Skip to main content

Advertisement

Log in

Heavy metal tolerant endophytic fungi Aspergillus welwitschiae improves growth, ceasing metal uptake and strengthening antioxidant system in Glycine max L.

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In modern agricultural practice, heavy metal (HM) contamination is one of the main abiotic stress threatening sustainable agriculture, crop productivity, and disturb natural soil microbiota. Different reclamation techniques are used to restore the contaminated site; however, they are either costly or unable to remove contaminant when concentration is very low. In such circumstances, bioremediation is used as a novel technique involving microbes for soil restoration. In the current project, Aspergillus welwitschiae(Bk) efficiently endure metal stress (i.e., Cr-VI and As-V in the form of K2Cr2O7 and Na3AsO4) up to 1200 μg/mL and enhanced the production of phytohormones, i.e., 54.83 μg/mL of indole acetic acid (IAA) compared to control 15.56 μg/mL, solubilized inorganic phosphate, and produced stress-related metabolites. The isolate Bk was able to enhance growth of soybean by showing higher root shoot length and fresh/dry weight under stress (p<0.05). Besides, the strain strengthened the antioxidant system of the host increasing enzymatic antioxidants, i.e., catalases (CAT) by 1.58 and 1.11 fold, ascorbic acid oxidase (AAO) by 6.75 and 7.94 fold, peroxidase activity (POD) by 1.12 and 1.37 fold, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) by 1.42 and 1.25 fold at 50 μg/mL of chromate and arsenate. Thus, actively scavenging the reactive oxygen species (ROS) produced results in lower ROS accumulation and high ROS scavenging. On the other hand, the isolates cut down Cr and As uptake by approximately 50% at 50 μg/mL from the medium while bio-transforming it, thereby stabilizing it and assisting the host to resume normal growth, thus avoiding phytotoxicity. It is evident from the current study that A. welwitschiae may potentially be used as a bioremediating agent for reclamation of Cr- and As-contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7(1):18

    Article  Google Scholar 

  • Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature protocols 2(4):875–877

    Article  CAS  Google Scholar 

  • Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN (2019) Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and environmental safety 174:714–727

    Article  CAS  Google Scholar 

  • Ayele, A. and Y. G. Godeto (2021). "Bioremediation of chromium by microorganisms and its mechanisms related to functional groups." Journal of Chemistry 2021.

  • Benhiba L, Fouad MO, Essahibi A, Ghoulam C, Qaddoury A (2015) Arbuscular mycorrhizal symbiosis enhanced growth and antioxidant metabolism in date palm subjected to long-term drought. Trees 29(6):1725–1733

    Article  CAS  Google Scholar 

  • Byreddy AR, Gupta A, Barrow CJ, Puri M (2016) A quick colorimetric method for total lipid quantification in microalgae. Journal of microbiological methods 125:28–32

    Article  CAS  Google Scholar 

  • Chamam A, Sanguin H, Bellvert F, Meiffren G, Comte G, Wisniewski-Dyé F, Bertrand C, Prigent-Combaret C (2013) Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum–Oryza sativa association. Phytochemistry 87:65–77

    Article  CAS  Google Scholar 

  • Chu J, Yao X, Zhang Z (2010) Responses of wheat seedlings to exogenous selenium supply under cold stress. Biological trace element research 136(3):355–363

    Article  CAS  Google Scholar 

  • Chun J, Lee J-H, Jung Y, Kim M, Kim S, Kim BK, Lim Y-W (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. International journal of systematic and evolutionary microbiology 57(10):2259–2261

    Article  CAS  Google Scholar 

  • Cornejo, P., A. Seguel, P. Aguilera, S. Meier, J. Larsen and F. Borie (2017). Arbuscular mycorrhizal fungi improve tolerance of agricultural plants to cope abiotic stress conditions. Plant-microbe interactions in agro-ecological perspectives, Springer: 55-80.

  • Dhal B, Abhilash, Pandey BD (2018) Mechanism elucidation and adsorbent characterization for removal of Cr(VI) by native fungal adsorbent. Sustainable Environment Research 28(6):289–297

    Article  CAS  Google Scholar 

  • Dixit, V. K., S. Misra, S. K. Mishra, N. Joshi and P. S. Chauhan (2021). "Rhizobacteria-Mediated Bioremediation: Insights and Future Perspectives." Soil Bioremediation: An Approach Towards Sustainable Technology: 193-211.

