Skip to main content

Advertisement

Log in

Seasonal variations on trace element bioaccumulation and trophic transfer along a freshwater food chain in Argentina

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Río Tercero Reservoir (RTR) is the largest artificial reservoir in the province of Córdoba (Argentina). Water, sediment, plankton, shrimp (Palaemonetes argentinus), and fish (Odontesthes bonariensis) were collected during the wet season (WS) and dry season (DS) from this reservoir. Concentrations of Ag, Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, P, Pb, Se, U, and Zn were determined to investigate their respective bioaccumulation pattern and trophic transfer in the food chain. Results showed that their concentrations in water were rather low except Pb, which exceed the limits considered as hazardous for aquatic life. The enrichment factor (EF) in sediments showed that most of the element were derived from anthropogenic sources. Furthermore, the bioaccumulation factor (BAF) determined that the elements undergo bioaccumulation, especially in organisms such as plankton. The invertebrates were characterized by the highest BAF for Cu, P, and Zn in both seasons; Ag, As, and Hg during WS; and Se during DS. Fish muscle registered the highest BAF for Hg (DS) and Se (WS). A significant decrease in Al, As, Cd, Cr, Cu (DS) Fe, Mn, Ni, Pb, Se, U, and Zn (DS) concentrations through the trophic chain was observed, indicating biodilution. Some notable exceptions were found as Cu (WS), Hg (DS), and P (both season) that showed biomagnification. Further studies are needed to establish differential behavior with different species and pollutant, particularly when the potential transfer is to edible organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrahim GMS, Parker RJ (2008) Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ Monit Assess 136:227–238

    CAS  Google Scholar 

  • Achary MS, Satpathy KK, Panigrahi S, Mohanty AK, Padhi RK, Biswas S, Prabhu RK, Vijayalakshmi S, Panigrahy RC (2017) Concentration of heavy metals in the food chain components of the nearshore coastal waters of Kalpakkam, southeast coast of India. Food Control 72:232–243

    CAS  Google Scholar 

  • AEWQG (2003) Argentinean Environmental Water Quality Guidelines (AEWQG Niveles Guıía Nacionales de Calidad de Agua Ambiente). Subsecr. Recur. Hídricos la Nación. www.hidricosargentina.gov.ar/NivelCalidad1. Accessed 11 November 2019

  • Albuquerque FEA, Minervino AHH, Miranda M, Herrero-Latorre C, Barrêto Júnior RA, Oliveira FLC, Dias SR, Ortolani EL, López-Alonso M (2020) Toxic and essential trace element concentrations in the freshwater shrimp Macrobrachium amazonicum in the Lower Amazon, Brazil. J Food Compos Anal 86:103361

    Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91:869–881

    CAS  Google Scholar 

  • Alves CM, Ferreira CM, Soares EV, Soares HM (2017) A multi-metal risk assessment strategy for natural freshwater ecosystems based on the additive inhibitory free metal ion concentration index. Environ Pollut 223:517–523

    CAS  Google Scholar 

  • Amé MV, Díaz MP, Wunderlin DA (2003) Occurrence of toxic cyanobacterial blooms in San Roque reservoir (Córdoba Argentina): a field and chemometric study. Environ Toxicol 18:192–201

    Google Scholar 

  • Arcagni M, Campbell L, Arribére MA, Marvin-Di Pasquale M, Rizzo A, Ribeiro Guevara S (2013) Differential mercury transfer in the aquatic food web of a double basined lake associated with selenium and habitat. Sci Total Environ 454:170–180

    Google Scholar 

  • Arnot JA, Gobas FA (2006) A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ Rev 14:257–297

    CAS  Google Scholar 

  • Arribére MA, Guevara SR, Bubach DF, Arcagni M, Vigliano PH (2008) Selenium and mercury in native and introduced fish species of patagonian lakes, Argentina. Biol Trace Elem Res 122:42–63

    Google Scholar 

  • Asante KA, Agusa T, Mochizuki H, Ramu K, Inoue S, Kubodera T, Takahashi S, Subramanian A, Tanabe S (2008) Trace elements and stable isotopes (δ13C and δ15N) in shallow and deep-water organisms from the East China Sea. Environ Pollut 156:862–873

    CAS  Google Scholar 

  • Avigliano E, Schenone NH, Volpedo AV, Goessler W, Cirelli AF (2015) Heavy metals and trace elements in muscle of Silverside (Odontesthes1 bonariensis) and water from different environments (Argentina): aquatic pollution and consumption effect approach. Sci Total Environ 506–507:102–108

