Skip to main content
Log in

Organic and aqueous extraction of lipids from birch pollen grains exposed to gaseous pollutants

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The lipid fraction of birch pollen grains (BPGs) is not yet fully described, although pollen lipid molecules may play a role in the allergic immune response. The mechanisms by which atmospheric pollutants modify allergenic pollen grains (PGs) are also far from being elucidated despite high potential effects on allergic sensitization. This work is a contribution to a better description of the lipid profile (both external and cytoplasmic) of BPGs and of alterations induced by gaseous air pollutants. Several lipid extractions were performed using organic and aqueous solvents on BPGs following exposure to ozone and/or nitrogen dioxide and under conditions favoring the release of internal lipids. Ozone reacted with alkenes to produce aldehydes and saturated fatty acids, while nitrogen dioxide was shown to be unreactive with lipids. NO2 exhibited a protective effect against the reactivity of alkenes with ozone, probably by competition for adsorption sites. The decreased reactivity of ozone during simultaneous exposure to NO2/O3 raised the possibility of a Langmuir-Hinshelwood mechanism. Oxidation reactions induced by exposure of BPGs to ozone did not substantially modify the extraction of lipids by aqueous solvent, suggesting that the bioaccessibility of lipids was not modified by oxidation. On the contrary, the rupture of PGs appeared to be a key factor in enhancing the bioaccessibility of bioactive lipid mediators (linoleic and α-linolenic acids) in an aqueous solution. The internal lipid fraction of BPGs has specific characteristics compared with external lipids, with more abundant hexadecanoic acid, tricosanol, and particularly unsaturated fatty acids (linoleic and α-linolenic acids). Several mechanisms of action of gaseous pollutants on allergenic pollen were identified in this study: gaseous air pollutants can (i) modify the external lipid fraction by reactivity of alkenes, (ii) adsorb on the surface of PGs and be a source of oxidative stress after inhalation of PGs, and (iii) promote the release of cytoplasmic bioactive lipids by facilitating pollen rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abou Chakra O, Rogerieux F, Poncet P, Sutra JP, Peltre G, Sénéchal H, Lacroix G (2011a) Ability of pollen cytoplasmic granules to induce biased allergic responses in a rat model. Int Arch Allergy Immunol 154:128–136. https://doi.org/10.1159/000320227

    Article  CAS  Google Scholar 

  • Abou Chakra O, Sutra J-P, Poncet P et al (2011b) Key role of water-insoluble allergens of pollen cytoplasmic granules in biased allergic response in a rat model. World Allergy Organ J 4:4–12. https://doi.org/10.1097/WOX.0b013e318205ab44

    Article  CAS  Google Scholar 

  • Abou Chakra O, Sutra J-P, Demey Thomas E et al (2012) Proteomic analysis of major and minor allergens from isolated pollen cytoplasmic granules. J Proteome Res 11:1208–1216

    Article  CAS  Google Scholar 

  • Aglas L, Gilles S, Bauer R, Huber S, Araujo GR, Mueller G, Scheiblhofer S, Amisi M, Dang HH, Briza P, Bohle B, Horejs-Hoeck J, Traidl-Hoffmann C, Ferreira F (2018) Context matters: Th2 polarization resulting from pollen composition and not from protein-intrinsic Allergenicity. J Allergy Clin Immunol 142:984–987.e6. https://doi.org/10.1016/j.jaci.2018.05.004

    Article  CAS  Google Scholar 

  • Alebic-Juretic A, Cvitas T, Klasinc L (1997) Ozone destruction on solid particles. Environ Monit Assess 44:241–247. https://doi.org/10.1023/A:1005788624410

    Article  CAS  Google Scholar 

  • Bacsi A, Dharajiya N, Choudhury BK, Sur S, Boldogh I (2005) Effect of pollen-mediated oxidative stress on immediate hypersensitivity reactions and late-phase inflammation in allergic conjunctivitis. J Allergy Clin Immunol 116:836–843

    Article  CAS  Google Scholar 

  • Bacsi A, Choudhury BK, Dharajiya N et al (2006) Subpollen particles: carriers of allergenic proteins and oxidases. J Allergy Clin Immunol 118:844–850

