Skip to main content

Advertisement

Log in

Study and evaluation of the characteristics of saline wastewater (brine) produced by desalination and industrial plants

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Desalination and industrial plants all around the world generate large amounts of saline wastewater (brine). The discharge of brine from facilities poses a severe environmental threat, while at the same time, the opportunity to recover resources is being lost as discharged brine is rich in valuable metals that could be recovered as salts/minerals. To this aim, this study presents and analyzes for the first time the characteristics of different brine effluents (from industries such as desalination, oil and gas production, petrochemical, aquaculture, pharmaceutical, textile) to prevent environmental pollution and to recover valuable resources (i.e., salts, minerals, metals, chemicals) enabling the concept of waste-to-resource (circular water economy model). The results revealed that the common salinity values in brine effluents range from 0.5 to 150 g/L, while the only exception is the produced water from the oil and gas industry (up to 400 g/L). Brine effluents from all sectors contain sodium, chloride, calcium, and potassium ions in high concentrations, while the production of common salts such as NaCl, CaCl2, and MgCl2 from brine can be economically profitable. Besides common ions, precious metals such as lithium, rubidium, and cesium are present in low concentrations (<25 mg/L); however, their extraction from brine effluents can be significantly profitable due to their very high sale price. The treatment and valorization of brine can be implemented by the hybridization of membrane-based, chemical, biological, and thermal-based technologies/processes in minimal and zero liquid discharge (MLD/ZLD) systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

BC:

Brine concentrator

BCr:

Brine crystallizer

CapMix:

Capacitive mixing

COD:

Chemical oxygen demand

CRM:

Critical raw materials

EDM:

Electrodialysis metathesis

FGD:

Flue gas desulfurization

FO:

Forward osmosis

GHG:

Greenhouse gas

MCr:

Membrane crystallization

MD:

Membrane distillation

MED:

Multi-effect distillation

MLD:

Minimal liquid discharge

MSF:

Multi-stage flash distillation

NF:

Nanofiltration

OARO:

Osmotically assisted reverse osmosis

PRO:

Pressure-retarded osmosis

RED:

Reverse electrodialysis

RES:

Renewable energy sources

RO:

Reverse osmosis

TDS:

Total dissolved solids

TN:

Total nitrogen

TOC:

Total organic carbon

TP:

Total phosphorus

ZLD:

Zero liquid discharge

References

  • Abdulsalam A, Idris A, Mohamed TA, Ahsan A (2017) An integrated technique using solar and evaporation ponds for effective brine disposal management. Int J Sustain Energy 36. https://doi.org/10.1080/14786451.2015.1135923

  • Agalloco J, Carleton FJ (2007) Validation of pharmaceutical processes, third edn. CRC Press

    Book  Google Scholar 

  • Almanaseer N, Hindiyeh M, Al-assaf R (2020) Hydrological and environmental impact of wastewater treatment and reuse on Zarqa river basin in Jordan. Environ - MDPI 7. https://doi.org/10.3390/environments7020014

  • Ameen F, Stagner JA, Ting DSK (2018) The carbon footprint and environmental impact assessment of desalination. Int J Environ Stud 75:45–58. https://doi.org/10.1080/00207233.2017.1389567

    Article  CAS  Google Scholar 

  • Bardi U (2010) Extracting minerals from seawater: an energy analysis. Sustainability 2. https://doi.org/10.3390/su2040980

  • Bazargan A (2018) A multidisciplinary introduction to desalination english. Stylus Publishing, LLC

    Google Scholar 

  • Benaissa M, Rouane-Hacene O, Boutiba Z et al (2017) Ecotoxicological impact assessment of the brine discharges from a desalination plant in the marine waters of the Algerian west coast, using a multibiomarker approach in a limpet, Patella rustica. Environ Sci Pollut Res 24. https://doi.org/10.1007/s11356-017-0081-4

  • Blondes MS, Gans KD, Rowan EL et al (2016) U.S. Geological Survey National Produced Waters Geochemical Database v2.2 (PROVISIONAL) Documentation. USGS

  • Borup BM, Joe Middlebrooks E (2018) Pollution control in the petrochemicals industry

