Skip to main content

Advertisement

Log in

Prospects in the bioremediation of petroleum hydrocarbon contaminants from hypersaline environments: A review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Hypersaline environments are underappreciated and are frequently exposed to pollution from petroleum hydrocarbons. Unlike other environs, the high salinity conditions present are a deterrent to various remediation techniques. There is also production of hypersaline waters from oil-polluted ecosystems which contain toxic hydrophobic pollutants that are threat to public health, environmental protection, and sustainability. Currently, innovative advances are being proposed for the remediation of oil-contaminated hypersaline regions. Such advancements include the exploration and stimulation of native microbial communities capable of utilizing and degrading petroleum hydrocarbons. However, prevailing salinity in these environments is unfavourable for the growth of non-halophylic microorganisms, thus limiting effective bioremediation options. An in-depth understanding of the potentials of various remediation technologies of hydrocarbon-polluted hypersaline environments is lacking. Thus, we present an overview of petroleum hydrocarbon pollution in hypersaline ecosystems and discuss the challenges and prospects associated with several technologies that may be employed in remediation of hydrocarbon pollution in the presence of delimiting high salinities. The application of biological remediation technologies including the utilization of halophilic and halotolerant microorganisms is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abdullah SRS, Al-Baldawi IA, Almansoory AF, Purwanti IF, Al-Sbani NH, Sharuddin SSN (2020) Plant-assisted remediation of hydrocarbons in water and soil: Application, mechanisms challenges and opportunities. Chemosphere 247:125932

    Article  CAS  Google Scholar 

  • Abou Khalil C, Fortin N, Prince RC, Greer CW, Lee K, Boufadel MC (2021) Crude oil biodegradation in upper and supratidal seashores. J Hazard Mater 416:125919

    Article  CAS  Google Scholar 

  • Abou Khalil C, Prince VL, Prince RC, Greer CW, Lee K, Zhang B, Boufadel MC (2021) Occurrence and biodegradation of hydrocarbons at high salinities. Sci Total Environ 762:143165

    Article  CAS  Google Scholar 

  • Acosta RubAa SM, Campocosio AT (2016) Halotolerant biofilm in coffee beans for phenanthrene degradation under selected culture conditions through a Plackett-Burman experimental design. J Bioremediat Biodegrad 7:6

    Article  CAS  Google Scholar 

  • Adeleke R, Bello-Akinosho M, Maila M, Lee NM (2020) 8 Roles of extremophiles in the bioremediation of polycyclic aromatic hydrocarbon contaminated soil environment, Biotechnological applications of extremophilic microorganisms. De Gruyter, pp. 197–230

  • Agarwal M (2021) 10 methods for oil spill cleanup at sea, In: Marine environment. https://www.marineinsight.com/environment/10-methods-for-oil-spill-cleanup-at-sea/

  • Al-Baldawi I, Abdullah SS, Anuar N, Mushrifah I (2017) Bioaugmentation for the enhancement of hydrocarbon phytoremediation by rhizobacteria consortium in pilot horizontal subsurface flow constructed wetlands. Int J Environ Sci Technol 14:75–84

    Article  CAS  Google Scholar 

  • Al-Mailem DM, Sorkhoh NA, Al-Awadhi H, Eliyas M, Radwan SS (2010) Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf. Extremophiles 14:321–328

    Article  CAS  Google Scholar 

  • Al-Mailem DM, Eliyas M, Radwan SS (2012) Enhanced haloarchaeal oil removal in hypersaline environments via organic nitrogen fertilization and illumination. Extremophiles 16:751–758

    Article  CAS  Google Scholar 

  • Al-Mailem DM, Eliyas M, Radwan SS (2013) Oil-bioremediation potential of two hydrocarbonoclastic, diazotrophic Marinobacter strains from hypersaline areas along the Arabian Gulf coasts. Extremophiles 17:463–470

    Article  CAS  Google Scholar 

  • Al-Mallah M, Goutx M, Mille G, Bertrand J-C (1990) Production of emulsifying agents during growth of a marine Alteromonas in sea water with eicosane as carbon source, a solid hydrocarbon. Oil Chem Pollut 6:289–305

    Article  CAS  Google Scholar 

  • Arulazhagan P, Vasudevan N (2009) Role of a moderately halophilic bacterial consortium in the biodegradation of polyaromatic hydrocarbons. Mar Pollut Bull 58:256–262

    Article  CAS  Google Scholar 

  • Arulazhagan P, Vasudevan N, Yeom I (2010) Biodegradation of polycyclic aromatic hydrocarbon by a halotolerant bacterial consortium isolated from marine environment. Int J Environ Sci Technol 7:639–652

    Article  CAS  Google Scholar 

  • Arulazhagan P, Vasudevan N (2011) Biodegradation of polycyclic aromatic hydrocarbons by a halotolerant bacterial strain Ochrobactrum sp. VA1. Mar Pollut Bull 62:388–394

    Article  CAS  Google Scholar 

  • Avrahamov N, Antler G, Yechieli Y, Gavrieli I, Joye S, Saxton M, Turchyn A, Sivan O (2014) Anaerobic oxidation of methane by sulfate in hypersaline groundwater of the Dead Sea aquifer. Geobiology 12:511–528

    Article  CAS  Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques-classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32:180

    Article  CAS  Google Scholar 

  • Bai X, Ye Z-f, Li Y-f, Zhou L-c, Yang L-q (2010) Preparation of crosslinked macroporous PVA foam carrier for immobilization of microorganisms. Process Biochem 45:60–66

    Article  CAS  Google Scholar 

  • Bak F, Bonnichsen L, Jørgensen NOG, Nicolaisen MH, Nybroe O (2014) The biosurfactant viscosin transiently stimulates n-hexadecane mineralization by a bacterial consortium. Appl Microbiol Biotechnol 99:1475–1483

    Article  CAS  Google Scholar 

  • Balan SS, Kumar CG, Jayalakshmi S (2017) Aneurinifactin, a new lipopeptide biosurfactant produced by a marine Aneurinibacillus aneurinilyticus SBP-11 isolated from Gulf of Mannar: Purification, characterization and its biological evaluation. Microbiol Res 194:1–9

    Article  CAS  Google Scholar 

  • Bao M, Chen Q, Gong Y, Li Y, Wang H, Jiang G (2013) Removal efficiency of heavy oil by free and immobilised microorganisms on laboratory-scale. Can J Chem Eng 91:1–8

    Article  CAS  Google Scholar 

  • Bao MT, Wang LN, Sun PY, Cao LX, Zou J, Li YM (2012) Biodegradation of crude oil using an efficient microbial consortium in a simulated marine environment. Mar Pollut Bull 64:1177–1185