    Article  CAS  Google Scholar 

  • Bashir MEH, Lui JH, Palnivelu R, Naclerio RM, Preuss D (2013) Pollen Lipidomics: lipid profiling exposes a notable diversity in 22 allergenic pollen and potential biomarkers of the allergic immune response. PLoS One 8:e57566

    Article  CAS  Google Scholar 

  • Baxter RJ, Hu P (2002) Insight into why the Langmuir–Hinshelwood mechanism is generally preferred. J Chem Phys 116:4379–4381. https://doi.org/10.1063/1.1458938

    Article  CAS  Google Scholar 

  • Beck I, Jochner S, Gilles S, McIntyre M, Buters JTM, Schmidt-Weber C, Behrendt H, Ring J, Menzel A, Traidl-Hoffmann C (2013) High environmental ozone levels lead to enhanced Allergenicity of birch pollen. PLoS One 8:e80147

    Article  Google Scholar 

  • Behrendt H, Becker W-M (2001) Localization, release and bioavailability of pollen allergens: the influence of environmental factors. Curr Opin Immunol 13:709–715

    Article  CAS  Google Scholar 

  • Behrendt H, Kasche A, Ebner von Eschenbach C, Risse U, Huss-Marp J, Ring J (2001) Secretion of Proinflammatory eicosanoid-like substances precedes allergen release from pollen grains in the initiation of allergic sensitization. Int Arch Allergy Immunol 124:121–125

    Article  CAS  Google Scholar 

  • Berger M, Bastl K, Bastl M, Dirr L, Hutter HP, Moshammer H, Gstöttner W (2020) Impact of air pollution on symptom severity during the birch, grass and ragweed pollen period in Vienna, Austria: importance of O3 in 2010–2018. Environ Pollut 263:114526. https://doi.org/10.1016/j.envpol.2020.114526

    Article  CAS  Google Scholar 

  • Besancenot J-P, Sindt C, Thibaudon M (2019) Pollen et changement climatique. Bouleau et graminées en France métropolitaine. Rev Fr Allergol 59:563–575. https://doi.org/10.1016/j.reval.2019.09.006

    Article  Google Scholar 

  • Biedermann T, Winther L, Till SJ, Panzner P, Knulst A, Valovirta E (2019) Birch Pollen Allergy in Europe. Allergy 74:1237–1248. https://doi.org/10.1111/all.13758

    Article  CAS  Google Scholar 

  • Boldogh I, Bacsi A, Choudhury BK, Dharajiya N, Alam R, Hazra TK, Mitra S, Goldblum RM, Sur S (2005) Ros generated by pollen NADPH oxidase provide a signal that augments antigen-induced allergic airway inflammation. J Clin Invest 115:2169–2179

    Article  CAS  Google Scholar 

  • Bublin M, Eiwegger T, Breiteneder H (2014) Do lipids influence the allergic sensitization process? J Allergy Clin Immunol 134:521–529. https://doi.org/10.1016/j.jaci.2014.04.015

    Article  CAS  Google Scholar 

  • Caillaud D, Martin S, Segala C, Besancenot JP, Clot B, Thibaudon M, French Aerobiology Network (2014) Effects of airborne birch pollen levels on clinical symptoms of seasonal allergic rhinoconjunctivitis. Int Arch Allergy Immunol 163:43–50. https://doi.org/10.1159/000355630

    Article  CAS  Google Scholar 

  • Chassard G, Choël M, Gosselin S, Vorng H, Petitprez D, Shahali Y, Tsicopoulos A, Visez N (2015) Kinetic of NO2 uptake by Phleum Pratense pollen: chemical and allergenic implications. Environ Pollut 196:107–113. https://doi.org/10.1016/j.envpol.2014.10.004

    Article  CAS  Google Scholar 

  • Chu Y, Cheng TF, Gen M, et al (2019) Effect of ozone concentration and relative humidity on the heterogeneous oxidation of linoleic acid particles by ozone: an insight into the interchangeability of ozone concentration and time. ACS Earth Space Chem. https://doi.org/10.1021/acsearthspacechem.9b00002