  • Chandra R, Pradhan S, Patel A, Ghosh UK (2021) An approach for dairy wastewater remediation using mixture of microalgae and biodiesel production for sustainable transportation. J Environ Manage 297. https://doi.org/10.1016/j.jenvman.2021.113210

  • Chen GQ, Talebi S, Gras SL et al (2018a) A review of salty waste stream management in the Australian dairy industry. J Environ Manage 224:406–413

    Article  CAS  Google Scholar 

  • Chen LH, Huang A, Chen YR et al (2018b) Omniphobic membranes for direct contact membrane distillation: effective deposition of zinc oxide nanoparticles. Desalination 428:255–263. https://doi.org/10.1016/j.desal.2017.11.029

    Article  CAS  Google Scholar 

  • Chen GQ, Gras SL, Kentish SE (2019) Separation technologies for salty wastewater reduction in the dairy industry. Sep \& Purif Rev 48:325–353

    Article  CAS  Google Scholar 

  • Chen WS, Lee CH, Chung YF et al (2020) Recovery of rubidium and cesium resources from brine of desalination through t-BAMBP extraction. Metals (Basel) 10:607. https://doi.org/10.3390/met10050607

    Article  CAS  Google Scholar 

  • Chen CY, Wang SW, Kim H et al (2021) Non-conventional water reuse in agriculture: a circular water economy. Water Res 199

  • Cinperi NC, Ozturk E, Yigit NO, Kitis M (2019) Treatment of woolen textile wastewater using membrane bioreactor, nanofiltration and reverse osmosis for reuse in production processes. J Clean Prod 223. https://doi.org/10.1016/j.jclepro.2019.03.166

  • Dasgupta J, Sikder J, Chakraborty S et al (2015) Remediation of textile effluents by membrane based treatment techniques: a state of the art review. J Environ Manage 147:55–72

    Article  CAS  Google Scholar 

  • Deshannavar UB, Basavaraj RK, Naik NM (2012) High rate digestion of dairy industry effluent by upflow anaerobic fixed-bed reactor. J Chem Pharm Res 4:2895–2899

    CAS  Google Scholar 

  • Dhanke P, Wagh S, Patil A (2019) Treatment of fish processing industry wastewater using hydrodynamic cavitational reactor with biodegradability improvement. Water Sci Technol 80:2310–2319

    Article  CAS  Google Scholar 

  • Dow Water Solutions (2018) Dows minimal liquid discharge approach takes center stage. Dow Water Solutions

    Google Scholar 

  • El Zayat H, Nasr P, Sewilam H (2021) Investigating sustainable management of desalination brine through concentration using forward osmosis. Environ Sci Pollut Res 28. https://doi.org/10.1007/s11356-021-13311-z

  • Eshete DG, Sinshaw BG, Legese KG (2020) Critical review on improving irrigation water use efficiency: advances, challenges, and opportunities in the Ethiopia context. Water-Energy Nexus 3. https://doi.org/10.1016/j.wen.2020.09.001

  • European Commission (2017) 2017 List of critical raw materials for the EU. Off J Eur Union COM 2017

  • Farizoglu B, Uzuner S (2011) The investigation of dairy industry wastewater treatment in a biological high performance membrane system. Biochem Eng J 57:46–54. https://doi.org/10.1016/j.bej.2011.08.007

    Article  CAS  Google Scholar 

  • Ghalavand A, Hatamipour MS, Ghalavand Y (2021) Clean treatment of rejected brine by zero liquid discharge thermal desalination in Persian Gulf countries. Clean Technol Environ Policy. https://doi.org/10.1007/s10098-021-02187-9

  • Gude VG (2018a) Sustainable desalination handbook: plant selection, design and implementation. Butterworth-Heinemann

    Google Scholar 

  • Gude VG (2018b) Renewable energy powered desalination handbook: application and thermodynamics. Butterworth-Heinemann

    Google Scholar 

  • Guo Z, Sun Y, Pan SY, Chiang PC (2019) Integration of green energy and advanced energy-efficient technologies for municipal wastewater treatment plants. Int J Environ Res Public Health:16

