Skip to main content

Advertisement

Log in

Azole antifungal resistance in fungal isolates from wastewater treatment plant effluents

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Wastewater treatment plants (WWTPs) can be significant sources of antifungal resistant fungi, which can disseminate further in the environment by getting into rivers together with effluents discharged from WWTPs and pose a risk for human health. In this study, the presence of azole resistance was determined in fungal isolates from treated effluents of two WWTPs using the standard microdilution method from Clinical and Laboratory Standards Institute (CLSI). A total of 41 fungal isolates representing 23 fungal species and 16 fungal genera were obtained. Fungal genera related to the known human and/or plant pathogens such as Aspergillus, Fusarium, and Candida were detected. Among the observed species, the susceptibility of Aspergillus fumigatus and Fusarium oxysporum was tested against fluconazole (FCZ), ketoconazole (KTZ), itraconazole (ITZ), and voriconazole (VCZ). The isolate A. fumigatus was susceptible to KTZ, ITZ, and VCZ, while it showed resistance against FCZ. On the contrast, the isolate F. oxysporum showed resistance to KTZ, ITZ, and VCZ. Comparatively, VCZ showed highest activity against both A. fumigatus and F. oxysporum. Analysis of the gene Cyp51A for the A. fumigatus isolate showed no evidence of drug resistance that could be related to point mutations and/or tandem repeats in the gene. To the best of our knowledge, this is the first susceptibility test study on A. fumigatus and F. oxysporum isolates from the WWTPs of South Africa. In conclusion, this study indicated an urgent need for thorough investigation with larger group of fungal isolates from different regions of South Africa to broadly understand the role of WWTPs in the dissemination of azole antifungal drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All of the data analysis results obtained during this study are included in this manuscript. All ITS sequences obtained were submitted to NCBI database (https://www.ncbi.nlm.nih.gov/) as accession numbers MN587039 to MN587079. All Cyp51A gene sequences obtained were deposited at the NCBI database with submission number 2282116.

References

  • Adefisoye MA, Okoh AI (2016) Identification and antimicrobial resistance prevalence of pathogenic Escherichia coli strains from treated wastewater effluents in Eastern Cape, South Africa. Microbiologyopen 5:143–151

    Article  CAS  Google Scholar 

  • Aghaei H, Kordbacheh P, Kachuei R, Mahmoudi S, Afshari SAK, Safara M, Zaini F (2018) In vitro antifungal susceptibility testing of clinical and environmental Fusarium isolates in Iran. Arch Clin Infect Dis 13:e58976

  • Ahmad S, Khan Z, Hagen F, Meis JF (2014) Occurrence of triazole-resistant Aspergillus fumigatus with TR34/L98H mutations in outdoor and hospital environment in Kuwait. Environ Res 133:20–26

    Article  CAS  Google Scholar 

  • Al-Hatmi AM, Meis JF, de Hoog GS (2016) Fusarium: molecular diversity and intrinsic drug resistance. PLoS Pathog 12:e1005464

    Article  CAS  Google Scholar 

  • Al-Hatmi A, Curfs-Breuker I, De Hoog GS, Meis JF, Verweij PE (2017) Antifungal susceptibility testing of Fusarium: a practical approach. J Fungi 3:19

    Article  CAS  Google Scholar 

  • Andrade-Silva L, Ferreira-Paim K, Mora DJ, Da Silva PR, Andrade AA, Araujo NE, Pedrosa AL, Silva-Vergara ML (2013) Susceptibility profile of clinical and environmental isolates of Cryptococcus neoformans and Cryptococcus gattii in Uberaba, Minas Gerais, Brazil. Med Mycol 51:635–640

    Article  CAS  Google Scholar 

  • Araujo R, Pina-Vaz C, Rodrigues AG (2007) Susceptibility of environmental versus clinical strains of pathogenic Aspergillus. Int J Antimicrob Agents 29:108–111

    Article  CAS  Google Scholar 

  • Assress HA, Selvarajan R, Nyoni H, Ntushelo K, Mamba BB, Msagati TA (2019) Diversity, co-occurrence and implications of fungal communities in wastewater treatment plants. Sci Rep 9:1–15

