}_{n}\) :

The specific reactive surface area per kg H2O of each mineral, cm2/g

\({\Omega }_{n}\) :

The kinetic mineral saturation ratio

E a. :

The activation energy

R :

Gas constants

T :

Absolute temperature, K

nu, H, and OH:

Indicate neutral, acid, and base mechanisms

a :

The activity of the species

\(\upsigma\) :

Power term

i :

Index of the ith grid in the field-scale model

\({\mathrm{\varnothing }}_{0}\) :

The initial porosity of the ith grid

\({k}_{0}\) :

The initial permeability of the ith grid

\({\mathrm{\varnothing }}_{i}\) :

The current porosity of the ith grid

\({k}_{i}\) :

The current permeability of the ith grid

k :

Number of the kth carbonates

l :

The total precipitated carbonates

t :

The injection time, s

\({V}_{i}\) :

The volume of ith grid, m3

\({F}_{k}^{i}\) :

The volume fraction of kth mineral in ith grid, %

\({F}_{n}^{i}\) :

The volume fraction of the inactive grid, %

\({\rho }_{k}\) :

The density of the kth carbonates, kg/m3

\({M}_{k}\) :

The molar weight of the kth carbonates, g

b :

The stoichiometric number of carbon in kth carbonates

\({c}_{\mathrm{co}2\left(\mathrm{aq}\right)}^{\mathrm{inj}},{c}_{\mathrm{hco}3-}^{\mathrm{inj}}\) :

The molar concentration of CO2(aq) and HCO3 in the injected water, mole/kgH2O

\({c}_{\mathrm{co}2\left(\mathrm{aq}\right)}^{\mathrm{ini}},{c}_{\mathrm{hco}3-}^{\mathrm{ini}}\) :

The molar concentration of CO2(aq) and HCO3 in the initial water, mole/kgH2O

r :

The injection rate, kg/s

\({m}_{k}^{t}\) :

The total mass of carbon in precipitated carbonates k at time t, kg

\({{m}_{\mathrm{DIC}}}^{t}\) :

The total DIC at time t, kg

E :

The carbon mineralization efficiency,

References

  • Abraham-A RM, Tassinari CCG (2021) CO2 storage algorithms involving the hybrid geological reservoir of the Irati Formation, Parana Basin. Int J Greenhouse Gas Control 112:103504

    Article  CAS  Google Scholar 

  • Adeoye JT, Menefee AH, Xiong W, Wells RK, Skemer P, Giammar DE et al (2017) Effect of transport limitations and fluid properties on reaction products in fractures of unaltered and serpentinized basalt exposed to high PCO2 fluids. Int J Greenhouse Gas Control 63:310–320

    Article  CAS  Google Scholar 

  • Amram K, Ganor J (2005) The combined effect of pH and temperature on smectite dissolution rate under acidic conditions. Geochim Cosmochim Acta 69(10):2535–2546

    Article  CAS  Google Scholar 

  • Andreani M, Luquot L, Gouze P, Godard M, Hoise E, Gibert B (2009) Experimental study of carbon sequestration reactions controlled by the percolation of CO2-rich brine through peridotites. Environ Sci Technol 43(4):1226–1231

    Article  CAS  Google Scholar 

  • Aradottir ESP, Sonnenthal EL, Bjornsson J, Jonsson H (2012) Multidimensional reactive transport modeling of CO2 mineral sequestration in basalts at the Hellisheidi geothermal field, Iceland. Int J Greenhouse Gas Control 9:24–40

    Article  CAS  Google Scholar 

  • Berner RA, Raiswell R (1983) Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochim Cosmochim Acta 47(5):855–862

    Article  CAS  Google Scholar 

  • Bontognali TRR, Martinez-Ruiz F, McKenzie JA, Bahniuk A, Anjos S, Vasconcelos C (2014) Smectite synthesis at low temperature and neutral pH in the presence of succinic acid. Appl Clay Sci 101:553–557