    Article  CAS  Google Scholar 

  • Barreto R, Hissa D, Paes F, Grangeiro T, Nascimento R, Rebelo L, Craveiro A, Melo V (2010) New approach for petroleum hydrocarbon degradation using bacterial spores entrapped in chitosan beads. Bioresour Technol 101:2121–2125

    Article  CAS  Google Scholar 

  • Bazire A, Diab F, Jebbar M, Haras D (2007) Influence of high salinity on biofilm formation and benzoate assimilation by Pseudomonas aeruginosa. J Ind Microbiol Biotechnol 34:5–8

    Article  CAS  Google Scholar 

  • Berlendis S, Cayol JL, Verhe F, Laveau S, Tholozan JL, Ollivier B, Auria R (2010) First evidence of aerobic biodegradation of BTEX compounds by pure cultures of Marinobacter. Appl Biochem Biotechnol 160:1992–1999

    Article  CAS  Google Scholar 

  • Bertrand J, Almallah M, Acquaviva M, Mille G (1990) Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Lett Appl Microbiol 11:260–263

    Article  CAS  Google Scholar 

  • Betancur-Galvis LA, Alvarez-Bernal D, Ramos-Valdivia AC, Dendooven L (2006) Bioremediation of polycyclic aromatic hydrocarbon-contaminated saline-alkaline soils of the former Lake Texcoco. Chemosphere 62:1749–1760

    Article  CAS  Google Scholar 

  • Bezza FA, Chirwa EM (2015) Biosurfactant from Paenibacillus dendritiformis and its application in assisting polycyclic aromatic hydrocarbon (PAH) and motor oil sludge removal from contaminated soil and sand media. Process Saf Environ Prot 98:354–364

    Article  CAS  Google Scholar 

  • Bezza FA, Chirwa EMN (2017) Pyrene biodegradation enhancement potential of lipopeptide biosurfactant produced by Paenibacillus dendritiformis CN5 strain. J Hazard Mater 321:218–227

    Article  CAS  Google Scholar 

  • Bezza Fa CEMN (2015) Petroleum hydrocarbon spills in the environment and abundance of microbial community capable of biosurfactant production. J Pet Environ Biotechnol 6:5

    Google Scholar 

  • Bonfa MR, Grossman MJ, Mellado E, Durrant LR (2011) Biodegradation of aromatic hydrocarbons by Haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water. Chemosphere 84:1671–1676

    Article  CAS  Google Scholar 

  • Bonfa MR, Grossman MJ, Piubeli F, Mellado E, Durrant LR (2013) Phenol degradation by halophilic bacteria isolated from hypersaline environments. Biodegradation 24:699–709

    Article  CAS  Google Scholar 

  • Bordoloi NK, Konwar BK (2008) Microbial surfactant-enhanced mineral oil recovery under laboratory conditions. Colloids Surf B Biointerfaces 63:73–82

    Article  CAS  Google Scholar 

  • Brito EM, Guyoneaud R, Goni-Urriza M, Ranchou-Peyruse A, Verbaere A, Crapez MA, Wasserman JC, Duran R (2006) Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay, Brazil. Res Microbiol 157:752–762

    Article  CAS  Google Scholar 

  • Cachada A, Rocha-Santos T, Duarte AC (2018) Soil and pollution: an introduction to the main issues, Soil pollution. Elsevier, pp. 1–28

  • Cameotra SS, Makkar RS (2010) Biosurfactant-enhanced bioremediation of hydrophobic pollutants. Pure Appl Chem 82:97–116

    Article  CAS  Google Scholar 

  • Cao B, Nagarajan K, Loh KC (2009) Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 85:207–228

    Article  CAS  Google Scholar 

  • Castillo-Carvajal LC, Sanz-Martin JL, Barragan-Huerta BE (2014) Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: a review. Environ Sci Pollut Res Int 21:9578–9588

    Article  CAS  Google Scholar 

  • Cervantes F, Duong-Dac T, Roest K, Akkermans A, Lettinga G, Field J (2003) Enrichment and immobilization of quinone-respiring bacteria in anaerobic granular sludge. Water Sci Technol 48:9–16

    Article  CAS  Google Scholar 

  • Chakraborty R, Borglin SE, Dubinsky EA, Andersen GL, Hazen TC (2012) Microbial response to the MC-252 oil and Corexit 9500 in the Gulf of Mexico. Front Microbiol 3:357

    Article  Google Scholar 

  • Chen Q, Li J, Liu M, Sun H, Bao M (2017) Study on the biodegradation of crude oil by free and immobilized bacterial consortium in marine environment. PLoS One 12:e0174445

    Article  CAS  Google Scholar 

  • Costerton JW, Geesey G, Cheng K (1978) How bacteria stick. Sci Am 238:86–95

    Article  CAS  Google Scholar 

  • Couto MNP, Basto MCP, Vasconcelos MTS (2011) Suitability of different salt marsh plants for petroleum hydrocarbons remediation. Chemosphere 84:1052–1057

    Article  CAS  Google Scholar 

  • Crisafi F, Genovese M, Smedile F, Russo D, Catalfamo M, Yakimov M, Giuliano L, Denaro R (2016) Bioremediation technologies for polluted seawater sampled after an oil-spill in Taranto Gulf (Italy): A comparison of biostimulation, bioaugmentation and use of a washing agent in microcosm studies. Mar Pollut Bull 106:119–126

    Article  CAS  Google Scholar 

  • da Silva FS, Pylro VS, Fernandes PL, Barcelos GS, Kalks KH, Schaefer CE, Totola MR (2015) Unexplored Brazilian oceanic island host high salt tolerant biosurfactant-producing bacterial strains. Extremophiles 19:561–572

    Article  CAS  Google Scholar 

  • Dahal RH, Chaudhary DK, Kim J (2017) Acinetobacter halotolerans sp. nov., a novel halotolerant, alkalitolerant, and hydrocarbon degrading bacterium, isolated from soil. Arch Microbiol 199:701–710

    Article  CAS  Google Scholar 

  • Dalvi S, Nicholson C, Najar F, Roe BA, Canaan P, Hartson SD, Fathepure BZ (2014) Arhodomonas sp. strain Seminole and its genetic potential to degrade aromatic compounds under high-salinity conditions. Appl Environ Microbiol 80:6664–6676

    Article  CAS  Google Scholar 

  • Das P, Mukherjee S, Sen R (2008) Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J Appl Microbiol 104:1675–1684

    Article  CAS  Google Scholar 

  • Das R, Kazy SK (2014) Microbial diversity, community composition and metabolic potential in hydrocarbon contaminated oily sludge: prospects for in situ bioremediation. Environ Sci Pollut Res Int 21:7369–7389