  • Dotaniya, M., C. Dotaniya, K. Kumar, R. Doutaniya, H. Meena, A. Shirale, M. Meena, V. Meena, R. Kumar and B. Meena (2020). "Type of soil pollutant and their degradation: methods and challenges."

  • Dubey A, Malla MA, Kumar A, Dayanandan S, Khan ML (2020) Plants endophytes: unveiling hidden agenda for bioprospecting toward sustainable agriculture. Critical Reviews in Biotechnology 40(8):1210–1231

    Article  CAS  Google Scholar 

  • Edelstein M, Ben-Hur M (2018) Heavy metals and metalloids: sources, risks and strategies to reduce their accumulation in horticultural crops. Scientia Horticulturae 234:431–444

    Article  CAS  Google Scholar 

  • Egamberdieva, D., S. Wirth and E. F. Abd-Allah (2018). Plant hormones as key regulators in plant-microbe interactions under salt stress. Plant Microbiome: Stress Response, Springer: 165-182.

  • El Far M, Taie HA (2009) Antioxidant activities, total anthocyanins, phenolics and flavonoids contents of some sweet potato genotypes under stress of different concentrations of sucrose and sorbitol. Australian Journal of Basic and Applied Sciences 3(4):3609–3616

    Google Scholar 

  • Etesami H, Maheshwari DK (2018) Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects. Ecotoxicology and environmental safety 156:225–246

    Article  CAS  Google Scholar 

  • Fan, C., J. Qian, Y. Yang, H. Sun, J. Song and Y. Fan (2021). "Green ceramsite production via calcination of chromium contaminated soil and the toxic Cr (VI) immobilization mechanisms." Journal of Cleaner Production: 128204.

  • Gong M, You X, Zhang Q (2015) Effects of Glomus intraradices on the growth and reactive oxygen metabolism of foxtail millet under drought. Annals of Microbiology 65(1):595–602

    Article  CAS  Google Scholar 

  • Goswami D, Vaghela H, Parmar S, Dhandhukia P, Thakker JN (2013) Plant growth promoting potentials of Pseudomonas spp. strain OG isolated from marine water. Journal of plant interactions 8(4):281–290

    Article  CAS  Google Scholar 

  • Hao L, Zhang Z, Hao B, Diao F, Zhang J, Bao Z, Guo W (2021) Arbuscular mycorrhizal fungi alter microbiome structure of rhizosphere soil to enhance maize tolerance to La. Ecotoxicology and Environmental Safety 212:111996

    Article  CAS  Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environmental and experimental botany 68(1):14–25

    Article  CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signaling and Behavior 7(11):1456–1466

    Article  CAS  Google Scholar 

  • Hrynkiewicz K, Złoch M, Kowalkowski T, Baum C, Buszewski B (2018) Efficiency of microbially assisted phytoremediation of heavy-metal contaminated soils. Environmental Reviews 26(3):316–332

    Article  CAS  Google Scholar 

  • Huseynova IM (2012) Photosynthetic characteristics and enzymatic antioxidant capacity of leaves from wheat cultivars exposed to drought. Biochimica et Biophysica Acta -Bioenergetics1817(8):1516–1523

    Article  CAS  Google Scholar 

  • Iglesias MJ, Terrile MC, Bartoli CG, D’Ippólito S, Casalongué CA (2010) Auxin signaling participates in the adaptative response against oxidative stress and salinity by interacting with redox metabolism in Arabidopsis. Plant molecular biology 74(3):215–222

    Article  CAS  Google Scholar 

  • Jobby R, Jha P, Yadav AK, Desai N (2018) Biosorption and biotransformation of hexavalent chromium [Cr (VI)]: a comprehensive review. Chemosphere 207:255–266

    Article  CAS  Google Scholar 

  • Joo JH, Yoo HJ, Hwang I, Lee JS, Nam KH, Bae YS (2005) Auxin-induced reactive oxygen species production requires the activation of phosphatidylinositol 3-kinase. FEBS letters 579(5):1243–1248