  • Cuinica LG, Abreu I, Gomes CR, Esteves da Silva JCG (2013) Exposure of Betula pendula Roth pollen to atmospheric pollutants CO, O3 and SO2. Grana 52:299–304. https://doi.org/10.1080/00173134.2013.830145

    Article  Google Scholar 

  • Cuinica LG, Abreu I, Esteves da Silva J (2014) Effect of air pollutant NO2 on Betula pendula, Ostrya carpinifolia and Carpinus betulus pollen fertility and human allergenicity. Environ Pollut 186:50–55. https://doi.org/10.1016/j.envpol.2013.12.001

    Article  CAS  Google Scholar 

  • D’Amato G, Liccardi G, Frenguelli G (2007) Thunderstorm-asthma and pollen allergy. Allergy 62:11–16

    Article  Google Scholar 

  • D’Amato G, Vitale C, D’Amato M et al (2016) Thunderstorm-related asthma: what happens and why. Clin Exp Allergy 46:390–396. https://doi.org/10.1111/cea.12709

    Article  Google Scholar 

  • Dahl ÅE (2018) Pollen lipids can play a role in allergic airway inflammation. Front Immunol 9. https://doi.org/10.3389/fimmu.2018.02816

  • Evans DE, Sang JP, Cominos X, Rothnie NE, Knox RB (1990) A study of phospholipids and Galactolipids in pollen of two lines of Brassica napus L. (rapeseed) with different ratios of linoleic to linolenic acid. Plant Physiol 93:418–424. https://doi.org/10.1104/pp.93.2.418

    Article  CAS  Google Scholar 

  • Evans DE, Taylor PE, Singh MB, Knox RB (1991) Quantitative analysis of lipids and protein from the pollen of Brassica napus L. Plant Sci 73:117–126. https://doi.org/10.1016/0168-9452(91)90133-S

    Article  CAS  Google Scholar 

  • Farah J, Choël M, De Nadaï P, et al (2020a) Influence of Phleum pratense pollen grains rupture on lipids extraction. Aerobiologia Accepted

  • Farah J, Choël M, De Nadaï P et al (2020b) Extractable lipids from Phleum pratense pollen grains and their modifications by ozone exposure. Aerobiologia 36:171–182. https://doi.org/10.1007/s10453-019-09617-8

    Article  Google Scholar 

  • Frank U, Ernst D (2016) Effects of NO2 and ozone on pollen allergenicity. Plant Physiol 7:91

    Google Scholar 

  • Franze T, Weller MG, Niessner R, Poschl U (2003) Enzyme immunoassays for the investigation of protein nitration by air pollutants. Analyst 128:824–831

    Article  CAS  Google Scholar 

  • Franze T, Weller MG, Niessner R, Poschl U (2005) Protein nitration by polluted air. Environ Sci Technol 39:1673–1678. https://doi.org/10.1021/es0488737

    Article  CAS  Google Scholar 

  • Frei T, Gassner E (2008) Climate change and its impact on birch pollen quantities and the start of the pollen season an example from Switzerland for the period 1969–2006. Int J Biometeorol 52:667–674. https://doi.org/10.1007/s00484-008-0159-2

    Article  Google Scholar 

  • Ghiani A, Aina R, Asero R, Bellotto E, Citterio S (2012) Ragweed pollen collected along high traffic roads shows a higher allergenicity than pollen sampled in vegetated areas. Allergy 67:887–894

    Article  CAS  Google Scholar 

  • Gilles S, Behrendt H, Ring J, Traidl-Hoffmann C (2012) The pollen enigma: modulation of the allergic immune response by non-allergenic, pollen-derived compounds. Curr Pharm Des 18:2314–2319

    Article  CAS  Google Scholar 

  • Goschnick J, Schuricht J (1995) The influence of NO2 on allergenic pollen studied by secondary ion mass spectrometry. J Aerosol Sci 26:S885–S886

    Article  Google Scholar 

  • Goschnick J, Schuricht J (1996) Surface and depth analysis of pollen treated with atmospheric trace gases. J Aerosol Sci 27:S229–S230

    Article  Google Scholar 

  • Grote M, Vrtala S, Niederberger V, Wiermann R, Valenta R, Reichelt R (2001) Release of allergen-bearing cytoplasm from hydrated pollen: a mechanism common to a variety of grass (Poaceae) species revealed by Electron microscopy. J Allergy Clin Immunol 108:109–115