    Article  CAS  Google Scholar 

  • Buscheck TA, Sun Y, Chen M, Hao Y, Wolery TJ, Bourcier WL et al (2012) Active CO2 reservoir management for carbon storage: analysis of operational strategies to relieve pressure buildup and improve injectivity. Int J Greenhouse Gas Control 6:230–245

    Article  CAS  Google Scholar 

  • Buscheck TA, White JA, Chen M, Sun Y, Hao Y, Aines RD et al (2014) Pre-injection brine production for managing pressure in compartmentalized CO2 storage reservoirs. Energy Procedia 63:5333–5340

    Article  CAS  Google Scholar 

  • Cadogan SP, Maitland GC, Trusler JPM (2014) Diffusion coefficients of CO2 and N2 in water at temperatures between 298.15 K and 423.15 K at pressures up to 45 MPa. J Chem Eng Data 59(2):519–525

    Article  CAS  Google Scholar 

  • Callow B, Falcon-Suarez I, Ahmed S et al (2018) Assessing the carbon sequestration potential of basalt using X-ray micro-CT and rock mechanics. Int J Greenhouse Gas Control 70:146–156

    Article  CAS  Google Scholar 

  • IPCC (2005) Special report on carbon dioxide capture and storage, IPCC, Cambridge, the UK and New York, USA

  • Clark DE, Oelkers EH, Gunnarsson I, Sigfússon B, Snæbjörnsdóttir SÓ, Aradóttir ES et al (2020) CarbFix2: CO2 and H2S mineralization during 3.5 years of continuous injection into basaltic rocks at more than 250 °C. Geochimica et Cosmochimica Acta 279:45–66

    Article  CAS  Google Scholar 

  • Gislason OSR (2001) The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25°C and pH = 3 and 11. Geochimica et Cosmochimica Acta 65(21):3671–3681

    Article  Google Scholar 

  • Gislason SR, Wolff-Boenisch D, Stefansson A, Oelkers EH, Gunnlaugsson E, Sigurdardottir H et al (2010) Mineral sequestration of carbon dioxide in basalt: a pre-injection overview of the CarbFix project. Int J Greenhouse Gas Control 4(3):537–545

    Article  CAS  Google Scholar 

  • Gysi AP, Stefánsson A (2008) Numerical modelling of CO2-water-basalt interaction. Mineral Mag 72(1):55–59

    Article  CAS  Google Scholar 

  • Gysi AP, Stefánsson A (2012a) Mineralogical aspects of CO2 sequestration during hydrothermal basalt alteration — an experimental study at 75 to 250°C and elevated pCO2. Chem Geol 306–307:146–159

    Article  Google Scholar 

  • Gysi AP, Stefánsson A (2012b) Experiments and geochemical modeling of CO2 sequestration during hydrothermal basalt alteration. Chem Geol 306–307:10–28

    Article  Google Scholar 

  • Heath JE, McKenna SA, Dewers TA, Roach JD, Kohos PH (2014) Multiwell CO2 injectivity: impact of boundary conditions and brine extraction on geologic CO2 storage efficiency and pressure buildup. Environ Sci Technol 48(2):1067–1074

    Article  CAS  Google Scholar 

  • Hellevang H, Haile BG, Tetteh A (2017) Experimental study to better understand factors affecting the CO2 mineral trapping potential of basalt. Greenhouse Gas Sci Technol 7(1):143–157

    Article  CAS  Google Scholar 

  • Kanakiya S, Adam L, Esteban L, Rowe MC, Shane P (2017) Dissolution and secondary mineral precipitation in basalts due to reactions with carbonic acid. J Geophys Res Solid Earth 122(6):4312–4327

    Article  CAS  Google Scholar 

  • Keller G, Adatte T, Gardin S, Bartolini A, Bajpai S (2008) Main Deccan volcanism phase ends near the K-T boundary: evidence from the Krishna-Godavari Basin, SE India. Earth Planet Sci Lett 268(3–4):293–311