    Article  CAS  Google Scholar 

  • Assress HA, Nyoni H, Mamba BB, Msagati TAM (2020) Occurrence and risk assessment of azole antifungal drugs in water and wastewater. Ecotoxicol Environ Saf 187:109868

    Article  CAS  Google Scholar 

  • Awad MF, Kraume M (2011) Fungal diversity in activated sludge from membrane bioreactors in Berlin. Can J Microbiol 57:693–698

    Article  CAS  Google Scholar 

  • Azevedo M-M, Faria-Ramos I, Cruz LC, Pina-Vaz C, Goncalves Rodrigues A (2015) Genesis of azole antifungal resistance from agriculture to clinical settings. J Agric Food Chem 63:7463–7468

    Article  CAS  Google Scholar 

  • Bader O, Tünnermann J, Dudakova A, Tangwattanachuleeporn M, Weig M, Groß U (2015) Environmental isolates of azole-resistant Aspergillus fumigatus in Germany. Antimicrob Agents Chemother 59:4356–4359

    Article  CAS  Google Scholar 

  • Beardsley J, Halliday CL, Chen SC, Sorrell TC (2018) Responding to the emergence of antifungal drug resistance: perspectives from the bench and the bedside. Future Microbiol 13:1175–1191

    Article  CAS  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    Article  CAS  Google Scholar 

  • Brizzotti-Mazuchi NS, Cunha KC, Siqueira JP, Almeida BG, Lemes TH, Maschio-Lima T, Caetano MH, Ribeiro MD, Rodrigues CR, Castilho EM (2020) Diversity, seasonality, and antifungal susceptibility of yeasts in the public drinking water supply in a municipality of southeastern Brazil. Ecohydrol Hydrobiol. https://doi.org/10.1016/j.ecohyd.2019.05.005

  • Bromley MJ, Van Muijlwijk G, Fraczek MG, Robson G, Verweij PE, Denning DW, Bowyer P (2014) Occurrence of azole-resistant species of Aspergillus in the UK environment. J Glob Antimicrob Resist 2:276–279

    Article  Google Scholar 

  • Brook I, Long SS (2018) Anaerobic bacteria: classification, normal flora, and clinical concepts. Long SS, Fischer M, Prober GC  (Eds.). In: Principles and practice of pediatric infectious diseases, 5th edn. Elsevier, pp 987–995

  • Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med 4:165rv13

    Article  CAS  Google Scholar 

  • Bruker (2015) Standard operating procedure; cultivation and sample preparation for Filamentous fungi, Revision 4

  • Chalupová J, Raus M, Sedlářová M, Šebela M (2014) Identification of fungal microorganisms by MALDI-TOF mass spectrometry. Biotechnol Adv 32:230–241

    Article  CAS  Google Scholar 

  • Chen J, Li H, Li R, Bu D, Wan Z (2005) Mutations in the cyp51A gene and susceptibility to itraconazole in Aspergillus fumigatus serially isolated from a patient with lung aspergilloma. J Antimicrob Chemother 55:31–37

    Article  CAS  Google Scholar 

  • Chowdhary A, Meis JF (2018) Emergence of azole resistant Aspergillus fumigatus and one health: time to implement environmental stewardship. Environ Microbiol 20:1299–1301

    Article  Google Scholar 

  • Chowdhary A, Sharma C, van den Boom M, Yntema JB, Hagen F, Verweij PE, Meis JF (2014) Multi-azole-resistant Aspergillus fumigatus in the environment in Tanzania. J Antimicrob Chemother 69:2979–2983

    Article  CAS  Google Scholar 

  • CLSI (2017) Performance standards for antifungal susceptibility testing of yeasts. Clinical and Laboratory Standards Institute: CLSI supplement M60, Wayne, PA

  • Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS (2015) Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med 5:a019752

    Article  CAS  Google Scholar 

  • Dagenais TR, Keller NP (2009) Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin Microbiol Rev 22:447–465

    Article  CAS  Google Scholar 

  • Espinel-Ingroff A, Cantón E (2007) Antifungal susceptibility testing of filamentous fungi. In: Richard Schwalbe LS-M, Goodwin AC (eds) Antimicrobial susceptibility testing protocols. CRC press, Boca Raton, pp 209–241