  • GWI (2015) Desalination Markets 2016: Global perspective and opportunities for growth. Media Analytics Limited

    Google Scholar 

  • Hansen É, Rodrigues MAS, Aragão ME, Aquim PM (2018) Water and wastewater minimization in a petrochemical industry through mathematical programming. J Clean Prod 172:1814–1822

    Article  CAS  Google Scholar 

  • Herrero-Gonzalez M, Diaz-Guridi P, Dominguez-Ramos A et al (2018) Photovoltaic solar electrodialysis with bipolar membranes. Desalination 433. https://doi.org/10.1016/j.desal.2018.01.015

  • Herrero-Gonzalez M, Admon N, Dominguez-Ramos A et al (2020) Environmental sustainability assessment of seawater reverse osmosis brine valorization by means of electrodialysis with bipolar membranes. Environ Sci Pollut Res 27. https://doi.org/10.1007/s11356-019-04788-w

  • Himma NF, Prasetya N, Anisah S, Wenten IG (2019) Superhydrophobic membrane: Progress in preparation and its separation properties. Rev Chem Eng 35:211–238. https://doi.org/10.1515/revce-2017-0030

    Article  Google Scholar 

  • Hofmann M, Hofmann H, Hagelüken C, Hool A (2018) Critical raw materials: a perspective from the materials science community. Sustain Mater Technol 17:e00074. https://doi.org/10.1016/j.susmat.2018.e00074

    Article  CAS  Google Scholar 

  • Huo S, Chen J, Zhu F et al (2019) Filamentous microalgae Tribonema sp. cultivation in the anaerobic/oxic effluents of petrochemical wastewater for evaluating the efficiency of recycling and treatment. Biochem Eng J:145. https://doi.org/10.1016/j.bej.2019.02.011

  • Jegatheesan V, Pramanik BK, Chen J et al (2016) Treatment of textile wastewater with membrane bioreactor: a critical review. Bioresour Technol 204:202–212. https://doi.org/10.1016/j.biortech.2016.01.006

    Article  CAS  Google Scholar 

  • Ji G, Wang W, Chen H et al (2022) Sustainable potassium chloride production from concentrated KCl brine via a membrane-promoted crystallization process. Desalination 521:115389. https://doi.org/10.1016/j.desal.2021.115389

    Article  CAS  Google Scholar 

  • Kondash AJ, Albright E, Vengosh A (2017) Quantity of flowback and produced waters from unconventional oil and gas exploration. Sci Total Environ 574:314–321

    Article  CAS  Google Scholar 

  • Kress N (2019) Marine impacts of seawater desalination: science, management, and policy. Elsevier

    Google Scholar 

  • Kucera J (2014) Desalination: Water from Water. John Wiley \& Sons

    Book  Google Scholar 

  • Kumar A, Pan S-Y (2020) Opportunities and challenges for renewable energy integrated water-energy nexus technologies. Water-Energy Nexus:3

  • Ladewig B, Asquith B (2012) Desalination concentrate management. Springer Science \& Business Media

  • Lester Y, Ferrer I, Thurman EM et al (2015) Characterization of hydraulic fracturing flowback water in Colorado: Implications for water treatment. Sci Total Environ 512–513:637–644. https://doi.org/10.1016/j.scitotenv.2015.01.043

    Article  CAS  Google Scholar 

  • Li Y, Pei S, Pan SY et al (2018) Carbonation and utilization of basic oxygen furnace slag coupled with concentrated water from electrodeionization. J CO2 Util:25. https://doi.org/10.1016/j.jcou.2018.03.003

  • Li M, Li K, Wang L, Zhang X (2020) Feasibility of concentrating textile wastewater using a hybrid forward osmosis-membrane distillation (FO-MD) process: Performance and economic evaluation. Water Res 172. https://doi.org/10.1016/j.watres.2020.115488

  • Liyanaarachchi S, Shu L, Muthukumaran S et al (2014) Problems in seawater industrial desalination processes and potential sustainable solutions: a review. Rev Environ Sci Biotechnol 13