    Google Scholar 

  • Aytekin T, Kargın D, Çoğun HY, Temiz Ö, Varkal HS, Kargın F (2019) Accumulation and health risk assessment of heavy metals in tissues of the shrimp and fish species from the Yumurtalik coast of Iskenderun Gulf, Turkey. Heliyon 5:e02131

    Google Scholar 

  • Azevedo-Silva CE, Almeida R, Carvalho DP, Ometto JPHB, de Camargo PB, Dorneles PR, Azeredo A, Bastos WR, Malm O, Torres JPM (2016) Mercury biomagnification and the trophic structure of the ichthyofauna from a remote lake in the Brazilian Amazon. Environ Res 151:286–296

    CAS  Google Scholar 

  • Bahnasawy M, Khidr AA, Dheina N (2011) Assessment of heavy metal concentrations in water, plankton, and fish of Lake Manzala, Egypt. Turkish J Zool 35:271–280

    CAS  Google Scholar 

  • Bazán R, Larrosa N, Bonansea M et al (2014) Programa de monitoreo de calidad de agua del Embalse Los Molinos, Córdoba-Argentina. Rev Fac Cienc Exactas Físicas Naturales 1:27–34

    Google Scholar 

  • Beneditto APM, Bittar VT, Camargo PB, Rezende CE, Kehrig HA (2011) Mercury and nitrogen isotope in a marine species from a tropical coastal food web. Arch Environ Contam Toxicol 62:264–271

    Google Scholar 

  • Benson R, Conerly OD, Sander W, Batt AL, Boone JS, Furlong ET, Glassmeyer ST, Kolpin DW, Mash HE, Schenck KM, Simmons JE (2017) Human health screening and public health significance of contaminants of emerging concern detected in public water supplies. Sci Total Environ 579:1643–1648

    CAS  Google Scholar 

  • Bertrand L, Monferrán MV, Valdés ME, Amé MV (2019) Usefulness of a freshwater macrophyte (Potamogeton pusillus) for an environmental risk assessment in a multi-source contaminated basin. Chemosphere 222:1003–1016

    CAS  Google Scholar 

  • Bonansea M, Rodriguez MC, Pinotti L, Ferrero S (2015) Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina). Remote Sens Environ 158:28–41

    Google Scholar 

  • Boudet LC, Polizzi P, Romero MB, Robles A, Gerpe M (2013) Lethal and sublethal effects of cadmium in the white shrimp Palaemonetes argentinus: a comparison between populations from contaminated and reference sites. Ecotoxicol Environ Saf 89:52–58

    Google Scholar 

  • Brian S, Dyer H (2006) Systematic revision of the south American silversides (Teleostei, Atheriniformes). Biocell 30:69–88

    Google Scholar 

  • Campbell LM, Norstrom RJ, Hobson KA et al (2005) Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay). Sci Total Environ 351:247–263

    Google Scholar 

  • Canadian Council of Ministers of the Environment (2001) Canadian sediment quality guidelines for the protection of aquatic life: Introduction. Updated. In: Canadian Environmental Quality Guidelines, 1999. Canadian Council of Ministers of the Environment, Winnipeg, Canada

  • Candra YA, Syaifullah M, Irawan B, Putranto TWC, Hidayati D, Soegianto A (2019) Concentrations of metals in mantis shrimp Harpiosquilla harpax (de Haan, 1844) collected from the eastern region of Java Sea Indonesia, and potential risks to human health. Reg Stud Mar Sci 26:100507

    Google Scholar 

  • Carriquiriborde P, Ronco A (2006) Ecotoxicological studies on the pejerrey (Odonesthes bonariensis, Pisces Atherinopsidae). Biocell 30:97–109

    Google Scholar 

  • Cheng Z, Man YB, Nie XP, Wong MH (2013) Trophic relationships and health risk assessments of trace metals in the aquaculture pond ecosystem of Pearl River Delta, China. Chemosphere 90:2142–2148

    CAS  Google Scholar 

  • Coelho JP, Mieiro CL, Pereira E, Duarte AC, Pardal MA (2013) Mercury biomagnification in a contaminated estuary food web: effects of age and trophic position using stable isotope analyses. Mar Pollut Bull 69:10–115