    Article  CAS  Google Scholar 

  • Grote M, Valenta R, Reichelt R (2003) Abortive pollen germination: a mechanism of allergen release in birch, Alder, and hazel revealed by Immunogold Electron microscopy. J Allergy Clin Immunol 111:1017–1023

    Article  Google Scholar 

  • Henricsson S, Westerholm R, Nilsson S, Berggren B (1996) Chemical characterisation of extractable compounds found in the coating of birch (Betula) pollen. Grana 35:179–184

    Article  Google Scholar 

  • Hoebeke L, Bruffaerts N, Verstraeten C, Delcloo A, de Smedt T, Packeu A, Detandt M, Hendrickx M (2017) Thirty-four years of pollen monitoring: an evaluation of the temporal variation of pollen seasons in Belgium. Aerobiologia 34:1–17. https://doi.org/10.1007/s10453-017-9503-5

    Article  Google Scholar 

  • Kolb CE, Cox RA, Abbatt JPD, Ammann M, Davis EJ, Donaldson DJ, Garrett BC, George C, Griffiths PT, Hanson DR, Kulmala M, McFiggans G, Pöschl U, Riipinen I, Rossi MJ, Rudich Y, Wagner PE, Winkler PM, Worsnop DR, O' Dowd CD (2010) An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds. Atmos Chem Phys 10:10561–10605. https://doi.org/10.5194/acp-10-10561-2010

    Article  CAS  Google Scholar 

  • Lhuissier, Lefebvre, Gibouin et al (2000) Secondary ion mass spectrometry imaging of the fixation of 15N-labelled NO in pollen grains. J Microsc 198:108–115. https://doi.org/10.1046/j.1365-2818.2000.00690.x

    Article  CAS  Google Scholar 

  • Lu X, Zhang L, Shen L (2019) Meteorology and climate influences on tropospheric ozone: a review of natural sources, chemistry, and transport patterns. Curr Pollut Rep 5:238–260. https://doi.org/10.1007/s40726-019-00118-3

    Article  CAS  Google Scholar 

  • Motta A, Marliere M, Peltre G et al (2006) Traffic-related air pollutants induce the release of allergen-containing cytoplasmic granules from grass pollen. Int Arch Allergy Immunol 139:294–298

    Article  CAS  Google Scholar 

  • Mueller GA, Thompson PM, DeRose EF et al (2016) A metabolomic, geographic, and seasonal analysis of the contribution of pollen-derived adenosine to allergic sensitization. Metabolomics 12:187. https://doi.org/10.1007/s11306-016-1130-6

    Article  CAS  Google Scholar 

  • Okuyama Y, Matsumoto K, Okochi H, Igawa M (2007) Adsorption of air pollutants on the grain surface of Japanese cedar pollen. Atmos Environ 41:253–260

    Article  CAS  Google Scholar 

  • Ørby PV, Peel RG, Skjøth C, Schlünssen V, Bønløkke JH, Ellermann T, Brændholt A, Sigsgaard T, Hertel O (2015) An assessment of the potential for co-exposure to allergenic pollen and air pollution in Copenhagen, Denmark. Urban Clim 14:457–474. https://doi.org/10.1016/j.uclim.2014.12.002

    Article  Google Scholar 

  • Pacini E, Hesse M (2005) Pollenkitt - its composition, forms and functions. Flora-Morphol Distrib Funct Ecol Plants 200:399–415

    Article  Google Scholar 

  • Piffanelli P, Ross JH, Murphy DJ (1997) Intra- and extracellular lipid composition and associated gene expression patterns during pollen development in Brassica napus. Plant J Cell Mol Biol 11:549–562

    Article  CAS  Google Scholar 

  • Piffanelli P, Ross JHE, Murphy DJ (1998) Biogenesis and function of the lipidic structures of pollen grains. Sex Plant Reprod 11:65–80. https://doi.org/10.1007/s004970050122

    Article  CAS  Google Scholar 

  • Proctor M, Yeo P, Lack A (1996) The natural history of pollination, updated, Subsequent. Timber Press, Portland, Or