  • Ma K, Qin Z, Zhao Z et al (2016) Toxicity evaluation of wastewater collected at different treatment stages from a pharmaceutical industrial park wastewater treatment plant. Chemosphere:158. https://doi.org/10.1016/j.chemosphere.2016.05.052

  • Mansour F, Alnouri SY, Al-Hindi M et al (2018) Screening and cost assessment strategies for end-of-pipe zero liquid discharge systems. J Clean Prod 179. https://doi.org/10.1016/j.jclepro.2018.01.064

  • Mickley M (2018) Updated and Extended Survey of U.S. municipal desalination plants, DWPR Report No., 207, U.S. Dept. of Interior, Bureau of Reclamation. Bureau of Reclamation

  • Mirbolooki H, Amirnezhad R, Pendashteh AR (2017) Treatment of high saline textile wastewater by activated sludge microorganisms. J Appl Res Technol 15:167–172

    Article  Google Scholar 

  • Mohamed AMO, Maraqa M, Al Handhaly J (2005) Impact of land disposal of reject brine from desalination plants on soil and groundwater. Desalination 182:411–433

    Article  CAS  Google Scholar 

  • Munirasu S, Haija MA, Banat F (2016) Use of membrane technology for oil field and refinery produced water treatment_a review. Process Saf Environ Prot 100:183–202

    Article  CAS  Google Scholar 

  • Pan SY, Haddad AZ, Kumar A, Wang SW (2020) Brackish water desalination using reverse osmosis and capacitive deionization at the water-energy nexus. Water Res. 183

  • Panagopoulos A (2020a) A comparative study on minimum and actual energy consumption for the treatment of desalination brine. Energy 212. https://doi.org/10.1016/j.energy.2020.118733

  • Panagopoulos A (2020b) Process simulation and techno-economic assessment of a zero liquid discharge/multi-effect desalination/thermal vapor compression (ZLD/MED/TVC) system. Int J Energy Res 44:473–495. https://doi.org/10.1002/er.4948

    Article  Google Scholar 

  • Panagopoulos A (2020c) Techno-economic evaluation of a solar multi-effect distillation/thermal vapor compression hybrid system for brine treatment and salt recovery. Chem Eng Process Process Intensif 152

  • Panagopoulos A (2021a) Water-energy nexus: desalination technologies and renewable energy sources. Environ Sci Pollut Res 28:21009–21022

    Article  CAS  Google Scholar 

  • Panagopoulos A (2021b) Beneficiation of saline effluents from seawater desalination plants: Fostering the zero liquid discharge (ZLD) approach - a techno-economic evaluation. J Environ Chem Eng 9

  • Panagopoulos A (2021c) Energetic, economic and environmental assessment of zero liquid discharge (ZLD) brackish water and seawater desalination systems. Energy Convers Manag 235. https://doi.org/10.1016/j.enconman.2021.113957

  • Panagopoulos A (2021d) Techno-economic assessment of minimal liquid discharge (MLD) treatment systems for saline wastewater (brine) management and treatment. Process Saf. Environ. Prot. 146:656–669

    Article  CAS  Google Scholar 

  • Panagopoulos A, Haralambous KJ (2020a) Minimal Liquid discharge (MLD) and Zero Liquid Discharge (ZLD) strategies for wastewater management and resource recovery-analysis, challenges and prospects. J Environ Chem Eng 8

  • Panagopoulos A, Haralambous KJ (2020b) Environmental impacts of desalination and brine treatment - challenges and mitigation measures. Mar Pollut Bull 161

  • Panagopoulos A, Haralambous KJ, Loizidou M (2019) Desalination brine disposal methods and treatment technologies - a review. Sci Total Environ 693

  • Panagopoulos A, Loizidou M, Haralambous KJ (2020) Stainless steel in thermal desalination and brine treatment: current status and prospects. Met Mater Int 26:1463–1482. https://doi.org/10.1007/s12540-019-00398-w

    Article  CAS  Google Scholar 

  • Rasul NMA, Stewart ICF, Vine P, Nawab ZA (2019) Introduction to oceanographic and biological aspects of the Red Sea. Springer

    Book  Google Scholar 

  • Saltworks Technologies Inc (2018) Flex EDR advanced electrodialysis reversal (EDR). Saltworks Technologies Inc.