    Google Scholar 

  • Çoğun H, Yüzereroğlu TA, Kargin F, Firat Ö (2005) Seasonal variation and tissue distribution of heavy metals in shrimp and fish species from the Yumurtalik coast of Iskenderun Gulf, Mediterranean. Bull Environ Contam Toxicol 75:707–715

    Google Scholar 

  • Collins P, Williner V, Giri F (2007) Trophic relationships in crustacean decapods of a river with a floodplain. In: Predation in organisms. Springer, Berlin Heidelberg, pp 59–86

    Google Scholar 

  • Croteau MN, Luoma SN, Stewart AR (2005) Trophic transfer of metals along freshwater food webs: evidence of cadmium biomagnification in nature. Limnol Oceanogr 50:1511–1519

    CAS  Google Scholar 

  • Cui B, Zhang Q, Zhang K, Liu X, Zhang H (2011) Analyzing trophic transfer of heavy metals for food webs in thenewly-formed wetlands of the Yellow River Delta. China Environ Pollut 159:1297–1306

    CAS  Google Scholar 

  • Dairain A, Legeay A, Gonzalez P, Baudrimont M, Gourves PY, de Montaudouin X (2019) Seasonal influence of parasitism on contamination patterns of the mud shrimp Upogebia cf. pusilla in an area of low pollution. Sci Total Environ 692:319–332

    CAS  Google Scholar 

  • Ezemonye LI, Adebayo PO, Enuneku AA, Tongo I, Ogbomida E (2019) Potential health risk consequences of heavy metal concentrations in surface water, shrimp (Macrobrachium macrobrachion) and fish (Brycinus longipinnis) from Benin River, Nigeria. Toxicol Rep 6:1–9

    CAS  Google Scholar 

  • Fang T, Lu W, Cui K, Li J, Yang K, Zhao X, Liang Y, Li H (2019) Distribution, bioaccumulation and trophic transfer of trace metals in the food web of Chaohu Lake, Anhui, China. Chemosphere 218:1122–1130

    CAS  Google Scholar 

  • Garnero PL, Monferran MV, González GA, Griboff J, de los Ángeles BM (2018) Assessment of exposure to metals, As and Se in water and sediment of a freshwater reservoir and their bioaccumulation in fish species of different feeding and habitat preferences. Ecotoxicol Environ Saf 163:492–501

    CAS  Google Scholar 

  • Gholizadeh M, Patimar R (2018) Ecological risk assessment of heavy metals in surface sediments from the Gorgan Bay, Caspian Sea. Mar Pollut Bull 137:662–667

    CAS  Google Scholar 

  • Goher ME, Ali MH, El-Sayed SM (2019) Heavy metals contents in Nasser Lake and the Nile River, Egypt: an overview. Egypt J Aquat Res 45(4):301–312

  • Griboff J, Horacek M, Wunderlin DA, Monferran MV (2018a) Bioaccumulation and trophic transfer of metals, As and Se through a freshwater food web affected by antrophic pollution in Córdoba, Argentina. Ecotoxicol Environ Saf 148:275–284

    CAS  Google Scholar 

  • Griboff J, Wunderlin DA, Monferran MV (2018b) Phytofiltration of As3+, As5+, and Hg by the aquatic macrophyte Potamogeton pusillus L, and its potential use in the treatment of wastewater. Int J Phytoremediation 20:914–921

    CAS  Google Scholar 

  • Griboff J, Horacek M, Wunderlin DA, Amé MV, Monferran MV (2020) δ15N as an indicator of suitable freshwater systems for edible fish production. Ecol Indic 108:105743

    CAS  Google Scholar 

  • Guo B, Jiao D, Wang J, Lei K, Lin C (2016) Trophic transfer of toxic elements in the estuarine invertebrate and fish food web of Daliao River, Liaodong Bay, China. Mar Pollut Bull 113:258–265

    CAS  Google Scholar 

  • Harguinteguy CA, Cofré MN, Fernández-Cirelli A, Pignata ML (2016) The macrophytes Potamogeton pusillus L. and Myriophyllum aquaticum (Vell.) Verdc. as potential bioindicators of a river contaminated by heavy metals. Microchem J 124:228–234

    CAS  Google Scholar 

  • Hobson KA, Fisk A, Karnovsky N, Holst M, Gagnon JM, Fortier M (2002) A stable isotope (δ13C, δ15N) model for the north water food web: implications for evaluating trophodynamics and the flow of energy and contaminants. Deep Sea Res II Top Stud Oceanogr 49:5131–5150