    Article  CAS  Google Scholar 

  • Dastgheib SM, Amoozegar MA, Khajeh K, Ventosa A (2011) A halotolerant Alcanivorax sp. strain with potential application in saline soil remediation. Appl Microbiol Biotechnol 90:305–312

    Article  CAS  Google Scholar 

  • Dastgheib SM, Amoozegar MA, Khajeh K, Shavandi M, Ventosa A (2012) Biodegradation of polycyclic aromatic hydrocarbons by a halophilic microbial consortium. Appl Microbiol Biotechnol 95:789–798

    Article  CAS  Google Scholar 

  • Dave D, Ghaly AE (2011) Remediation technologies for marine oil spills: A critical review and comparative analysis. Am J Environ Sci 7:423

    Article  CAS  Google Scholar 

  • de Almeida Couto CR, Alvarez VM, Marques JM, de Azevedo JD, Seldin L (2015) Exploiting the aerobic endospore-forming bacterial diversity in saline and hypersaline environments for biosurfactant production. BMC Microbiol 15:240

    Article  CAS  Google Scholar 

  • de França ÍWL, Lima AP, Lemos JAM, Lemos CGF, Melo VMM, de Sant’ana HB, Gonçalves LRB (2015) Production of a biosurfactant by Bacillus subtilis ICA56 aiming bioremediation of impacted soils. Catal Today 255:10–15

    Article  CAS  Google Scholar 

  • Diaz MP, Boyd KG, Grigson SJ, Burgess JG (2002) Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD-M, immobilized onto polypropylene fibers. Biotechnol Bioeng 79:145–153

    Article  CAS  Google Scholar 

  • Díaz MP, Grigson SJ, Peppiatt CJ, Burgess JG (2000) Isolation and characterization of novel hydrocarbon-degrading euryhaline consortia from crude oil and mangrove sediments. Marine Biotechnol 2:522–532

    Article  Google Scholar 

  • Djeridi I, Militon C, Grossi V, Cuny P (2013) Evidence for surfactant production by the haloarchaeon Haloferax sp. MSNC14 in hydrocarbon-containing media. Extremophiles 17:669–675

    Article  CAS  Google Scholar 

  • Domingues S, Rosario N, Candido A, Neto D, Nielsen KM, Da Silva GJ (2019) Competence for natural transformation is common among clinical strains of resistant Acinetobacter spp. Microorganisms 7:2

    Article  CAS  Google Scholar 

  • Donio MBS, Ronica FA, Viji VT, Velmurugan S, Jenifer JSCA, Michaelbabu M, Dhar P, Citarasu T (2013) Halomonas sp. BS4, A biosurfactant producing halophilic bacterium isolated from solar salt works in India and their biomedical importance. Springerplus 2:1–10

    Article  CAS  Google Scholar 

  • Dos Santos JJ, Maranho LT (2018) Rhizospheric microorganisms as a solution for the recovery of soils contaminated by petroleum: A review. J Environ Manage 210:104–113

    Article  CAS  Google Scholar 

  • Duce RA, Galloway JN, Liss PS (2009) The impacts of atmospheric deposition to the ocean on marine ecosystems and climate. WMO Bulletin 58:61

    Google Scholar 

  • Ebadi A, Khoshkholgh Sima NA, Olamaee M, Hashemi M, Ghorbani Nasrabadi R (2017) Effective bioremediation of a petroleum-polluted saline soil by a surfactant-producing Pseudomonas aeruginosa consortium. J Adv Res 8:627–633

    Article  CAS  Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275

    Article  CAS  Google Scholar 

  • Elazzazy AM, Abdelmoneim TS, Almaghrabi OA (2015) Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia. Saudi J Biol Sci 22:466–475

    Article  CAS  Google Scholar 

  • Enzmann F, Mayer F, Rother M, Holtmann D (2018) Methanogens: biochemical background and biotechnological applications. AMB Express 8:1

    Article  CAS  Google Scholar 

  • Fang G, Si Y, Tian C, Zhang G, Zhou D (2012) Degradation of 2, 4-D in soils by Fe 3 O 4 nanoparticles combined with stimulating indigenous microbes. Environ Sci Pollut Res 19:784–793

    Article  CAS  Google Scholar 

  • Fang T, Pan R, Jiang J, He F, Wang H (2016) Effect of salinity on community structure and naphthalene dioxygenase gene diversity of a halophilic bacterial consortium. Front Environ Sci Eng 10(6):16

    Article  CAS  Google Scholar 

  • Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol 5:173

    Article  Google Scholar 

  • Fu W, Oriel P (1998) Gentisate 1, 2-dioxygenase from Haloferax sp. D1227. Extremophiles 2:439–446

    Article  CAS  Google Scholar 

  • Ganesh Kumar A, Vijayakumar L, Joshi G, Magesh Peter D, Dharani G, Kirubagaran R (2014) Biodegradation of complex hydrocarbons in spent engine oil by novel bacterial consortium isolated from deep sea sediment. Bioresour Technol 170:556–564

    Article  CAS  Google Scholar 

  • Gao W, Cui Z, Li Q, Xu G, Jia X, Zheng L (2013) Marinobacter nanhaiticus sp. nov., polycyclic aromatic hydrocarbon-degrading bacterium isolated from the sediment of the South China Sea. Antonie Van Leeuwenhoek 103:485–491

    Article  CAS  Google Scholar 

  • Garcia MT, Ventosa A, Mellado E (2005) Catabolic versatility of aromatic compound-degrading halophilic bacteria. FEMS Microbiol Ecol 54:97–109

    Article  CAS  Google Scholar 

  • Gentili AR, Cubitto MA, Ferrero M, Rodriguéz MS (2006) Bioremediation of crude oil polluted seawater by a hydrocarbon-degrading bacterial strain immobilized on chitin and chitosan flakes. Int Biodeterior Biodegradation 57:222–228

    Article  CAS  Google Scholar 

  • Gesheva V, Stackebrandt E, Vasileva-Tonkova E (2010) Biosurfactant production by halotolerant Rhodococcus fascians from Casey Station, Wilkes Land, Antarctica. Curr Microbiol 61:112–117

    Article  CAS  Google Scholar 

  • Ghafari S, Baboli Z, Jorfi S, Abtahi M, Saeedi R, Darvishi Cheshmeh Soltani R, Mirzaee SA, Neisi A (2019) Surfactant-enhanced bioremediation of n-Hexadecane-contaminated soil using halo-tolerant bacteria Paenibacillus glucanolyticus sp. Strain T7-AHV isolated from marine environment. Chem Biochem Eng 33:111–123