    Google Scholar 

  • Shahmansouri A, Min J, Jin L, Bellona C (2015) Feasibility of extracting valuable minerals from desalination concentrate: a comprehensive literature review. J Clean Prod 100

  • Song Y, Li H, Han Y et al (2020) Landfill leachate as an additional substance in the Johannesburg-Sulfur autotrophic denitrification system in the treatment of municipal wastewater with low strength and low COD/TN ratio. Bioresour Technol 295. https://doi.org/10.1016/j.biortech.2019.122287

  • Statistica Data (2021) Primary magnesium production worldwide from 2010 to 2020. Statistica

  • Tufa RA, Curcio E, Fontananova E, Di Profio G (2017) 3.8 Membrane-based processes for sustainable power generation using water: pressure-retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CAPMIX). Compr Membr Sci Eng 2:206–248. https://doi.org/10.1016/b978-0-12-409547-2.12278-4

    Article  CAS  Google Scholar 

  • Veolia (2014) Sustainable water management for recycling & reuse. Veolia Water Technologies

    Google Scholar 

  • Wang J, Zhuang S (2019) Removal of cesium ions from aqueous solutions using various separation technologies. Rev Environ Sci Biotechnol 18

  • Wang X, Jiang L, Gai Z et al (2018) The plasticity of indigenous microbial community in a full-scale heavy oil-produced water treatment plant. J Hazard Mater:358. https://doi.org/10.1016/j.jhazmat.2018.06.049

  • Wang Q, Liang J, Zhang S et al (2020) Characteristics of bacterial populations in an industrial scale petrochemical wastewater treatment plant: composition, function and their association with environmental factors. Environ Res 189. https://doi.org/10.1016/j.envres.2020.109939

  • Weng D, Duan H, Hou Y et al (2020) Introduction of manganese based lithium-ion Sieve-a review. Prog Nat Sci Mater Int 30

  • Williams RG, Follows MJ (2011) Ocean dynamics and the carbon cycle. Cambridge University Press

    Book  Google Scholar 

  • Yan J, Yuan W, Liu J et al (2019) An integrated process of chemical precipitation and sulfate reduction for treatment of flue gas desulphurization wastewater from coal-fired power plant. J Clean Prod:228. https://doi.org/10.1016/j.jclepro.2019.04.227

  • Yang Y, Sun Y, Song X, Yu J (2021) Separation of mono- and di-valent ions from seawater reverse osmosis brine using selective electrodialysis. Environ Sci Pollut Res 28. https://doi.org/10.1007/s11356-020-10014-9

  • Zhang QQ, Tian BH, Zhang X et al (2013) Investigation on characteristics of leachate and concentrated leachate in three landfill leachate treatment plants. Waste Manag 33:2277–2286. https://doi.org/10.1016/j.wasman.2013.07.021

    Article  CAS  Google Scholar 

  • Zhang Y, Wang L, Sun W et al (2020) Membrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: a comprehensive review. J Ind Eng Chem 81

  • Zhu H, Xu W, Tan G et al (2019) Carbonized peat moss electrodes for efficient salinity gradient energy recovery in a capacitive concentration flow cell. Electrochim Acta 294:240–248. https://doi.org/10.1016/j.electacta.2018.10.053

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the research has been done by the author: Argyris Panagopoulos.

Corresponding author

Correspondence to Argyris Panagopoulos.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The author declares no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Brine is a by-product of desalination and industrial processes.

• Brine valorization and resource recovery is an upcoming brine management strategy.

• Characteristics of desalination and industrial brine are analyzed and evaluated.

• Brine from all industries contains sodium, chloride, calcium, and potassium ions.

• Salts such as NaCl, MgCl2, CaCl2, and Li2CO3 can be recovered from brine effluents.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panagopoulos, A. Study and evaluation of the characteristics of saline wastewater (brine) produced by desalination and industrial plants. Environ Sci Pollut Res 29, 23736–23749 (2022). https://doi.org/10.1007/s11356-021-17694-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-17694-x

Keywords

Navigation