    CAS  Google Scholar 

  • Huang JH (2016) Arsenic trophodynamics along the food chains/webs of different ecosystems: a review. Chem Ecol 32:803–828

    Google Scholar 

  • Huang X, Ke C, Wang WX (2008) Bioaccumulation of silver, cadmium and mercury in the abalone Haliotis diversicolor from water and food sources. Aquaculture 283:194–202

    CAS  Google Scholar 

  • Ikemoto T, Phuc Cam Tu N, Watanabe MX et al (2008) Analysis of biomagnification of persistent organic pollutants in the aquatic food web of the Mekong Delta, South Vietnam using stable carbon and nitrogen isotopes. Chemosphere 72:104–114

    CAS  Google Scholar 

  • Ip CCM, Li XD, Zhang G, Wong CSC, Zhang WL (2005) Heavy metal and Pb isotopic compositions of aquatic organisms in the Pearl River Estuary, South China. Environ Pollut 138:494–504

    CAS  Google Scholar 

  • IRAM (2007) Environmental quality. Water quality. Determination of the acute lethal toxicity of substances to freshwater fishes. Semi-static method. Norma IRAM 29112. Institute for Normalization and Certification of Argentina, Buenos Aires, Argentina

  • Jayaprakash M, Senthil Kumar R, Giridharan L et al (2015) Bioaccumulation of metals in fish species from water and sediments in macrotidal Ennore creek, Chennai, SE coast of India: a metropolitan city effect. Ecotoxicol Environ Saf 120:243–255

    CAS  Google Scholar 

  • Khoshnamvand M, Hao Z, Fadare OO, Hanachi P, Chen Y, Liu J (2020) Toxicity of biosynthesized silver nanoparticles to aquatic organisms of different trophic levels. Chemosphere 258:127346

    CAS  Google Scholar 

  • Kidd KA, Muir DC, Evans MS et al (2012) Biomagnification of mercury through lake trout (Salvelinus namaycush) food webs of lakes with different physical, chemical and biological characteristics. Sci Total Environ 438:135–143

    CAS  Google Scholar 

  • Lamaro AA, Mariñelarena A, Torrusio SE, Sala SE (2013) Water surface temperatura estimation from Landsat 7 ETM+ thermal infrared data using the generalized single-channel method: case study of Embalse del Río Tercero (Córdoba, Argentina). Adv Space Res 51:492–500

    Google Scholar 

  • Lanier C, Bernard F, Dumez S, Leclercq-Dransart J, Lemière S, Vandenbulcke F, Nesslany F, Platel A, Devred I, Hayet A, Cuny D, Deram A (2019) Combined toxic effects and DNA damage to two plant species exposed to binary metal mixtures (Cd/Pb). Ecotoxicol Environ Saf 167:278–287

    CAS  Google Scholar 

  • Ledesma C, Bonansea M, Rodriguez CM, Delgado ARS (2013) Determinación de indicadores de eutrofización en el embalse Río Tercero, Córdoba (Argentina). Rev Ciênc Agron 44:419–425

    Google Scholar 

  • Li HH, Chen LJ, Yu L (2017) Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China. Sci Total Environ 586:1076–1084

    CAS  Google Scholar 

  • Liu J, Lu G, Xie Z, Zhang Z, Li S, Yan Z (2015) Occurrence, bioaccumulation and risk assessment of lipophilic pharmaceutically active compounds in the downstream rivers of sewage treatment plants. Sci Total Environ 511:54–62

    CAS  Google Scholar 

  • López H, Baigún C, Iwaszkiw J, Delfino R, Padin O (2001) La cuenca del Salado: uso y posibilidades de sus recursos pesqueros. Ed. De la Universidad de La Plata, La Plata

    Google Scholar 

  • Loska K, Cebula J, Pelczar J, Wiechuła D, Kwapuliński J (1997) Use of enrichment, and contamination factors together with geoaccumulation indexes to evaluate the content of Cd, Cu, and Ni in the Rybnik water reservoir in Poland. Water Air Soil Pollut 93:347–365

    CAS  Google Scholar 

  • Maiz I, Arambarri I, Garcia R, Millán E (2000) Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis. Environ Pollut 110:3–9

    CAS  Google Scholar 

  • Mazej Z, Sayegh-Petkovsek SAL, Pokorny B (2010) Heavy metal concentrations in food chain of Lake Velenjsko jezero, Slovenia: an artificial lake from mining. Arch Environ Contam Toxicol 58:998–1007

