Skip to main content
Log in

Glutathione S-transferase activity and genetic polymorphisms associated with exposure to organochloride pesticides in Todos Santos, BCS, Mexico: a preliminary study

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The objective of this study was to identify and evaluate the impact of exposure to mixtures of organochloride pesticides (OCPs) in agricultural workers by detecting their effects on the activity of the enzyme glutathione S-transferase (GST) and the presence of polymorphisms of the GSTT1 and GSTM1 genes. The presence of OCPs was identified and quantified by gas chromatography, while spectrophotometry was used to measure enzymatic GST activity. The frequencies of the GSTM1 genotypes were analyzed by multiplex PCR. A total of 18 metabolites of OCPs were identified in the workers’ blood, most of which are either prohibited (DDT and its metabolites p, p’DDD and p, p’DDE, dieldrin, endrin, aldrin) and/or restricted (δ hexachlorocyclohexane, cis chlordane, methoxychlor, and endosulfan). The results obtained indicate lower levels of GST activity at higher OCPs concentrations detected in blood from exposed workers, together with an increase in OCP levels in individuals who presented the GSTT1*0 and GSTM1*0 genotypes. These conditions place the detoxification process in agricultural workers with null polymorphisms in the GST genes and high concentrations of OCPs in the blood (especially DDT and its metabolites, DDD and DDE) at risk, and increase their susceptibility to develop serious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Rahman SZ, El-Zein RA, Anwar WA, Au WW (1996) A multiplex PCR procedure for polymorphic analysis of GSTM1 and GSTT1 genes in population studies. Cancer Letts 107:229–233

    CAS  Google Scholar 

  • Ahluwalia M, Kaur A (2018) Modulatory role of GSTT1 and GSTM1 in Punjabi agricultural workers exposed to pesticides. Environ Sci Pollut Res 25:11981–11986

    Google Scholar 

  • ATSDR. 2005. Agency for Toxic Substances and Disease Registry. Toxicological profile for hexachlorocyclohexane CAS#: 608-73-1

  • Attaullah M, Yousuf MJ, Shaukat S et al (2017) Serum organochloride pesticides residues and risk of cancer: a case-control study. Saudi J Biol Sci 25:1284–1290

    Google Scholar 

  • Atuma S, Aune M (1999) Method for the determination of PCB congeners and chlorinated pesticides in human blood serum. Bull Environ Contam Toxicol 62:8–15

    CAS  Google Scholar 

  • CICLOPLAFEST.1996. http://www.salud.gob.mx/unidades/ cofepris/bv/libros

  • CICLOPLAFEST.1998. Catálogo oficial de plaguicidas. Comisión Intersecretarial para el Control del Proceso y Uso de Plaguicidas, Fertilizantes y Sustancias Tóxicas. SEMARNAP, SECOFI, SAGAR y SSA, México

  • Cohn BA, La Merrill M, Krigbaum NY et al (2015) DDT exposure in utero and breast cancer. J Clin Endocrinol Metab 100:2865–2872

    CAS  Google Scholar 

  • Collotta M, Bertazzi PA, Bollati V (2013) Epigenetics and pesticides. Toxicol 307:35–41

    CAS  Google Scholar 

  • Cuenca J, Tirado B, Barral N et al (2019) Increased levels of genotoxic damage in a Bolivian agricultural population exposed to mixtures of pesticides. Sci Total Environ 695:133942

    Google Scholar 

  • Da Silva FR, Da Silva J, Allgayer MC et al (2012) Genotoxic biomonitoring of tobacco farmers: biomarkers of exposure, of early biological effects of susceptibility. J Hazard Mater 225-226:81–90

    Google Scholar 

  • Ellsworth RE, Kostyniak PJ, Chi LH (2018) Organochloride pesticide residues in human breast tissue and their relationships with clinical and pathological characteristics of breast cancer. Environ Toxicol 33(8):876–884

    CAS  Google Scholar 

  • García Hernández J, Leyva Morales J, Martínez Rodríguez I et al (2018) Estado actual de la investigación sobre plaguicidas en México. Rev Int Contam Ambie 34:29–60

    Google Scholar 

  • Garcia Mayor RV, Larrañaga Vidal A, Docet Caamaño MF (2012) Endocrine disruptors and obesity: obesogens. Endocrinol Nutr 59(4):261–267

    CAS  Google Scholar 

  • Gerić M, Ceraj-Cerić N, Gajski G, Vasilić Ž, Capuder Ž, Garaj-Vrhovac V (2012) Cytogenetic status of human lymphocytes after exposure to low concentrations of p, p′-DDT, and its metabolites (p, p′-DDE, and p, p′-DDD) in vitro. Chemosphere 87(11):1288–1294

    Google Scholar 

  • Ginsberg G, Smolenski S, Haltis D et al (2009) Genetic polymorphism in glutathione Tt (GST): population distribution of GSTM1, T1, and P1 conjugating activity. J Toxicol Environ Health 12:389–439