    Chapter  Google Scholar 

  • Espinel-Ingroff A, Turnidge J (2016) The role of epidemiological cutoff values (ECVs/ECOFFs) in antifungal susceptibility testing and interpretation for uncommon yeasts and moulds. Rev Iberoam Micol 33:63–75

    Article  Google Scholar 

  • Espinel-Ingroff A, Warnock D, Vazquez JA, Arthington-Skaggs B (2000) In vitro antifungal susceptibility methods and clinical implications of antifungal resistance. Med Mycol 38(sup1):293–304

    Article  Google Scholar 

  • Ethier M, Science M, Beyene J, Briel M, Lehrnbecher T, Sung L (2012) Mould-active compared with fluconazole prophylaxis to prevent invasive fungal diseases in cancer patients receiving chemotherapy or haematopoietic stem-cell transplantation: a systematic review and meta-analysis of randomised controlled trials. Br J Cancer 106:1626–1637

    Article  CAS  Google Scholar 

  • Fernandes T, Vaz-Moreira I, Manaia CM (2019) Neighbor urban wastewater treatment plants display distinct profiles of bacterial community and antibiotic resistance genes. Environ Sci Pollut Res 26(11):1–10

    Article  CAS  Google Scholar 

  • Ferreira da Silva M, Vaz-Moreira I, Gonzalez-Pajuelo M, Nunes OC, Manaia CM (2007) Antimicrobial resistance patterns in Enterobacteriaceae isolated from an urban wastewater treatment plant. FEMS Microbiol Ecol 60:166–176

    Article  CAS  Google Scholar 

  • Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ (2018) Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 360:739–742

    Article  CAS  Google Scholar 

  • Geddes-McAlister J, Shapiro RS (2019) New pathogens, new tricks: emerging, drug-resistant fungal pathogens and future prospects for antifungal therapeutics. Ann N Y Acad Sci 1435:57–78

    Article  Google Scholar 

  • Golding CG, Lamboo LL, Beniac DR, Booth TF (2016) The scanning electron microscope in microbiology and diagnosis of infectious disease. Sci Rep 6:26516

    Article  CAS  Google Scholar 

  • Hare RK, Gertsen JB, Astvad KM, Degn KB, Løkke A, Stegger M, Andersen PS, Kristensen L, Arendrup MC (2019) In vivo selection of a unique tandem repeat mediated azole resistance mechanism (TR120) in Aspergillus fumigatus cyp51A, Denmark. Emerg Infect Dis 25:577–580

    Article  CAS  Google Scholar 

  • Herkert PF, Al-Hatmi A, de Oliveira Salvador GL, Muro MD, Pinheiro RL, Nucci M, Queiroz-Telles F, De Hoog S, Meis JF (2019) Molecular characterization and antifungal susceptibility of clinical Fusarium species from Brazil. Front Microbiol 10:737

    Article  Google Scholar 

  • Holmes AH, Moore LS, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, Guerin PJ, Piddock LJ (2016) Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387:176–187

    Article  CAS  Google Scholar 

  • Jain P, Gupta V, Misra A, Gaur R, Bajpai V, Issar S (2011) Current status of Fusarium infection in human and animal. Asian J Anim Vet Adv 6:201–227

    Article  Google Scholar 

  • Jeanvoine A, Rocchi S, Bellanger A, Reboux G, Millon L (2020) Azole-resistant Aspergillus fumigatus: a global phenomenon originating in the environment? Med Mal Infect 50:389–395

  • Kacprzak M, Warchoł M, Widawska U (2003) Microfungal species composition in raw and treated waste water from selected wastewater treatment plants. In: Pawłowski L, Dudzińska MR, Pawłowski A (eds) Environmental engineering studies. Springer, Boston, pp 167–173

    Chapter  Google Scholar 

  • Kotlarska E, Łuczkiewicz A, Pisowacka M, Burzyński A (2015) Antibiotic resistance and prevalence of class 1 and 2 integrons in Escherichia coli isolated from two wastewater treatment plants, and their receiving waters (Gulf of Gdansk, Baltic Sea, Poland). Environ Sci Pollut Res 22:2018–2030