  • Puc M, Kotrych D, Lipiec A et al (2016) Birch pollen grains without cytoplasmic content in the air of Szczecin and Bialystok. Alergoprofil 12:101–105

    Google Scholar 

  • Reinmuth-Selzle K, Ackaert C, Kampf CJ, Samonig M, Shiraiwa M, Kofler S, Yang H, Gadermaier G, Brandstetter H, Huber CG, Duschl A, Oostingh GJ, Pöschl U (2014) Nitration of the birch pollen allergen bet v 1.0101: efficiency and site-selectivity of liquid and gaseous nitrating agents. J Proteome Res 13:1570–1577. https://doi.org/10.1021/pr401078h

    Article  CAS  Google Scholar 

  • Rogerieux F, Godfrin D, Sénéchal H, Motta AC, Marlière M, Peltre G, Lacroix G (2007) Modifications of Phleum pratense Grass pollen allergens following artificial exposure to gaseous air pollutants (O3 , NO2 , SO2). Int Arch Allergy Immunol 143:127–134

    Article  CAS  Google Scholar 

  • Scanlon JT, Willis DE (1985) Calculation of flame ionization detector relative response factors using the effective carbon number concept. J Chromatogr Sci 23:333–340. https://doi.org/10.1093/chromsci/23.8.333

    Article  CAS  Google Scholar 

  • Schäppi G, Monn C, Wüthrich B, Wanner HU (1996) Direct determination of allergens in ambient aerosols: methodological aspects. Int Arch Allergy Immunol 110:364–370

    Article  Google Scholar 

  • Schäppi GF, Taylor PE, Staff IA et al (1997a) Source of bet v 1 loaded inhalable particles from birch revealed. Sex Plant Reprod 10:315–323. https://doi.org/10.1007/s004970050105

    Article  Google Scholar 

  • Schäppi GF, Taylor PE, Suphioglu C, Knox RB (1997b) A new approach to the investigation of allergenic respirable particles using a modified Andersen Impactor. Grana 36:373–375

    Article  Google Scholar 

  • Sénéchal H, Visez N, Charpin D et al (2015) A review of the effects of major atmospheric pollutants on pollen grains, pollen content and allergenicity. Sci World J 2015:940243

    Article  Google Scholar 

  • Shiraiwa M, Ammann M, Koop T, Pöschl U (2011a) Gas uptake and chemical aging of semisolid organic aerosol particles. Proc Natl Acad Sci 108:11003–11008. https://doi.org/10.1073/pnas.1103045108

    Article  Google Scholar 

  • Shiraiwa M, Sosedova Y, Rouviére A et al (2011b) The role of long-lived reactive oxygen intermediates in the reaction of ozone with aerosol particles. Nat Chem 3:291–295

    Article  CAS  Google Scholar 

  • Shiraiwa M, Selzle K, Pöschl U (2012) Hazardous components and health effects of atmospheric aerosol particles: reactive oxygen species, soot, polycyclic aromatic compounds and allergenic proteins. Free Radic Res 46:927–939

    Article  CAS  Google Scholar 

  • Skjoth CA, Sommer J, Stach A et al (2007) The long-range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark. Clin Exp Allergy J Br Soc Allergy Clin Immunol 37:1204–1212

    Article  CAS  Google Scholar 

  • Smiljanic K, Apostolovic D, Trifunovic S, et al (2016) Sub-pollen particles are rich carriers of major short ragweed allergens and NADH dehydrogenases: quantitative proteomic and allergomic study. Clin Exp Allergy. https://doi.org/10.1111/cea.12874

  • Smiljanic K, Prodic I, Apostolovic D, Cvetkovic A, Veljovic D, Mutic J, van Hage M, Burazer L, Cirkovic Velickovic T (2019) In-depth quantitative profiling of post-translational modifications of Timothy grass pollen allergome in relation to environmental oxidative stress. Environ Int 126:644–658. https://doi.org/10.1016/j.envint.2019.03.001

    Article  CAS  Google Scholar 

  • Sofiev M (2016) On impact of transport conditions on variability of the seasonal pollen index. Aerobiologia 33:1–13. https://doi.org/10.1007/s10453-016-9459-x