    Article  CAS  Google Scholar 

  • Ghojavand H, Vahabzadeh F, Mehranian M, Radmehr M, Shahraki KhA, Zolfagharian F, Emadi MA, Roayaei E (2008) Isolation of thermotolerant, halotolerant, facultative biosurfactant-producing bacteria. Appl Microbiol Biotechnol 80:1073–1085

    Article  CAS  Google Scholar 

  • Gomes M, Gonzales-Limache E, Sousa S, Dellagnezze B, Sartoratto A, Silva L, Gieg L, Valoni E, Souza R, Torres A (2018) Exploring the potential of halophilic bacteria from oil terminal environments for biosurfactant production and hydrocarbon degradation under high-salinity conditions. Int Biodeterior Biodegradation 126:231–242

    Article  CAS  Google Scholar 

  • Gong X, Huang D, Liu Y, Peng Z, Zeng G, Xu P, Cheng M, Wang R, Wan J (2018) Remediation of contaminated soils by biotechnology with nanomaterials: bio-behavior, applications, and perspectives. Crit Rev Biotechnol 38:455–468

    Article  CAS  Google Scholar 

  • Gontarek-Castro E, Castro-Muñoz R, Lieder M (2021) New insights of nanomaterials usage toward superhydrophobic membranes for water desalination via membrane distillation: A review. Crit Rev Environ Sci Technol :1–46

  • Gudina EJ, Fernandes EC, Rodrigues AI, Teixeira JA, Rodrigues LR (2015) Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium. Front Microbiol 6:59

    Google Scholar 

  • Gutierrez T, Mulloy B, Black K, Green DH (2007) Glycoprotein emulsifiers from two marine Halomonas species: chemical and physical characterization. J Appl Microbiol 103:1716–1727

    Article  CAS  Google Scholar 

  • Gutierrez T, Singleton DR, Berry D, Yang T, Aitken MD, Teske A (2013) Hydrocarbon-degrading bacteria enriched by the Deepwater Horizon oil spill identified by cultivation and DNA-SIP. ISME J 7:2091–2104

    Article  CAS  Google Scholar 

  • Hamdan LJ, Fulmer PA (2011) Effects of COREXIT® EC9500A on bacteria from a beach oiled by the Deepwater Horizon spill. Aquat Microb Ecol 63:101–109

    Article  Google Scholar 

  • Harris JR, Lundgren BR, Grzeskowiak BR, Mizuno K, Nomura CT (2016) A rapid and efficient electroporation method for transformation of Halomonas sp. O-1. J Microbiol Methods 129:127–132

    Article  CAS  Google Scholar 

  • Hassan HA, Rizk NM, Hefnawy M, Awad AM (2012) Isolation and characterization of halophilic aromatic and chloroaromatic degrader from Wadi El-Natrun Soda lakes. Life Sci J 9:1565–1570

    Google Scholar 

  • Hassanshahian M, Tebyanian H, Cappello S (2012) Isolation and characterization of two crude oil-degrading yeast strains, Yarrowia lipolytica PG-20 and PG-32, from the Persian Gulf. Mar Pollut Bull 64:1386–1391

    Article  CAS  Google Scholar 

  • Hassanshahian M, Emtiazi G, Caruso G, Cappello S (2014) Bioremediation (bioaugmentation/biostimulation) trials of oil polluted seawater: a mesocosm simulation study. Mar Environ Res 95:28–38

    Article  CAS  Google Scholar 

  • Hassanshahian M, Yakimov MM, Denaro R, Genovese M, Cappello S (2014) Using Real-time PCR to assess changes in the crude oil degrading microbial community in contaminated seawater mesocosms. Int Biodeterior Biodegradation 93:241–248

    Article  CAS  Google Scholar 

  • Hassanshahian M, Bayat Z, Cappello S, Smedile F, Yakimov M (2016) Comparison the effects of bioaugmentation versus biostimulation on marine microbial community by PCR-DGGE: A mesocosm scale. J Environ Sci (china) 43:136–146

    Article  Google Scholar 

  • Issa N, Vempatti S (2018) Oil Spills in the Arabian Gulf: A case study and environmental review. Environ Nat Resour Res 8:2

    Google Scholar 

  • Jackson A, Pardue JH (1997) Seasonal variability of crude oil respiration potential in salt and fresh marshes. J Environ Qual 26:1140–1146

    Article  CAS  Google Scholar 

  • Jackson A, Pardue J (1999) The role of nutrient additions on crude oil degradation in LouisianaÕs Salt Marshes. Water Soil Air Pollut 109:343–355

    Article  CAS  Google Scholar 

  • Jeevanantham S, Saravanan A, Hemavathy R, Kumar PS, Yaashikaa P, Yuvaraj D (2019) Removal of toxic pollutants from water environment by phytoremediation: a survey on application and future prospects. Environ Technol Innovat 13:264–276

    Article  Google Scholar 

  • Jimoh AA, Lin J (2019) Production and characterization of lipopeptide biosurfactant producing Paenibacillus sp. D9 and its biodegradation of diesel fuel. Int J Environ Sci Technol 16:4143–4158

    Article  CAS  Google Scholar 

  • Jimoh AA, Lin J (2019) Biosurfactant: A new frontier for greener technology and environmental sustainability. Ecotoxicol Environ Saf 184:109607

    Article  CAS  Google Scholar 

  • Jimoh AA, Senbadejo TY, Adeleke R, Lin J (2021) Development and genetic engineering of hyper-producing microbial strains for improved synthesis of biosurfactants. Mol Biotechnol 63(4):267–288

    Article  CAS  Google Scholar 

  • Jorfi S, Samaei MR, Darvishi Cheshmeh Soltani R, Talaie Khozani A, Ahmadi M, Barzegar G, Reshadatian N, Mehrabi N (2017) Enhancement of the bioremediation of pyrene-contaminated soils using a hematite nanoparticle-based modified fenton oxidation in a sequenced approach. Soil and Sediment Contamination: an Int J 26:141–156

    Article  CAS  Google Scholar 

  • Kapley A, Purohit HJ, Chhatre S, Shanker R, Chakrabarti T, Khanna P (1999) Osmotolerance and hydrocarbon degradation by a genetically engineered microbial consortium. Bioresour Technol 67:241–245

    Article  CAS  Google Scholar 

  • Kebbouche-Gana S, Gana ML, Khemili S, Fazouane-Naimi F, Bouanane NA, Penninckx M, Hacene H (2009) Isolation and characterization of halophilic Archaea able to produce biosurfactants. J Ind Microbiol Biotechnol 36:727–738