    CAS  Google Scholar 

  • Mendoza-Carranza M, Sepúlveda-Lozada A, Dias-Ferreira C, Geissen V (2016) Distribution and bioconcentration of heavy metals in a tropical aquatic food web: a case study of a tropical estuarine lagoon in SE Mexico. Environ Pollut 210:155–165

    CAS  Google Scholar 

  • Miglioranza KSB, González Sagrario MA, Aizpún de Moreno JE, Moreno VJ, Escalante AH, Osterrieth ML (2002) Agricultural soil as a potential source of input of organochlorine pesticides into a nearby pond. Environ Sci Pollut Res 9:250–256

    CAS  Google Scholar 

  • Ministerio de Servicios Públicos (2020) NIVEL DE DIQUES Y EMBALSES. https://www.cba.gov.ar/nivel-de-diques-y-embalses/. Accessed 27 April 2020

  • Monferran MV (2018) Metals and metalloids in water and sediment of the Suquía River Basin: spatial and temporal changes. “The handbook of environmental chemistry”. Springer International Publishing, Cham 31 pp

    Google Scholar 

  • Monferrán MV, Garnero P, De Los Angeles Bistoni M et al (2016) From water to edible fish. Transfer of metals and metalloids in the San Roque reservoir (Córdoba, Argentina). Implications associated with fish consumption. Ecol Indic 63:48–60

    Google Scholar 

  • Nguyen PCT, Nguyen NH, Matsuo H (2012) Biomagnification profiles of trace elements through the food web of an integrated shrimp mangrove farm in Ba Ria Vung tau, South Vietnam. Am J Environ Sci 8:117–129

    CAS  Google Scholar 

  • Nikinmaa M (2014) Factors affecting the bioavailability of chemicals. In: An introduction to aquatic toxicology. Academic, pp 65–72

  • Ofukany AFA, Wassenaar LI, Bond AL, Hobson KA (2014) Defining fish community structure in Lake Winnipeg using stable isotopes (δ13C, δ15N, δ34S): implications for monitoring ecological responses and trophodynamics of mercury & other trace elements. Sci Total Environ 497:239–249

    Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Evol Syst 18:293–320

    Google Scholar 

  • Poste AE, Muir DC, Mbabazi D, Hecky RE (2012) Food web structure and mercury trophodynamics in two contrasting embayments in northern Lake Victoria. J Great Lakes Res 38:699–707

    CAS  Google Scholar 

  • Rainbow PS (2007) Trace metal bioaccumulation: models, metabolic availability and toxicity. Environ Int 33:576–582

    CAS  Google Scholar 

  • Rajeshkumar S, Liu Y, Zhang X et al (2017) Studies on seasonal pollution of heavy metals in water, sediment, fish and oyster from the Meiliang Bay of Taihu Lake in China. Chemosphere 191:626–638

    Google Scholar 

  • Ravera O (2001) Monitoring of the aquatic environment by species accumulator of pollutants: a review. J Limnol 60:63–78

    Google Scholar 

  • Revenga JE, Campbell LM, Kyser K (2011) Trophodynamics and distribution of silver in a Patagonia Mountain lake. Chemosphere 83:265–270

    CAS  Google Scholar 

  • Revenga JE, Campbell LM, Arribére MA, Guevara SR (2012) Arsenic, cobalt and chromium food web biodilution in a Patagonia mountain lake. Ecotoxicol Environ Saf 81:1–10

    CAS  Google Scholar 

  • Rodriguez JH, Weller SB, Wannaz ED, Klumpp A, Pignata ML (2011) Air quality biomonitoring in agricultural areas nearby to urban and industrial emission sources in Córdoba province, Argentina, employing the bioindicator Tillandsia capillaris. Ecol Indic 11:1673–1680

    CAS  Google Scholar 

  • Sagretti L, Bistoni MA (2001) Alimentación de Odontesthes bonariensis (Cuvier yValenciennes 1835) (Atheriniformes, Atherinidae) en la laguna salada de Mar Chiquita (Córdoba, Argentina). Gayana 65(1):37–42

    Google Scholar 

  • Saher NU, Siddiqui AS (2019) Occurrence of heavy metals in sediment and their bioaccumulation in sentinel crab (Macrophthalmus depressus) from highly impacted coastal zone. Chemosphere 221:89–98

    CAS  Google Scholar 

  • Sakata M, Miwa A, Mitsunobu S, Senga Y (2015) Relationships between trace element concentrations and the stable nitrogen isotope ratio in biota from Suruga Bay, Japan. J Oceanogr 71:141–149