    Article  CAS  Google Scholar 

  • Krishnamurthy P (2020) The Deccan Volcanic Province (DVP), India: a review. J Geol Soc India 96(1):9–35

    Article  CAS  Google Scholar 

  • Kumar A, Shrivastava JP (2019a) Long-term CO2 capture-induced calcite crystallographic changes in Deccan basalt, India. Environ Earth Sci 78(13):376. https://doi.org/10.1007/s12665-019-8378-x

    Article  CAS  Google Scholar 

  • Kumar A, Shrivastava JP (2019b) Thermodynamic modelling and experimental validation of CO2 mineral sequestration in Mandla Basalt of the Eastern Deccan Volcanic Province, India. J Geol Soc India 93(3):269–277

    Article  CAS  Google Scholar 

  • Kumar A, Shrivastava JP (2019c) Carbon capture induced changes in Deccan basalt: a mass-balance approach. Greenhouse Gas Sci Technol 9(6):1158–1180

    Article  CAS  Google Scholar 

  • Kumar A, Shrivastava JP, Pathak V (2017) Mineral carbonatization reactions under water-saturated, hydrothermal-like conditions and numerical simulations of CO2 sequestration in tholeiitic basalt of the Eastern Deccan Volcanic Province, India. Applied Geochemistry: S0883292717302196

  • Lasaga AC, Soler JM, Ganor J, Burch TE, Nagy KL (1994) Chemical weathering rate laws and global geochemical cycles ☆. Geochim Cosmochim Acta 58(10):2361–2386

    Article  CAS  Google Scholar 

  • Li X, Kind R, Yuan X, Woelbern I, Hanka W (2004) Rejuvenation of the lithosphere by the Hawaiian plume. Nature 427(6977):827–829

    Article  CAS  Google Scholar 

  • Liu D, Agarwal R, Li Y (2016) Numerical simulation and optimization of CO2 -enhanced water recovery by employing a genetic algorithm. J Clean Prod 133:994–1007

    Article  CAS  Google Scholar 

  • Liu D, Agarwal R, Li Y (2017) Numerical simulation and optimization of CO2 enhanced shale gas recovery using a genetic algorithm. J Clean Prod 164:1093–1104

    Article  CAS  Google Scholar 

  • Liu D, Agarwal R, Li Y, Yang S (2019) Reactive transport modeling of mineral carbonatization in unaltered and altered basalts during CO2 sequestration. Int J Greenhouse Gas Control 85:109–120

    Article  CAS  Google Scholar 

  • Manning CE, Bird DK (1995) Porosity, permeability, and basalt metamorphism. Geological Society of America 296:123–140

    Article  Google Scholar 

  • Marieni C, Henstock TJ, Teagle DAH (2013) Geological storage of CO2 within the oceanic crust by gravitational trapping. Geophys Res Lett 40(23):6219–6224

    Article  CAS  Google Scholar 

  • Matter JM, Stute M, Snæbjörnsdottir SÓ, Oelkers EH, Gislason SR, Aradottir ES et al (2016) Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science 352(6291):1312–1314

    Article  CAS  Google Scholar 

  • McGrail BP, Schaef HT, Ho AM, Chien YJ, Dooley JJ, Davidson CL (2006) Potential for carbon dioxide sequestration in flood basalts. J Geophys Res 111(B12)

  • Menefee AH, Li P, Giammar DE, Ellis BR (2017) Roles of transport limitations and mineral heterogeneity in carbonatization of fractured basalts. Environ Sci Technol 51(16):9352–9362

    Article  CAS  Google Scholar 

  • Nicolas S, Pruess K et al (2003) CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100°C and up to 600 bar. Geochimica Et Cosmochimica Acta 67(16):3015–3031

    Article  Google Scholar 

  • Palandri JL, Kharaka YK (2004) A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. Geological Survey Menlo Park CA

  • Pattanayak JPSK (2002) Basalts of the Eastern Deccan Volcanic Province, India. Gondwana Res 5(3):649–665