    Article  Google Scholar 

  • Sofiev M, Siljamo P, Ranta H, Rantio-Lehtimäki A (2006) Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study. Int J Biometeorol 50:392–402. https://doi.org/10.1007/s00484-006-0027-x

    Article  CAS  Google Scholar 

  • Suphioglu C, Singh MB, Taylor P, Knox RB, Bellomo R, Holmes P, Puy R (1992) Mechanism of grass-pollen-induced asthma. Lancet 339:569–572

    Article  CAS  Google Scholar 

  • Taylor PE, Flagan RC, Valenta R, Glovsky MM (2002) Release of allergens as respirable aerosols: a link between grass pollen and asthma. J Allergy Clin Immunol 109:51–56

    Article  Google Scholar 

  • Taylor P, Flagan R, Miguel A et al (2004) Birch pollen rupture and the release of aerosols of respirable allergens. Clin Exp Allergy 34:1591–1596

    Article  CAS  Google Scholar 

  • Taylor PE, Jacobson KW, House JM, Glovsky MM (2007) Links between pollen, atopy and the asthma epidemic. Int Arch Allergy Immunol 144:162–170

    Article  Google Scholar 

  • Thio BJR, Clark KK, Keller AA (2011) Magnetic pollen grains as sorbents for facile removal of organic pollutants in aqueous media. J Hazard Mater 194:53–61

    Article  CAS  Google Scholar 

  • Traidl-Hoffmann C, Kasche A, Jakob T, Huger M, Plötz S, Feussner I, Ring J, Behrendt H (2002) Lipid mediators from pollen act as chemoattractants and activators of polymorphonuclear granulocytes. J Allergy Clin Immunol 109:831–838. https://doi.org/10.1067/mai.2002.124655

    Article  CAS  Google Scholar 

  • Traidl-Hoffmann C, Kasche A, Menzel A, Jakob T, Thiel M, Ring J, Behrendt H (2003) Impact of pollen on human health: more than allergen carriers? Int Arch Allergy Immunol 131:1–13

    Article  Google Scholar 

  • Visez N, Chassard G, Azarkan N, Naas O, Sénéchal H, Sutra JP, Poncet P, Choël M (2015) Wind-induced mechanical rupture of birch pollen: potential implications for allergen dispersal. J Aerosol Sci 89:77–84. https://doi.org/10.1016/j.jaerosci.2015.07.005

    Article  CAS  Google Scholar 

  • Zhang D, Duan D, Huang Y, Yang Y, Ran Y (2016) A novel phenanthrene sorption mechanism by two pollens and their fractions. Environ Sci Technol 50:7305–7314. https://doi.org/10.1021/acs.est.6b00046

    Article  CAS  Google Scholar 

  • Zhu C, Farah J, Choël M, Gosselin S, Baroudi M, Petitprez D, Visez N (2018) Uptake of ozone and modification of lipids in Betula Pendula pollen. Environ Pollut 242:880–886. https://doi.org/10.1016/j.envpol.2018.07.025

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the Université de Lille, the Centre National de la Recherche Scientifique (CNRS) and Institut de Recherches Pluridisciplinaires en Sciences de l’Environnement (IREPSE Fed 4129), the French National Research Agency (ANR) through the PIA (Programme d’Investissement d’Avenir) under contract ANR-11-LABX-005-01 (Chemical and Physical Properties of the Atmosphere), and the research Project CLIMIBIO (the French Ministère de l’Enseignement Supérieur et de la Recherche, the Hauts de France Region and the European Funds for Regional Economic Development).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: NV, MC. Investigation: JF, JB, SG. Methodology: SG, JF, NV, MC, PdN. Project administration: NV, MC, PdN. Resources: SG, JB. Supervision: NV, MC, PdN. Vizualization: JF, MC. Writing—original draft: NV, MC, JF. Writing—review and editing: NV, PdN, SG.

Corresponding author

Correspondence to Nicolas Visez.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farah, J., Choël, M., de Nadaï, P. et al. Organic and aqueous extraction of lipids from birch pollen grains exposed to gaseous pollutants. Environ Sci Pollut Res 28, 34527–34538 (2021). https://doi.org/10.1007/s11356-021-12940-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-12940-8

Keywords

Navigation