    Article  CAS  Google Scholar 

  • Kazi T, Jamali M, Kazi G, Arain M, Afridi H, Siddiqui AJA (2005) Evaluating the mobility of toxic metals in untreated industrial wastewater sludge using a BCR sequential extraction procedure and a leaching test. Analytical and bioanalytical chemistry 383(2):297–304

    Article  CAS  Google Scholar 

  • Khan, N., Asadullah and A. Bano (2019). Rhizobacteria and abiotic stress management. Plant Growth Promoting Rhizobacteria for Sustainable Stress Management : Volume 1: Rhizobacteria in Abiotic Stress Management. R. Z. Sayyed, N. K. Arora and M. S. Reddy. Singapore, Springer Singapore: 65-80.

  • Kirk JT, Allen RL (1965) Dependence of chloroplast pigment synthesis on protein synthesis: effect of actidione. Biochemical and Biophysical Research Communications 21(6):523–530

    Article  CAS  Google Scholar 

  • Kısa D, Elmastaş M, Öztürk L, Kayır Ö (2016) Responses of the phenolic compounds of Zea mays under heavy metal stress. Applied Biological Chemistry 59(6):813–820

    Article  Google Scholar 

  • Larone, D. H. (1987). Medically important fungi: a guide to identification, Citeseer.

  • Lee, N. M. (2020). Biotechnological Applications of Extremophilic Microorganisms, Walter de Gruyter GmbH & Co KG.

  • Lewis T, Nichols PD, McMeekin TA (2000) Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. Journal of Microbiological Methods 43(2):107–116

    Article  CAS  Google Scholar 

  • Li H, Chen XW, Wong MH (2016) Arbuscular mycorrhizal fungi reduced the ratios of inorganic/organic arsenic in rice grains. Chemosphere 145:224–230

    Article  CAS  Google Scholar 

  • Li YL, Xin XM, Chang ZY, Shi RJ, Miao ZM, Ding J, Hao GP (2015) The endophytic fungi of Salvia miltiorrhiza Bge.f. alba are a potential source of natural antioxidants. Botanical Studies 56(1):5

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. Journal of biological chemistry 193:265–275

    Article  CAS  Google Scholar 

  • Mahajan P, Kaushal J (2018) Role of phytoremediation in reducing cadmium toxicity in soil and water. Journal of toxicology 2018:116

    Article  Google Scholar 

  • Marin A, Masscheleyn P, Patrick W (1992) The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant and Soil 139(2):175–183

    Article  CAS  Google Scholar 

  • Meng G, Tian Y, Yang Y, Shi J (2016) Evaluation of DPPH free radical scavenging activity of various extracts of Ligularia fischeri in vitro: a case study of Shaanxi region. Indian Journal of Pharmaceutical Sciences 78(4):436–442

    Article  CAS  Google Scholar 

  • Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19(10):16240–16265

    Article  Google Scholar 

  • Mohammadkhani N, Heidari R (2008) Drought-induced accumulation of soluble sugars and proline in two maize varieties. World Applied Sciences Journal 3(3):448–453

    Google Scholar 

  • Munné-Bosch S, Alegre L (2000) Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta 210(6):925–931

    Article  Google Scholar 

  • Natasha, M. Shahid, S. Khalid, B. Murtaza, H. Anwar, A. H. Shah, A. Sardar, Z. Shabbir and N. K. Niazi (2020). "A critical analysis of wastewater use in agriculture and associated health risks in Pakistan." Environmental Geochemistry and Health.

  • Oberbacher MF, Vines HM (1963) Spectrophotometric assay of ascorbic acid oxidase. Nature 197:1203–1204

    Article  CAS  Google Scholar 

  • Oleńska E, Małek W, Wójcik M, Swiecicka I, Thijs S, Vangronsveld J (2020) Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: a methodical review. Science of the Total Environment 140682

  • Pahari, A., A. Pradhan, S. Nayak and B. Mishra (2017). Bacterial siderophore as a plant growth promoter. Microbial Biotechnology, Springer: 163-180.

  • Pandey, N., V. Chandrakar and S. Keshavkant (2018). Mitigating arsenic toxicity in plants: role of microbiota. Mechanisms of Arsenic Toxicity and Tolerance in Plants, Springer: 191-218.