    Article  CAS  Google Scholar 

  • Kebbouche-Gana S, Gana ML, Ferrioune I, Khemili S, Lenchi N, Akmouci-Toumi S, Bouanane-Darenfed NA, Djelali NE (2013) Production of biosurfactant on crude date syrup under saline conditions by entrapped cells of Natrialba sp. strain E21, an extremely halophilic bacterium isolated from a solar saltern (Ain Salah, Algeria). Extremophiles 17:981–993

    Article  CAS  Google Scholar 

  • Khademolhosseini R, Jafari A, Mousavi SM, Manteghian M (2019) Investigation of synergistic effects between silica nanoparticles, biosurfactant and salinity in simultaneous flooding for enhanced oil recovery. RSC Adv 9:20281–20294

    Article  CAS  Google Scholar 

  • Khemili-Talbi S, Kebbouche-Gana S, Akmoussi-Toumi S, Angar Y, Gana ML (2015) Isolation of an extremely halophilic arhaeon Natrialba sp. C21 able to degrade aromatic compounds and to produce stable biosurfactant at high salinity. Extremophiles 19:1109–1120

    Article  CAS  Google Scholar 

  • Khemili-Talbi S, Kebbouche-Gana S, Akmoussi-Toumi S, Gana M, Lahiani S, Angar Y, Ferrioune I (2017) Biodegradation of Petroleum hydrocarbons and Biosurfactant production by an extremely halophilic Archaea Halovivax sp. A21. Alger J Environ Sci Technol 3:3

    Google Scholar 

  • Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Energ Environ Sci 5:8075–8109

    Article  CAS  Google Scholar 

  • Kim D, Kim SW, Choi KY, Lee JS, Kim E (2008) Molecular cloning and functional characterization of the genes encoding benzoate and p-hydroxybenzoate degradation by the halophilic Chromohalobacter sp. strain HS-2. FEMS Microbiol Lett 280:235–241

    Article  CAS  Google Scholar 

  • Klein B, Bouriat P, Goulas P, Grimaud R (2010) Behavior of Marinobacter hydrocarbonoclasticus SP17 cells during initiation of biofilm formation at the alkane-water interface. Biotechnol Bioeng 105:461–468

    Article  CAS  Google Scholar 

  • Kleindienst S, Seidel M, Ziervogel K, Grim S, Loftis K, Harrison S, Malkin SY, Perkins MJ, Field J, Sogin ML, Dittmar T, Passow U, Medeiros PM, Joye SB (2015) Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proc Natl Acad Sci U S A 112:14900–14905

    Article  CAS  Google Scholar 

  • Kleinsteuber S, Riis V, Fetzer I, Harms H, Muller S (2006) Population dynamics within a microbial consortium during growth on diesel fuel in saline environments. Appl Environ Microbiol 72:3531–3542

    Article  CAS  Google Scholar 

  • Kuang Y, Zhou Y, Chen Z, Megharaj M, Naidu R (2013) Impact of Fe and Ni/Fe nanoparticles on biodegradation of phenol by the strain Bacillus fusiformis (BFN) at various pH values. Bioresour Technol 136:588–594

    Article  CAS  Google Scholar 

  • Kumar M, León V, De Sisto MA, Ilzins OA (2006) A halotolerant and thermotolerant Bacillus sp. degrades hydrocarbons and produces tensio-active emulsifying agent. World J Microbiol Biotechnol 23:211–220

    Article  CAS  Google Scholar 

  • Kumar M, León V, De Sisto MA, Ilzins OA, Luis L (2007) Biosurfactant production and hydrocarbon-degradation by halotolerant and thermotolerant Pseudomonas sp. World J Microbiol Biotechnol 24:1047–1057

    Article  CAS  Google Scholar 

  • Kumar NM, Muthukumaran C, Sharmila G, Gurunathan B (2018) Genetically modified organisms and its impact on the enhancement of bioremediation, Bioremediation: Applications for Environmental Protection and Management. Springer, pp. 53–76

  • Kumari B, Singh D (2016) A review on multifaceted application of nanoparticles in the field of bioremediation of petroleum hydrocarbons. Ecol Eng 97:98–105

    Article  Google Scholar 

  • Kuyukina MS, Ivshina IB, Serebrennikova MK, Krivorutchko AB, Podorozhko EA, Ivanov RV, Lozinsky VI (2009) Petroleum-contaminated water treatment in a fluidized-bed bioreactor with immobilized Rhodococcus cells. Int Biodeterior Biodegradation 63:427–432

    Article  CAS  Google Scholar 

  • Lan W, Gang G, Jinbao W (2009) Biodegradation of oil wastewater by free and immobilized Yarrowia lipolytica W29. J Environ Sci 21:237–242

    Article  CAS  Google Scholar 

  • Le Borgne S, Paniagua D, Vazquez-Duhalt R (2008) Biodegradation of organic pollutants by halophilic bacteria and archaea. J Mol Microbiol Biotechnol 15:74–92

    CAS  Google Scholar 

  • Lefebvre O (2005) Application of halophilic microorganisms to the treatment of hypersaline industrial effluent. Doctoral Thesis. National School of Agronomics of Montpellier

  • Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40:3671–3682

    Article  CAS  Google Scholar 

  • Li X, Zhao L, Adam M (2016) Biodegradation of marine crude oil pollution using a salt-tolerant bacterial consortium isolated from Bohai Bay, China. Mar Pollut Bull 105:43–50

    Article  CAS  Google Scholar 

  • Lin M, Liu Y, Chen W, Wang H, Hu X (2014) Use of bacteria-immobilized cotton fibers to absorb and degrade crude oil. Int Biodeterior Biodegradation 88:8–12

    Article  CAS  Google Scholar 

  • Lin Q, Mendelssohn IA (1996) A comparative investigation of the effects of south Louisiana crude oil on the vegetation of fresh, brackish and salt marshes. Mar Poll Bulletin 32:202–209

    Article  CAS  Google Scholar 

  • Lin Q, Mendelssohn IA, Henry CB, Roberts PO, Walsh MM, Overton EB, Portier RJ (1999) Effects of bioremediation agents on oil degradation in mineral and sandy salt marsh sediments. Environ Technol 20:825–837

    Article  CAS  Google Scholar 

  • Liu D, Zhu L (2014) Assessing China׳s legislation on compensation for marine ecological damage: A case study of the Bohai oil spill. Mar Pol 50:18–26

    Article  CAS  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Tot Environ 408:3053–3061

    Article  CAS  Google Scholar 

  • Martins LF, Peixoto RS (2012) Biodegradation of petroleum hydrocarbons in hypersaline environments. Braz J Microbiol 43:865–872