    CAS  Google Scholar 

  • Gong M, Dong W, Shi Z et al (2012) Genetic polymorphisms of GSTM1, GSTT1, and GSTP1 with prostate cancer risk: a meta-analysis of 57 studies. Plos one 11:e50587

    Google Scholar 

  • Habig WH, Jakoby WB (1981) Glutathione-S-transferase (rat and human). Methods Enzymol 77:218–235

    CAS  Google Scholar 

  • Hernández AF, Parrón T, Tsatsakis AM, Requena M, Alarcón R, López-Guarnido O (2013) Toxic effects of pesticide mixtures at a molecular level: their relevance to human health. Toxicol 307:136–145

    Google Scholar 

  • Iranpur M, Esmailizadeh A, Horriat R et al (2002) Rapid extraction of high quality DNA from whole blood stored at 4°C for long period. Department of Animal Science, Faculty of Agriculture, Shahrekord University, Shahr-e Kord

    Google Scholar 

  • ISAT (2002) Diagnóstico situacional del uso de DDT y el control de la malaria. Instituto de Salud, Ambiente y Trabajo SC. Informe Regional para México y Centroamérica 1:13–22

    Google Scholar 

  • Jayaraj R, Megha P, Sreedev P (2016) Organochloride pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol 9(3–4):90–100

    CAS  Google Scholar 

  • Kim KH, Kabir E, Jahan SA (2016) Exposure to pesticides and the associated human health effects. Sci Total Environ 575:525–535

    Google Scholar 

  • Lu Y, Morimoto K, Takeshita T, Takeuchi T, Saito T (2000) Genotoxic effects of alpha-endosulfan and beta-endosulfan on human HepG2 cells. Environ Health Perspect 108:559–561

    CAS  Google Scholar 

  • Lushchak VI, Matviishyn TM, Husak VV, Storey JM, Storey KB (2018) Pesticide toxicity: a mechanistic approach. EXCLI J 17:1101–1136

    Google Scholar 

  • Maurya PK, Rizvi SI (2010) Age-dependent changes in glutathione-S-transferase: correlation with total plasma antioxidant potential and red cell intracellular glutathione. IJCB 25(4):398–400

    CAS  Google Scholar 

  • Meeker JD, Altshul L, Hauser R (2007) Serum PCBs, p, p′-DDE and HCB predict thyroid hormone levels in men. Environ Res 104(2):296–304

    CAS  Google Scholar 

  • Mejía-Sanchez F, Montenegro-Morales LP, Castillo-Cadena J (2017) Enzymatic activity induction of GST-family isoenzymes from pesticide mixture used in floriculture. Environ Sci Pollut Res 25(1):601–606

    Google Scholar 

  • Menezes RG, Qadir TF, Moin A et al. 2017. Endosulfan Poisoning: an overview. J Forensic Med 51:27–33

  • Mnif W, Hassine ALH, Bouaziz A et al (2011) Effect of endocrine disruptor pesticides: a review. Int J Environ Res Public Health 8(6):2265–2303

    CAS  Google Scholar 

  • Mohana K, Achary A (2017) Human cytosolic glutathione-S-transferases: quantitative analysis of expression, comparative analysis of structures and inhibition strategies of isozymes involved in drug resistance. Drug Metabolism Rev 49(3):318–337

    Google Scholar 

  • Mostafalou S, Abdollahi M (2016) Pesticides: an update of human exposure and toxicity. Arch Toxicol 91(2):549–599

    Google Scholar 

  • Mrema EJ, Rubino FM, Brambilla G et al (2012) Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicol 307:74–88

    Google Scholar 

  • Pelletier C, Després JP, Tremblay A (2002) Plasma organochlorine concentrations in endurance athletes and obese individuals. Med Sci Sports Exerc 34(12):1971–1975

    CAS  Google Scholar 

  • Pérez Morales R, Castro Hernández C, Gonaebatt ME et al (2008) Polymorphisms of CYP1A1*2C, GSTM1*0 y GSTT1*0 in a Mexican mestizo population: an analysis of similarity. Human Biol 80(4):457–465

    Google Scholar 

  • Pérez Morales R, Méndez Ramirez I, Castro Hernández C et al (2011) Polymorphisms associated with the risk of lung cancer in a healthy Mexican Mestizo population: application of the additive model for cancer. Genet Mol Biol 34(4):546–552

    Google Scholar 

  • PNUMA. 2009. https://www.gob.mx/cms/uploads/attachment/file/30179/convenio_estocolmo.pdf

  • Presutti R, Harris SA, Kachuri L (2016) Pesticide exposures and the risk of multiple myeloma in men: an analysis of the north American pooled project. Int J Cancer 139(8):1703–1714