    Article  Google Scholar 

  • Pawar NJ, Pawar JB, Kumar S, Supekar A (2008) Geochemical eccentricity of ground water allied to weathering of basalts from the Deccan Volcanic Province, India: insinuation on CO2 consumption. Aquat Geochem 14(1):41–71

    Article  CAS  Google Scholar 

  • Peretyazhko TS, Niles PB, Sutter B, Morris RV, Agresti DG, Le L et al (2018) Smectite formation in the presence of sulfuric acid: implications for acidic smectite formation on early Mars. Geochim Cosmochim Acta 220:248–260

    Article  CAS  Google Scholar 

  • Perumal SK (2014) Petrophysical properties of the Deccan basalts exposed in the Western Ghats escarpment around Mahabaleshwar and Koyna, India. J Asia Earth Sci 84(8):176–187

    Google Scholar 

  • Peuble S, Godard M, Luquot L, Andreani M, Martinez I, Gouze P (2015) CO2 geological storage in olivine rich basaltic aquifers: new insights from reactive-percolation experiments. Appl Geochem 52:174–190

    Article  CAS  Google Scholar 

  • Pham T, Aagaard P, Hellevang H (2012) On the potential for CO2 mineral storage in continental flood basalts – PHREEQC batch- and 1D diffusion–reaction simulations. Geochemical Transactions 13. https://doi.org/10.1186/1467-4866-13-5

  • Phukan M, Hong PV, Haese RR (2020) Mineral dissolution and precipitation reactions and their net balance controlled by mineral surface area: an experimental study on the interactions between continental flood basalts and CO2-saturated water at 80 bars and 60°C. Chem Geol 559:119909

    Article  Google Scholar 

  • Pokrovsky OS, Golubev SV, Schott J (2005) Dissolution kinetics of calcite, dolomite and magnesite at 25 C and 0 to 50 atm pCO2. Chem Geol 217(3–4):239–255

    Article  CAS  Google Scholar 

  • Prasad PSR, Sarma DS, Sudhakar L, Basavaraju U, Charan SN (2009) Geological sequestration of carbon dioxide in Deccan basalts: preliminary laboratory study. Currentence 96(2):288–291

    CAS  Google Scholar 

  • Pruess K (1991) TOUGH2: a general-purpose numerical simulator for multiphase fluid and heat flow. Nasa Sti/recon Technical Report N 92

  • Pruess K, Oldenburg CM, Moridis GJ (1999) TOUGH2 User's Guide Version 2. Office of Scientific & Technical Information Technical Reports

  • Ragnheidardottir E, Sigurdardottir H, Kristjansdottir H, Harvey W (2011) Opportunities and challenges for CarbFix: an evaluation of capacities and costs for the pilot scale mineralization sequestration project at Hellisheidi, Iceland and beyond. Int J Greenhouse Gas Control 5(4):1065–1072

    Article  Google Scholar 

  • Rani N, Pathak V, Shrivastava JP (2013) CO2 mineral trapping: an experimental study on the carbonatization of basalts from the Eastern Deccan Volcanic Province, India. Procedia Earth & Planetary Science 7:806–809

    Article  CAS  Google Scholar 

  • Schaef HT, McGrail BP, Owen AT (2009) Basalt-CO2-H2O interactions and variability in carbonate mineralization rates. In: Gale J, Herzog H and Braitsch J (J. Gale, H. Herzog and J. Braitsch (Eds.), 9th International Conference on Greenhouse Gas Control Technologies, pp. 4899–4906

  • Schaef HT, McGrail BP, Owen AT (2010) Carbonate mineralization of volcanic province basalts. Int J Greenhouse Gas Control 4(2):249–261

    Article  CAS  Google Scholar 

  • Shrivastava J, Pathak V (2016) Geochemical Modeling and Experimental Studies on Mineral Carbonatization of Primary Silicates for Long-term Immobilization of CO2 in Basalt from the Eastern Deccan Volcanic Province. Journal of Indian Geophysical Union, Special Volume: pp: 42–58