  • Paponov IA, Paponov M, Teale W, Menges M, Chakrabortee S, Murray JA, Palme K (2008) Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Molecular Plant 1(2):321–337

    Article  CAS  Google Scholar 

  • Park D, Yun Y-S, Jo JH, Park JM (2005) Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Research 39(4):533–540

    Article  CAS  Google Scholar 

  • Parry C, Blonquist JM Jr, Bugbee B (2014) In situ measurement of leaf chlorophyll concentration: analysis of the optical/absolute relationship. Plant Cell Environment 37(11):2508–2520

    Article  CAS  Google Scholar 

  • Premono, M. E., A. Moawad and P. Vlek (1996). Effect of phosphate-solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere.

  • Pütter, J. (1974). Peroxidases. Methods of enzymatic analysis, Elsevier: 685-690.

  • Qadir M, Hussain A, Hamayun M, Shah M, Iqbal A, Husna, Murad W (2020) Phytohormones producing rhizobacterium alleviates chromium toxicity in Helianthus annuus L. by reducing chromate uptake and strengthening antioxidant system. Chemosphere 258:127386

    Article  CAS  Google Scholar 

  • Rahman Z, Singh VP (2019) The relative impact of toxic heavy metals (THMs)(arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environmental monitoring and assessment 191(7):1–21

    Article  CAS  Google Scholar 

  • Rana V, Ram S, Nehra K (2017) Review proline biosynthesis and its role in abiotic stress. International Journal of Agriculture Innovations and Research 6(3):2319–2473

    Google Scholar 

  • Reddy S, Girisham S, Babu GN (2017) Applied Microbiology (agriculture, environmental, food and industrial microbiology). Publishers, Scientific

    Google Scholar 

  • Riaz, M., M. Kamran, Y. Fang, Q. Wang, H. Cao, G. Yang, L. Deng, Y. Wang, Y. Zhou and I. Anastopoulos (2020). "Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review." Journal of Hazardous Materials: 123919.

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. The Annual Review of Plant Biology 57:675–709

    Article  CAS  Google Scholar 

  • Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M, Prado FE (2009) Soluble sugars--metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signaling and Behavior 4(5):388–393

    Article  CAS  Google Scholar 

  • Santander C, Aroca R, Ruiz-Lozano JM, Olave J, Cartes P, Borie F, Cornejo P (2017) Arbuscular mycorrhiza effects on plant performance under osmotic stress. Mycorrhiza 27(7):639–657

    Article  CAS  Google Scholar 

  • Schiavon, M. and M. Malagoli (2008). Role of sulfate and S-rich compounds in heavy metal tolerance and accumulation. Sulfur Assimilation and Abiotic Stress in Plants, Springer: 253-269.

  • Selmar D (2008) Potential of salt and drought stress to increase pharmaceutical significant secondary compounds in plants. Landbauforschung Volkenrode 58(1/2):139

    Google Scholar 

  • Shugaba A, Buba F, Kolo B, Nok A, Ameh D, Lori J (2012) Uptake and reduction of hexavalent chromium by Aspergillus niger and Aspergillus parasiticus. Journal of Petroleum and Environmental Biotechnology 3(119):2

    Google Scholar 

  • Stone JK, Polishook JD, White JF (2004) Endophytic fungi. Biodiversity of Fungi. Elsevier Academic Press, Burlington:241–270

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution 28(10):2731–2739

    Article  CAS  Google Scholar 

  • Tonin C, Vandenkoornhuyse P, Joner E, Straczek J, Leyval C (2001) Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza 10(4):161–168

    Article  CAS  Google Scholar 

  • Ucun H, Bayhan YK, Kaya Y (2008) Kinetic and thermodynamic studies of the biosorption of Cr (VI) by Pinus sylvestris Linn. Journal of Hazardous Materials 153(1-2):52–59

    Article  CAS  Google Scholar 

  • Ultra VU Jr, Tanaka S, Sakurai K, Iwasaki K (2007) Arbuscular mycorrhizal fungus (Glomus aggregatum) influences biotransformation of arsenic in the rhizosphere of sunflower (Helianthus annuus L.). Soil Science and Plant Nutrition 53(4):499–508