    CAS  Google Scholar 

  • Schneider L, Maher WA, Potts J, Taylor M, Batley GE, Krikowa F, Adamack A, Chariton AA, Gruber B (2018) Trophic transfer of metals in a seagrass food web: bioaccumulation of essential and non-essential metals. Mar Pollut Bull 131:468–480

    CAS  Google Scholar 

  • Shilla D, Pajala G, Routh J, Dario M, Kristoffersson P (2019) Trophodynamics and biomagnification of trace metals in aquatic food webs: the case of Rufiji estuary in Tanzania. Appl Geochem 100:160–168

    CAS  Google Scholar 

  • Smith VH, Joye SB, Howarth RW (2006) Eutrophication of freshwater and marine ecosystems. Limnol Oceanogr 51:351–355

    CAS  Google Scholar 

  • Song Z, Dong L, Shan B, Tang W (2018) Assessment of potential bioavailability of heavy metals in the sediments of land-freshwater interfaces by diffusive gradients in thin films. Chemosphere 191:218–225

    CAS  Google Scholar 

  • Spivak ED (1997) Life history of a brackish-water population of Palaemonetes argentinus (Decapoda Caridea) in Argentina. Ann Limnol 33:179–190

    Google Scholar 

  • Strungaru SA, Nicoara M, Teodosiu C, Baltag E, Ciobanu C, Plavan G (2018) Patterns of toxic metals bioaccumulation in a cross-border freshwater reservoir. Chemosphere 207:192–202

    CAS  Google Scholar 

  • Sugiura SH, Hardy RW, Roberts RJ (2004) The pathology of phosphorus deficiency in fish–a review. J Fish Dis 27:255–265

    CAS  Google Scholar 

  • Syversen T, Kaur P (2012) The toxicology of mercury and its compounds. J Trace Elem Med Biol 26:215–226

    CAS  Google Scholar 

  • Tao Y, Yuan Z, Xiaona H, Wei M (2012) Distribution and bioaccumulation of heavy metals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu lake, China. Ecotoxicol Environ Saf 81:55–64

    CAS  Google Scholar 

  • USEPA (1991) Technical support document for water quality-based toxics control (EPA/ 505/2–90-001), Washington, DC

  • Wadige CPM, Taylor AM, Maher WA et al (2014) Effects of lead-spiked sediments on freshwater bivalve, Hyridella australis: linking organism metal exposure-dose-response. Aquat Toxicol 149:83–93

    Google Scholar 

  • Walton RC, McCrohan CR, Livens F, White KN (2010) Trophic transfer of aluminium through an aquatic grazer–omnivore food chain. Aquat Toxicol 99:93–99

    CAS  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232

    CAS  Google Scholar 

  • Xia W, Chen L, Deng X, Liang G, Giesy JP, Rao Q, Wen Z, Wu Y, Chen J, Xie P (2019) Spatial and interspecies differences in concentrations of eight trace elements in wild freshwater fishes at different trophic levels from middle and eastern China. Sci Total Environ 672:883–892

    CAS  Google Scholar 

  • Xie Z, Lu G, Yan Z, Liu J, Wang P, Wang Y (2017) Bioaccumulation and trophic transfer of pharmaceuticals in food webs from a large freshwater lake. Environ Pollut 222:356–366

    CAS  Google Scholar 

Download references

Acknowledgments

The authors received grants and fellows from the Agencia Nacional de Promoción Científica y Técnica (FONCyT/PICT-1411), CONICET (National Research Council PIP: 11220110101084), and Secretaría de Ciencia y Tecnología (PIP: 30720130100459 CB) from the National University of Córdoba (Argentina). The authors would like to acknowledge anonymous reviewers, suggesting interesting points that helped to improve this work.

Funding

The authors received grants and fellows from the Agencia Nacional de Promoción Científica y Técnica (FONCyT/PICT-1411), CONICET (National Research Council PIP: 11220110101084), and Secretaría de Ciencia y Tecnología (PIP: 30720130100459 CB) from the National University of Córdoba (Argentina)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena V. Monferrán.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griboff, J., Wunderlin, D.A., Horacek, M. et al. Seasonal variations on trace element bioaccumulation and trophic transfer along a freshwater food chain in Argentina. Environ Sci Pollut Res 27, 40664–40678 (2020). https://doi.org/10.1007/s11356-020-10068-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10068-9

Keywords

Navigation