    Article  CAS  Google Scholar 

  • Maugeri TL, Gugliandolo C, Caccamo D, Panico A, Lama L, Gambacorta A, Nicolaus B (2002) A halophilic thermotolerant Bacillus isolated from a marine hot spring able to produce a new exopolysaccharide. Biotechnol Lett 24:515–519

    Article  CAS  Google Scholar 

  • Mazarji M, Minkina T, Sushkova S, Mandzhieva S, Bidhendi GN, Barakhov A, Bhatnagar A (2021) Effect of nanomaterials on remediation of polycyclic aromatic hydrocarbons-contaminated soils: A review. J Environ Manag 284:112023

    Article  CAS  Google Scholar 

  • Mnif S, Chamkha M, Sayadi S (2009) Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions. J Appl Microbiol 107:785–794

    Article  CAS  Google Scholar 

  • Mnif S, Chamkha M, Labat M, Sayadi S (2011) Simultaneous hydrocarbon biodegradation and biosurfactant production by oilfield-selected bacteria. J Appl Microbiol 111:525–536

    Article  CAS  Google Scholar 

  • Mohajeri L, Aziz HA, Isa MH, Zahed MA (2010) A statistical experiment design approach for optimizing biodegradation of weathered crude oil in coastal sediments. Bioresour Technol 101:893–900

    Article  CAS  Google Scholar 

  • Morikawa M (2006) Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. J Biosci Bioeng 101:1–8

    Article  CAS  Google Scholar 

  • Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165:363–375

    Article  CAS  Google Scholar 

  • Neff J, Lee K, DeBlois EM (2011) Produced water: Overview of composition, fates, and effects, Produced Water, pp. 3–54

  • Neifar M, Chouchane H, Najjari A, El Hidri D, Mahjoubi M, Ghedira K, Naili F, Soufi L, Raddadi N, Sghaier H, Ouzari HI, Masmoudi AS, Cherif A (2018) Genome analysis provides insights into crude oil degradation and biosurfactant production by extremely halotolerant Halomonas desertis G11 isolated from Chott El-Djerid salt-lake in Tunisian desert. Genomics 11(16):1802–1814

    Google Scholar 

  • Nercessian D, Di Meglio L, De Castro R, Paggi R (2015) Exploring the multiple biotechnological potential of halophilic microorganisms isolated from two Argentinean salterns. Extremophiles 19:1133–1143

    Article  CAS  Google Scholar 

  • Nicholson CA, Fathepure BZ (2004) Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions. Appl Environ Microbiol 70:1222–1225

    Article  CAS  Google Scholar 

  • Nicholson CA, Fathepure BZ (2005) Aerobic biodegradation of benzene and toluene under hypersaline conditions at the Great Salt Plains, Oklahoma. FEMS Microbiol Lett 245:257–262

    Article  CAS  Google Scholar 

  • Nunal SN, Santander-De Leon SMS, Bacolod E, Koyama J, Uno S, Hidaka M, Yoshikawa T, Maeda H (2014) Bioremediation of heavily oil-polluted seawater by a bacterial consortium immobilized in cocopeat and rice hull powder. Biocontrol Sci 19:11–22

    Article  CAS  Google Scholar 

  • Nwadinigwe AO, Ugwu EC (2018) Overview of nano-phytoremediation applications, Phytoremediation. Springer, pp. 377–382

  • Obuekwe CO, Badrudeen AM, Al-Saleh E, Mulder JL (2005) Growth and hydrocarbon degradation by three desert fungi under conditions of simultaneous temperature and salt stress. Int Biodeterior Biodegradation 56:197–205

    Article  CAS  Google Scholar 

  • Oliveira V, Gomes NC, Almeida A, Silva AM, Silva H, Cunha  (2015) Microbe-assisted phytoremediation of hydrocarbons in estuarine environments. Microb Ecol 69:1–12

    Article  CAS  Google Scholar 

  • Oyelami AO, Semple KT (2015) The impact of carbon nanomaterials on the development of phenanthrene catabolism in soil. Environ Sci: Processes & Impacts 17:1302–1310

    CAS  Google Scholar 

  • Pacwa-Plociniczak M, Plaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654

    Article  CAS  Google Scholar 

  • Paul VG, Mormile MR (2017) A case for the protection of saline and hypersaline environments: a microbiological perspective. FEMS Microbiol Ecol 93:8

    Article  CAS  Google Scholar 

  • Pepi M, Cesaro A, Liut G, Baldi F (2005) An antarctic psychrotrophic bacterium Halomonas sp. ANT-3b, growing on n-hexadecane, produces a new emulsyfying glycolipid. FEMS Microbiol Ecol 53:157–166

    Article  CAS  Google Scholar 

  • Philp JC, Bamforth SM, Singleton I, Atlas RM (2005) Environmental pollution and restoration: a role for bioremediation. Bioremediation: Applied Microbial Solutions for Real‐World Environmental Cleanup: 1–48

  • Piedad Diaz M, Grigson SJ, Peppiatt CJ, Burgess JG (2000) Isolation and characterization of novel hydrocarbon-degrading euryhaline consortia from crude oil and mangrove sediments. Mar Biotechnol (NY) 2:522–532

    Article  CAS  Google Scholar 

  • Piubeli F, Grossman M, Fantinatti-Garboggini F, Durrant L (2012) Identification and characterization of aromatic degrading Halomonas in hypersaline produced water and COD reduction by bioremediation by the indigenous microbial population using nutrient addition. Chem Eng Transactions 27:385–390

    Google Scholar 

  • Plotnikova EG, Yastrebova OV, Anan’ina LN, Dorofeeva LV, Lysanskaya VY, Demakov VA (2011) Halotolerant bacteria of the genus Arthrobacter degrading polycyclic aromatic hydrocarbons. Rus J Ecol 42:502–509

    Article  CAS  Google Scholar 

  • Pourfadakari S, Ahmadi M, Jaafarzadeh N, Takdastan A, Neisi AA, Ghafari S, Jorfi S (2019) Remediation of PAHs contaminated soil using a sequence of soil washing with biosurfactant produced by Pseudomonas aeruginosa strain PF2 and electrokinetic oxidation of desorbed solution, effect of electrode modification with Fe3O4 nanoparticles. J Hazard Mater 379:120839

    Article  CAS  Google Scholar 

  • ProducedWaterSociety (2011). https://70.86.131.22/’produced/page.php?page_name=produced_water_facts

  • Pugazhendi A, Qari H, Al-Badry Basahi JM, Godon JJ, Dhavamani J (2017) Role of a halothermophilic bacterial consortium for the biodegradation of PAHs and the treatment of petroleum wastewater at extreme conditions. Int Biodeterior Biodegradation 121:44–54