    CAS  Google Scholar 

  • Schinasi L, Leon M (2014) Non-Hodgkin lymphoma and occupational exposure to agricultural pesticide chemical groups and active ingredients: a systematic review and meta-analysis. Int J Environ Res Public Health 11(4):4449–4527

    Google Scholar 

  • Sharma E, Mustafa M, Pathak R, Guleria K, Ahmed RS, Vaid NB, Banerjee BD (2012) A case control study of gene environmental interaction in fetal growth restriction with special reference to organochloride pesticides. Eur J Obstet Gynecol Reprod Biol 161:163–169

    CAS  Google Scholar 

  • Sharma R, Upadhyay G, Siddiqi N, Sharma B (2013) Pesticides-induced biochemical alterations in occupational north Indian suburban population. Hum Exp Toxicol 32(11):1213–1227

    CAS  Google Scholar 

  • Shen J, Lin G, Yuan W, Tan J, Bolt HM, Thier R (1998) Glutathione transferase T1 and M1 genotype polymorphism in the normal population of shanghai. Arch Toxicol 72:456–458

    CAS  Google Scholar 

  • Siddarth M, Datta SK, Mustafa M, Ahmed RS, Banerjee BD, Kalra OP, Tripathi AK (2014) Increased level of organochloride pesticides in chronic kidney disease patients of unknown etiology: role of GSTM1/GSTT1 polymorphism. Chemosphere 96:174–179

    CAS  Google Scholar 

  • Singh S, Kumar V, Singh P, Thakur S, Banerjee BD, Rautela RS, Grover SS, Rawat DS, Pasha ST, Jain SK, Rai A (2011) Genetic polymorphisms of GSTM1, GSTT1 and GSTP1 and susceptibility to DNA damage in workers occupationally exposed to organophosphate pesticides. Mutat Res 725(1–2):36–42

    CAS  Google Scholar 

  • Song L, Zhao J, Jin X, Li Z, Newton IP, Liu W, Xiao H, Zhao M (2014) The organochloride p, p′-dichlorodiphenyltrichloroethane induces colorectal cancer growth through Wnt/β-catenin signaling. Toxicol Lett 229(1):284–291

    CAS  Google Scholar 

  • Steenland K, Mora AM, Barr DB, Juncos J, Roman N, Wesseling C (2014) Organochloride chemicals and neurodegeneration among elderly subjects in Costa Rica. Environ Res 134:205–209

    CAS  Google Scholar 

  • Teodoro M, Briguglio G, Fenga C, Costa C (2019) Genetic polymorphism as determinants of pesticides toxicity: recents advances. Toxicol Rep 6:564–570

    CAS  Google Scholar 

  • VoPham T, Bertrand KA, Hart JE, Laden F, Brooks MM, Yuan JM, Talbott EO, Ruddell D, Chang CCH, Weissfeld JL (2017) Pesticide exposure and liver cancer: a review. Cancer Causes Control 28(3):177–190

    Google Scholar 

  • Waliszewski S, Caba M, Gomez-Arroyo S et al (2013) Niveles de plaguicidas organoclorados en habitantes de México. Rev Int Contam Ambien 29:121–131

    Google Scholar 

  • Weikang C, Jie L, Likang L, Weiwen Q, Liping L (2016) A meta-analysis of association between glutathione-S-transferase M1 gene polymorphism and Parkinson's disease susceptibility. Open Med 11(1):578–583

    Google Scholar 

  • Xu X, Dailey AB, Talbott EO (2009) Associations of serum concentrations of organochloride pesticides with breast cancer and prostate cancer in U. S adults Environ Health Perspec 118(1):60–66

    Google Scholar 

  • Zhang Y, Ni Y, Zhang H et al (2012) Association between GSTM1 and GSTT1 allelic variants and head and neck squamous cell carcinoma. PLoS ONE 10:e47579

    Google Scholar 

Download references

Acknowledgments

This study was made possible by the graduate scholarship awarded by Mexico’s Consejo Nacional de Ciencia y Tecnología (CONACYT) to M.Sc. Santillán-Sidón P. We thank Dr. Betancourt A, M.Sc. Latisnere H., Favela R., Ríos E., and Gandarilla D. for their advice and contributions to this work, and the Commander of the Voluntary Firefighters of Todos Santos, Cadena-Moyron MS., and his collaborators, Márquez-González J. and Arguello R., for their support during the sampling process. Special thanks to the agricultural workers and residents of Todos Santos who participated and collaborated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celia Vazquez-Boucard.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santillán-Sidón, P., Pérez-Morales, R., Anguiano, G. et al. Glutathione S-transferase activity and genetic polymorphisms associated with exposure to organochloride pesticides in Todos Santos, BCS, Mexico: a preliminary study. Environ Sci Pollut Res 27, 43223–43232 (2020). https://doi.org/10.1007/s11356-020-10206-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10206-3

Keywords

Navigation