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  • Lass-Flörl C, Cuenca-Estrella M, Denning D, Rodriguez-Tudela J (2006) Antifungal susceptibility testing in Aspergillus spp. according to EUCAST methodology. Med Mycol 44:S319–S325

    Article  CAS  Google Scholar 

  • Leonardelli F, Macedo D, Dudiuk C, Cabeza MS, Gamarra S, Garcia-Effron G (2016) Aspergillus fumigatus intrinsic fluconazole resistance is due to the naturally occurring T301I substitution in Cyp51Ap. Antimicrob Agents Chemother 60:5420–5426

    Article  CAS  Google Scholar 

  • Lockhart SR, Guarner J (2019) Emerging and reemerging fungal infections. Semin Diagn Pathol 36(3):177–181

    Article  Google Scholar 

  • Lockhart SR, Ghannoum MA, Alexander BD (2017) Establishment and use of epidemiological cutoff values for molds and yeasts by use of the Clinical and Laboratory Standards Institute M57 Standard. J Clin Microbiol 55:1262–1268

    Article  Google Scholar 

  • Lood R, Ertürk G, Mattiasson B (2017) Revisiting antibiotic resistance spreading in wastewater treatment plants–bacteriophages as a much neglected potential transmission vehicle. Front Microbiol 8:2298

    Article  Google Scholar 

  • Meneau I, Sanglard D (2005) Azole and fungicide resistance in clinical and environmental Aspergillus fumigatus isolates. Med Mycol 43:S307–S311

    Article  CAS  Google Scholar 

  • Monapathi M, Bezuidenhout C, Rhode O (2018) Efflux pumps genes of clinical origin are related to those from fluconazole-resistant Candida albicans isolates from environmental water. Water Sci Technol 77:899–908

    Article  CAS  Google Scholar 

  • Nabili M, Shokohi T, Moazeni M, Khodavaisy S, Aliyali M, Badiee P, Zarrinfar H, Hagen F, Badali H (2016) High prevalence of clinical and environmental triazole-resistant Aspergillus fumigatus in Iran: is it a challenging issue? J Med Microbiol 65:468–475

    Article  CAS  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics, 1st edn. Oxford university press, New York

  • Ng C, Gin K (2019) Monitoring antimicrobial resistance dissemination in aquatic systems. Water 11(1):71

    Article  Google Scholar 

  • Niestępski S, Harnisz M, Korzeniewska E, Aguilera-Arreola MG, Contreras-Rodríguez A, Filipkowska Z, Osińska A (2019) The emergence of antimicrobial resistance in environmental strains of the Bacteroides fragilis group. Environ Int 124:408–419

    Article  CAS  Google Scholar 

  • Ohore OE, Addo FG, Zhang S, Han N, Anim-Larbi K (2019) Distribution and relationship between antimicrobial resistance genes and heavy metals in surface sediments of Taihu Lake, China. J Environ Sci 77:323–335

    Article  Google Scholar 

  • Pärnänen KM, Narciso-da-Rocha C, Kneis D, Berendonk TU, Cacace D, Do TT, Elpers C, Fatta-Kassinos D, Henriques I, Jaeger T (2019) Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci Adv 5(3):eaau9124

    Article  CAS  Google Scholar 

  • Prigitano A, Esposto MC, Romanò L, Auxilia F, Tortorano AM (2019) Azole-resistant Aspergillus fumigatus in the Italian environment. J Glob Antimicrob Resist 16:220–224

    Article  Google Scholar 

  • Pujol I, Guarro J, Gene J, Sala J (1997) In-vitro antifungal susceptibility of clinical and environmental Fusarium spp. strains. J Antimicrob Chemother 39:163–167

    Article  CAS  Google Scholar 

  • Revie NM, Iyer KR, Robbins N, Cowen LE (2018) Antifungal drug resistance: evolution, mechanisms and impact. Curr Opin Microbiol 45:70–76