    Article  CAS  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Frontiers in plant science 4:356

    Article  Google Scholar 

  • Wang H, Wang W, Huang W, Xu H (2017) Effect of salicylic acid on the gene transcript and protein accumulation of flavonoid biosynthesis-related enzymes in Vitis vinifera cell suspension cultures. HortScience 52(12):1772–1779

    Article  CAS  Google Scholar 

  • Wang K, Ma J-Y, Li M-Y, Qin Y-S, Bao X-C, Wang C-C, Cui D-L, Xiang P, Ma LQ (2021) Mechanisms of Cd and Cu induced toxicity in human gastric epithelial cells: oxidative stress, cell cycle arrest and apoptosis. Science of The Total Environment 756:143951

    Article  CAS  Google Scholar 

  • Wang L, Hou D, Shen Z, Zhu J, Jia X, Ok YS, Tack FM, J. J. C. R. i. E. S. Rinklebe (2020) Field trials of phytomining and phytoremediation: a critical review of influencing factors and effects of additives. Critical Reviews in Environmental Science and Technology 50(24):2724–2774

    Article  Google Scholar 

  • Waqas, M., A. L. Khan, M. Kamran, M. Hamayun, S.-M. Kang, Y.-H. Kim and I.-J. Lee (2012). "Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress." 17(9): 10754-10773.

  • Warrier R, Paul M, Vineetha MJG (2013) Estimation of salicylic acid in Eucalyptus leaves using spectrophotometric methods. Genetics and plant physiology 3(1-2):90–97

    Google Scholar 

  • Wood JL, Tang C, and Franks AE (2016) Microbial associated plant growth and heavy metal accumulation to improve phytoextraction of contaminated soils. Soil Biology and Biochemistry 103:131–137

  • Wu, Q.-S. and Y.-N. Zou (2017). Arbuscular mycorrhizal fungi and tolerance of drought stress in plants. Arbuscular mycorrhizas and stress tolerance of plants, Springer: 25-41.

  • Xia S, Song Z, Jeyakumar P, Shaheen SM, Rinklebe J, Ok YS, Bolan N, Wang H (2019) A critical review on bioremediation technologies for Cr(VI)-contaminated soils and wastewater. Critical Reviews in Environmental Science and Technology 49(12):1027–1078

    Article  CAS  Google Scholar 

  • Xie Y, Han S, Li X, Amombo E, Fu J (2017) Amelioration of salt stress on bermudagrass by the fungus Aspergillus aculeatus. Molecular Plant-Microbe Interactions 30(3):245–254

    Article  CAS  Google Scholar 

  • You X, Xu N, Yang X, Sun W (2021) Pollutants affect algae-bacteria interactions: a critical review. Environmental Pollution 116723

  • Zhu L-J, Guan D-X, Luo J, Rathinasabapathi B, Ma LQ (2014) Characterization of arsenic-resistant endophytic bacteria from hyperaccumulators Pteris vittata and Pteris multifida. Chemosphere 113:9–16

    Article  CAS  Google Scholar 

  • Zia Z, Bakhat HF, Saqib ZA, Shah GM, Fahad S, Ashraf MR, Hammad HM, Naseem W, Shahid M (2017) Effect of water management and silicon on germination, growth, phosphorus and arsenic uptake in rice. Ecotoxicology and environmental safety 144:11–18

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledged Abdul Wali Khan University Mardan for supporting the current project.

Availability of data and material

All the data are included in the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Husna: data curation, formal analysis, investigation, methodology, and writing—original draft. Anwar Hussain: supervision, methodology, and writing—original draft. Muhammad Hamayun: resources and supervision. Mohib Shah: supervision. Muhammad Qadir: methodology and writing—original draft. Amjad Iqbal: writing, review, and editing.

Corresponding author

Correspondence to Anwar Hussain.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Gangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Husna, Hussain, A., Shah, M. et al. Heavy metal tolerant endophytic fungi Aspergillus welwitschiae improves growth, ceasing metal uptake and strengthening antioxidant system in Glycine max L. . Environ Sci Pollut Res 29, 15501–15515 (2022). https://doi.org/10.1007/s11356-021-16640-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16640-1

Keywords

Navigation