    Article  CAS  Google Scholar 

  • Qin X, Tang JC, Li DS, Zhang QM (2012) Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline-alkaline soil. Lett Appl Microbiol 55:210–217

    Article  CAS  Google Scholar 

  • Rani M, Shanker U (2018) Remediation of polycyclic aromatic hydrocarbons using nanomaterials, Green Adsorbents for Pollutant Removal. Springer, pp. 343–387

  • Recorbet G, Steinberg C, Faurie G (1992) Survival in soil of genetically engineered Escherichia coli as related to inoculum density, predation and competition. FEMS Microbiol Lett 101:251–260

    Article  Google Scholar 

  • Riis V, Kleinsteuber S, Babel W (2003) Influence of high salinities on the degradation of diesel fuel by bacterial consortia. Can J Microbiol 49:713–721

    Article  CAS  Google Scholar 

  • Roongsawang N, Thaniyavarn J, Thaniyavarn S, Kameyama T, Haruki M, Imanaka T, Morikawa M, Kanaya S (2002) Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, and surfactin. Extremophiles 6:499–506

    Article  CAS  Google Scholar 

  • Sarafin Y, Donio MB, Velmurugan S, Michaelbabu M, Citarasu T (2014) Kocuria marina BS-15 a biosurfactant producing halophilic bacteria isolated from solar salt works in India. Saudi J Biol Sci 21:511–519

    Article  CAS  Google Scholar 

  • Schä H, Bernard L, Courties C, Lebaron P, Servais P, Pukall R, Stackebrandt E, Troussellier M, Teresa G, Vives-Rego J (2001) Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: changes in the genetic diversity of bacterial populations. FEMS Microbiol Ecol 34:243–253

    Article  Google Scholar 

  • Schultz J, Rosado AS (2020) Extreme environments: a source of biosurfactants for biotechnological applications. Extremophiles 24:189–206

    Article  CAS  Google Scholar 

  • Sei A, Fathepure BZ (2009) Biodegradation of BTEX at high salinity by an enrichment culture from hypersaline sediments of Rozel Point at Great Salt Lake. J Appl Microbiol 107:2001–2008

    Article  CAS  Google Scholar 

  • Shemesh M, Kolter R, Losick R (2010) The biocide chlorine dioxide stimulates biofilm formation in Bacillus subtilis by activation of the histidine kinase KinC. J Bacteriol 192:6352–6356

    Article  CAS  Google Scholar 

  • Shetaia YMH, El Khalik WAA, Mohamed TM, Farahat LA, ElMekawy A (2016) Potential biodegradation of crude petroleum oil by newly isolated halotolerant microbial strains from polluted Red Sea area. Mar Pollut Bull 111:435–442

    Article  CAS  Google Scholar 

  • Shimada K, Itoh Y, Washio K, Morikawa M (2012) Efficacy of forming biofilms by naphthalene degrading Pseudomonas stutzeri T102 toward bioremediation technology and its molecular mechanisms. Chemosphere 87:226–233

    Article  CAS  Google Scholar 

  • Shukla SK, Mangwani N, Rao TS, Das S (2014) Biofilm-Mediated Bioremediation of Polycyclic Aromatic Hydrocarbons, Microbial Biodegradation and Bioremediation, pp. 203–232

  • Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14:389–397

    Article  CAS  Google Scholar 

  • Smith CB, Johnson CN, King GM (2012) Assessment of polyaromatic hydrocarbon degradation by potentially pathogenic environmental Vibrio parahaemolyticus isolates from coastal Louisiana, USA. Mar Pollut Bull 64:138–143

    Article  CAS  Google Scholar 

  • Sokol E, Kozmenko O, Smirnov S, Sokol I, Novikova S, Tomilenko A, Kokh S, Ryazanova T, Reutsky V, Bul’bak T, (2014) Geochemical assessment of hydrocarbon migration phenomena: Case studies from the south-western margin of the Dead Sea Basin. J Asian Earth Sci 93:211–228

    Article  Google Scholar 

  • Song U, Lee S (2016) Phytotoxicity and accumulation of zinc oxide nanoparticles on the aquatic plants Hydrilla verticillata and Phragmites Australis: leaf-type-dependent responses. Environ Sci Pollut Res 23:8539–8545

    Article  CAS  Google Scholar 

  • Speight J (2007) The Chemistry and Technology of Petroleum FOURTH EDITION Preface

  • Srivastav A, Yadav KK, Yadav S, Gupta N, Singh JK, Katiyar R, Kumar V (2018) Nano-phytoremediation of pollutants from contaminated soil environment: current scenario and future prospects, Phytoremediation. Springer, pp. 383–401

  • Stefaniuk M, Oleszczuk P, Ok YS (2016) Review on nano zerovalent iron (nZVI): from synthesis to environmental applications. Chem Eng J 287:618–632

    Article  CAS  Google Scholar 

  • Suttinun O, Luepromchai E, Müller R (2012) Cometabolism of trichloroethylene: concepts, limitations and available strategies for sustained biodegradation. Rev Environ Sci Bio/technol 12:99–114

    Article  CAS  Google Scholar 

  • Tam N, Guo C, Yau W, Wong Y (2002) Preliminary study on biodegradation of phenanthrene by bacteria isolated from mangrove sediments in Hong Kong. Mar Poll Bull 45:316–324

    Article  CAS  Google Scholar 

  • Tapilatu YH, Grossi V, Acquaviva M, Militon C, Bertrand JC, Cuny P (2010) Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France). Extremophiles 14:225–231

    Article  CAS  Google Scholar 

  • Tiwari B, Manickam N, Kumari S, Tiwari A (2016) Biodegradation and dissolution of polyaromatic hydrocarbons by Stenotrophomonas sp. Bioresour Technol 216:1102–1105

    Article  CAS  Google Scholar 

  • Tribedi P, Goswami M, Chakraborty P, Mukherjee K, Mitra G, Bhattacharyya P, Dey S (2018) Bioaugmentation and biostimulation: a potential strategy for environmental remediation. J Microbiol Experiment 6

  • Urgun-Demirtas M, Stark B, Pagilla K (2006) Use of genetically engineered microorganisms (GEMs) for the bioremediation of contaminants. Crit Rev Biotechnol 26:145–164

    Article  CAS  Google Scholar 

  • Urum K, Pekdemir T (2004) Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere 57:1139–1150

    Article  CAS  Google Scholar 

  • Varjani S, Upasani VN (2019) Evaluation of rhamnolipid production by a halotolerant novel strain of Pseudomonas aeruginosa. Bioresour Technol 288:121577

    Article  CAS  Google Scholar 

  • Varjani SJ, Rana DP, Jain AK, Bateja S, Upasani VN (2015) Synergistic ex-situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India. Int Biodeterior Biodegradation 103:116–124