    Article  CAS  Google Scholar 

  • Sabino R, Carolino E, Veríssimo C, Martinez M, Clemons KV, Stevens DA (2016) Antifungal susceptibility of 175 Aspergillus isolates from various clinical and environmental sources. Med Mycol 54:740–756

    Article  CAS  Google Scholar 

  • Sandle T, Vijayakumar R, Saleh Al Aboody M, Saravanakumar S (2014) In vitro fungicidal activity of biocides against pharmaceutical environmental fungal isolates. J Appl Microbiol 117:1267–1273

    Article  CAS  Google Scholar 

  • Sanglard D, Coste A, Ferrari S (2009) Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Res 9:1029–1050

    Article  CAS  Google Scholar 

  • Sanguinetti M, Posteraro B (2018) Susceptibility testing of fungi to antifungal drugs. J Fungi 4:110

    Article  CAS  Google Scholar 

  • Silva DM, Batista LR, Rezende EF, Fungaro MHP, Sartori D, Alves E (2011) Identification of fungi of the genus Aspergillus section Nigri using polyphasic taxonomy. Braz J Microbiol 42:761–773

    Article  Google Scholar 

  • Singer AC, Shaw H, Rhodes V, Hart A (2016) Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Front Microbiol 7:1728

    Article  Google Scholar 

  • Snelders E, Rijs AJ, Kema GH, Melchers WJ, Verweij PE (2009) Possible environmental origin of resistance of Aspergillus fumigatus to medical triazoles. Appl Environ Microbiol 75:4053–4057

    Article  CAS  Google Scholar 

  • Snelders E, Camps SM, Karawajczyk A, Schaftenaar G, Kema GH, Van der Lee HA, Klaassen CH, Melchers WJ, Verweij PE (2012) Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PLoS One 7:e31801

    Article  CAS  Google Scholar 

  • Sugui JA, Kwon-Chung KJ, Juvvadi PR, Latgé J-P, Steinbach WJ (2015) Aspergillus fumigatus and related species. Cold Spring Harb Perspect Med 5:a019786

    Article  CAS  Google Scholar 

  • Technelysium P (2012) Chromas Lite version 2.1. South Brisbane, Queensland, Australia

  • Teixeira A, Silva M, Lyra L, Luz E, Uno J, Takada H, Miyaji M, Nishimura K, Schreiber A (2005) Antifungal susceptibility and pathogenic potential of environmental isolated filamentous fungi compared with colonizing agents in immunocompromised patients. Mycopathologia 160:129–135

    Article  CAS  Google Scholar 

  • Tortorano AM, Prigitano A, Dho G, Esposto MC, Gianni C, Grancini A, Ossi C, Viviani MA (2008) Species distribution and in vitro antifungal susceptibility patterns of 75 clinical isolates of Fusarium spp. from northern Italy. Antimicrob Agents Chemother 52:2683–2685

    Article  CAS  Google Scholar 

  • Verweij PE, Snelders E, Kema GH, Mellado E, Melchers WJ (2009) Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? Lancet Infect Dis 9:789–795

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are also thankful to the wastewater and water treatment plants for granting their permission to collect water samples. Hailemariam Abrha Assress is thankful to Addis Ababa University, Ethiopia, for granting him a study leave.

Funding

The authors received funding from Nanotechnology and Water Sustainability Research Unit, UNISA, South Africa.

Author information

Authors and Affiliations

Authors

Contributions

Hailemariam Abrha Assress: conceptualization, performed the experiment, drafted the manuscript, and prepared all figures; Ramganesh Selvarajan: data analysis; Hlengilizwe Nyoni: assisted in MALDI and SEM analysis; Henry Joseph Oduor Ogola: data analysis; Titus A.M. Msagati and Bhekie B. Mamba: lead the project and financial support; all authors reviewed and edited the final version.

Corresponding author

Correspondence to Titus A. M. Msagati.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Responsible Editor: Robert Duran

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assress, H.A., Selvarajan, R., Nyoni, H. et al. Azole antifungal resistance in fungal isolates from wastewater treatment plant effluents. Environ Sci Pollut Res 28, 3217–3229 (2021). https://doi.org/10.1007/s11356-020-10688-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10688-1

Keywords

Navigation