  • Shrivastava JP, Mahoney JJ, Kashyap MR (2014) Trace elemental and Nd-Sr-Pb isotopic compositional variation in 37 lava flows of the Mandla lobe and their chemical relation to the western Deccan stratigraphic succession, India. Miner Petrol 108(6):801–817

    Article  CAS  Google Scholar 

  • Snæbjörnsdóttir SÓ, Gislason SR, Galeczka IM, Oelkers EH (2018) Reaction path modelling of in-situ mineralisation of CO2 at the CarbFix site at Hellisheidi, SW-Iceland. Geochimica Et Cosmochimica Acta 220:348–366

    Article  Google Scholar 

  • Srinivas KNSS, Kishore PP, Rao DVS (2019) The geological site characterisation of the Mandla region, Eastern Deccan Volcanic Province, Central India. J Earth Syst Sci 128(5):139

    Article  Google Scholar 

  • Steefel CI (1994) A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions phase application to reactive flow in single phase hydrothermal systems. Amer J Sci 294(5):529–592

    Article  CAS  Google Scholar 

  • Talman S (2015) Subsurface geochemical fate and effects of impurities contained in a CO2 stream injected into a deep saline aquifer: what is known. Int J Greenhouse Gas Control 40:267–291

    Article  CAS  Google Scholar 

  • Unit TECI (2020) Net zero: why is it necessary? https://www.theiet.org/impact-society/sectors/education-and-skills/education-and-skills-blog-posts/what-is-net-zero-and-why-is-it-necessary/. Accessed 07-04-2022

  • USGS (2020) Groundwater age. https://www.usgs.gov/mission-areas/water-resources/science/groundwater-age?. Accessed 07-04-2022

  • Wolff-Boenisch D, Galeczka IM (2018) Flow-through reactor experiments on basalt-(sea)water-CO2 reactions at 90°C and neutral pH. What happens to the basalt pore space under post-injection conditions? Int J Greenhouse Gas Control 68:176–190

    Article  CAS  Google Scholar 

  • Xiong W, Wells RK, Menefee AH, Skemer P, Ellis BR, Giammar DE (2017) CO2 mineral trapping in fractured basalt. Int J Greenhouse Gas Control 66:204–217

    Article  CAS  Google Scholar 

  • Xu T, Sonnenthal E, Spycher N, Pruess K (2006) TOUGHREACT—a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestration. Comput Geosci 32(2):145–165

    Article  CAS  Google Scholar 

  • Yeh GT, Tripathi VS (1991) A model for simulating transport of reactive multispecies components: model development and demonstration. Water Resour Res 27(12):3075–3094

    Article  CAS  Google Scholar 

  • Zhu C, Liu Z, Zhang Y, Wang C, Scheafer A, Lu P, Zhang G, Georg RB, Yuan H, Rimstidt JD (2016) Measuring silicate mineral dissolution rates using Si isotope doping. Chem Geol 445:146–163

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the help of Professor Shrivastava and his research group in the Department of Geology of Delhi University in India for providing important data for validation of our lab-scale numerical model.

Funding

This work was funded by the National Natural Science Foundation of China (Grant No. 41902253) and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (No. CUG192716).

Author information

Authors and Affiliations

Authors

Contributions

Danqing Liu: conceptualization; methodology; validation; formal analysis; writing—original draft; funding acquisition

Ramesh Agarwal: conceptualization; resources; writing—review and editing; supervision

Fang Liu: investigation, data curation

Sen Yang: data curation

Yilian Li: writing—review and editing

Corresponding author

Correspondence to Danqing Liu.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: V.V.S.S. Sarma

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1056 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Agarwal, R., Liu, F. et al. Modeling and assessment of CO2 geological storage in the Eastern Deccan Basalt of India. Environ Sci Pollut Res 29, 85465–85481 (2022). https://doi.org/10.1007/s11356-022-21757-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-21757-y

Keywords

Navigation