    Article  CAS  Google Scholar 

  • Varjani SJ, Upasani VN (2016a) Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514. Bioresour Technol 222:195–201

    Article  CAS  Google Scholar 

  • Varjani SJ, Upasani VN (2016b) Core Flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514. Bioresour Technol 220:175–182

    Article  CAS  Google Scholar 

  • Ventosa A, Arahal D (2009) Physico-chemical characteristics of hypersaline environments and their biodiversity. Extremophiles 2:247–262

    Google Scholar 

  • Vikas M, Dwarakish GS (2015) Coastal Pollution: A Review. Aquat Procedia 4: 381-388

  • Vogel TM (1996) Bioaugmentation as a soil bioremediation approach. Curr Opin Biotechnol 7:311–316

    Article  CAS  Google Scholar 

  • Wang C, Guo G, Huang Y, Hao H, Wang H (2017) Salt adaptation and evolutionary implication of a Nah-related PAHs Dioxygenase cloned from a Halophilic phenanthrene degrading consortium. Sci Rep 7:12525

    Article  CAS  Google Scholar 

  • Wang C, Huang Y, Zhang Z, Wang H (2018) Salinity effect on the metabolic pathway and microbial function in phenanthrene degradation by a halophilic consortium. AMB Express 8:67

    Article  CAS  Google Scholar 

  • Wang XX, Li C, Zhao LB, Wu L, An W, Chen Y (2014) Diversity of culturable hydrocarbons-degrading bacteria in petroleum-contaminated saltern. Adv Mat Res 1010–1012:29–32

    Google Scholar 

  • Wang YN, Cai H, Chi CQ, Lu AH, Lin XG, Jiang ZF, Wu XL (2007) Halomonas shengliensis sp. nov., a moderately halophilic, denitrifying, crude-oil-utilizing bacterium. Int J Syst Evol Microbiol 57:1222–1226

    Article  CAS  Google Scholar 

  • Wang YN, Chi CQ, Cai M, Lou ZY, Tang YQ, Zhi XY, Li WJ, Wu XL, Du X (2010) Amycolicicoccus subflavus gen. nov., sp. nov., an actinomycete isolated from a saline soil contaminated by crude oil. Int J Syst Evol Microbiol 60:638–643

    Article  CAS  Google Scholar 

  • Ward DM, Brock T (1978) Hydrocarbon biodegradation in hypersaline environments. Appl Environ Microbiol 35:353

    Article  CAS  Google Scholar 

  • Wasilkowski D, Swedziol Z, Mrozik A (2012) The applicability of genetically modified microorganisms in bioremediation of contaminated environments. Chemik 66:817–826

    CAS  Google Scholar 

  • Wright A, Weaver R, Webb J (1997) Oil bioremediation in salt march mesocosms as influenced by N and P fertilization, flooding, and season. Water, Air, and Soil Poll 95:179–191

    Article  CAS  Google Scholar 

  • Wu M, Chen L, Tian Y, Ding Y, Dick WA (2013) Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media. Environ Pollut 178:152–158

    Article  CAS  Google Scholar 

  • Wu T, Xu J, Liu J, Guo WH, Li XB, Xia JB, Xie WJ, Yao ZG, Zhang YM, Wang RQ (2019) Characterization and Initial application of endophytic Bacillus safensis strain ZY16 for improving phytoremediation of oil-contaminated saline soils. Front Microbiol 10:991

    Article  Google Scholar 

  • Xu R, Obbard JP (2004) Biodegradation of polycyclic aromatic hydrocarbons in oil-contaminated beach sediments treated with nutrient amendments. J Environ Qual 33:861–867

    Article  CAS  Google Scholar 

  • Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 61:1706–1713

    Article  CAS  Google Scholar 

  • Yakimov MM, Golyshin PN, Lang S, Moore ER, Abraham W-R, Lünsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Evol Microbiol 48:339–348

    CAS  Google Scholar 

  • Yakimov MM, Abraham W-R, Meyer H, Giuliano L, Golyshin PN (1999) Structural characterization of lichenysin A components by fast atom bombardment tandem mass spectrometry. Biochim Biophys Acta -Mol Cell Biol Lipids 1438:273–280

    Article  CAS  Google Scholar 

  • Yamaga F, Washio K, Morikawa M (2010) Sustainable biodegradation of phenol by Acinetobacter calcoaceticus P23 isolated from the rhizosphere of duckweed Lemna aoukikusa. Environ Sci Technol 44:6470–6474

    Article  CAS  Google Scholar 

  • Yemashova NA, Murygina VP, Zhukov DV, Zakharyantz AA, Gladchenko MA, Appanna V, Kalyuzhnyi SV (2007) Biodeterioration of crude oil and oil derived products: a review. Rev Environ Sci Bio/technol 6:315–337

    Article  CAS  Google Scholar 

  • Yin J, Chen JC, Wu Q, Chen GQ (2015) Halophiles, coming stars for industrial biotechnology. Biotechnol Adv 33:1433–1442

    Article  CAS  Google Scholar 

  • Yu SH, Ke L, Wong YS, Tam NF (2005) Degradation of polycyclic aromatic hydrocarbons by a bacterial consortium enriched from mangrove sediments. Environ Int 31:149–154

    Article  CAS  Google Scholar 

  • Zahed MA, Aziz HA, Isa MH, Mohajeri L (2010) Effect of initial oil concentration and dispersant on crude oil biodegradation in contaminated seawater. Bull Environ Contam Toxicol 84:438–442

    Article  CAS  Google Scholar 

  • Zhao B, Wang H, Mao X, Li R (2009) Biodegradation of phenanthrene by a halophilic bacterial consortium under aerobic conditions. Curr Microbiol 58:205–210

    Article  CAS  Google Scholar 

  • Zhuang X, Han Z, Bai Z, Zhuang G, Shim H (2010) Progress in decontamination by halophilic microorganisms in saline wastewater and soil. Environ Pollut 158:1119–1126

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Abdullahi Adekilekun Jimoh contributed to conceptualization, data curation, original draft, and writing—review and editing. Odion Osebhahiemen Ikhimiukor performed writing—original draft, review, and editing. Rasheed Adeleke performed supervision, validation, and review and editing.

Corresponding author

Correspondence to Abdullahi Adekilekun Jimoh.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Robert Duran

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jimoh, A.A., Ikhimiukor, O.O. & Adeleke, R. Prospects in the bioremediation of petroleum hydrocarbon contaminants from hypersaline environments: A review. Environ Sci Pollut Res 29, 35615–35642 (2022). https://doi.org/10.1007/s11356-022-19299-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-19299-4

Keywords

Navigation