Skip to main content
Log in

Evaluation of Ocotea puberula bark powder (OPBP) as an effective adsorbent to uptake crystal violet from colored effluents: alternative kinetic approaches

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The Ocotea puberula bark powder (OPBP) was evaluated as an effective adsorbent for the removal of crystal violet (CV) from colored effluents. OPBP was characterized and presented a surface with large cavities, organized as a honeycomb. The main functional groups of OPBP were O-H, N-H, C=O, and C-O-C. The adsorption of CV on OPBP was favorable at pH 9 with a dosage of 0.75 g L−1. The Avrami model was the most suitable to represent the adsorption kinetic profile, being the estimated equilibrium concentration value of 3.37 mg L−1 for an initial concentration of 50 mg L−1 (CV removal of 93.3%). The equilibrium was reached within 90 min. The data were better described by the Langmuir isotherm, reaching a maximum adsorption capacity of 444.34 mg g−1 at 328 K. The Gibbs free energy ranged from − 26.3554 to − 27.8055 kJ mol−1, and the enthalpy variation was − 11.1519 kJ mol−1. The external mass transfer was the rate-limiting step, with Biot numbers ranging from 0.0011 to 0.25. Lastly, OPBP application for the treatment of two different simulated effluents was effective, achieving a removal percentage of 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

C 0 :

initial CV concentration in bulk solution (mg L−1)

C e, 1 :

predicted equilibrium concentration by pseudo-first-order model (mg L−1)

C e, 2 :

predicted equilibrium concentration by the pseudo-second order (mg L−1)

C e, A :

predicted equilibrium concentration by the Avrami model (mg L−1)

C e, n :

predicted equilibrium concentration by the general-order model (mg L−1)

C e :

CV concentration in bulk solution at equilibrium (mg L−1)

C t :

CV concentration in bulk solution at any time (mg L−1)

D AB :

CV diffusion coefficient at infinite dilution (cm2 s−1)

D o :

mass of adsorbent per volume of solution (g L−1)

D p :

effective pore volume diffusion coefficient (cm2 s−1)

D S :

surface diffusion coefficient (cm2 s−1)

k 1 :

kinetic constant for the pseudo-first order (min−1)

k 2 :

kinetic constant for the pseudo-second order (g mg−1 min−1)

k A :

kinetic constant for the Avrami model (min−1)

K e :

equilibrium constant, dimensionless

K F :

Freundlich parameter (mg g−1 (mg L−1)−1/n)

K L :

Langmuir parameter (L mg−1)

k Loe :

kinetic constant for the Loebenstein model (L mg−1 min−1)

k n :

kinetic constant for the general rate order (min−1 (g mg−1)n-1)

K S :

Sips parameter ((L mg−1)nS)

k WB :

kinetic constant of the Weber-Miller model (L mg−1 min−1)

M B :

molar mass of water (g mol−1)

nf-1 :

heterogeneity factor, dimensionless

N F :

number of transfer units for external mass transfer (s−1)

N int :

number of transfer unit for internal mass transfer (s−1)

N L :

number of transfer units for lumped kinetics, dimensionless

N p :

number of transfer units for pore diffusion (s−1)

N S :

number of transfer units for the surface diffusion (s−1)

q e :

mass of CV adsorbed at the equilibrium (mg g−1)

q exp :

experimental mass of CV adsorbed at the equilibrium (mg g−1)

q L :

maximum adsorption capacity from the Langmuir model (mg g−1)

q S :

maximum adsorption capacity from the Sips model (mg g−1)

q t :

mass of CV adsorbed per gram of adsorbent at any time (mg g−1)

ARE:

average relative error (%)

d p :

average adsorbent diameter (μm)

K :

constant parameter from the most suitable isotherm fit (L mg−1)

MW :

molar mass of CV (g mol−1)

n :

number of experimental values, dimensionless

p :

number of parameters of the model

R :

universal gas constant (8.31 × 10−3 kJ mol−1 K−1)

R 2 :

determination coefficient, dimensionless

R 2 adj :

adjusted determination coefficient, dimensionless

S :

external surface area per mass of adsorbent (cm2 g−1)

SSE:

sum of squared errors

T :

temperature of the solution (K)

V :

solution volume (L)

V A :

molar volume of CV (cm3 mol−1)

V p :

pore volume of adsorbent (cm3 g−1)

x :

association parameter of water, dimensionless

y exp :

experimental data

y pred :

predicted data

α :

initial adsorption rate for the Elovich model (mg g−1 min−1)

β :

desorption constant for the Elovich model (g mg−1)

γ :

unitary activity coefficient of CV (1 mol L−1)

γ CV :

activity coefficient of CV in solution, 1 dimensionless

ε :

void fraction, dimensionless

∆G 0 :

standard Gibbs free energy change (kJ mol−1)

∆H 0 :

standard enthalpy change (kJ mol−1)

∆S 0 :

standard entropy change (kJ mol−1 K−1)

η :

Weber-Miller constant (mg L−1)

η B :

water viscosity (cp)

φ :

Weber-Miller constant (mg L−1)

ρ p :

apparent density of the adsorbent (g L−1)

ρ s :

density of the adsorbent (g L−1)

τ :

tortuosity factor, dimensionless

ω :

Loebenstein constant, dimensionless

References

  • Afroze S, Sen TK, Ang HM (2016) Adsorption removal of zinc (II) from aqueous phase by raw and base modified Eucalyptus sheathiana bark: kinetics, mechanism and equilibrium study. Process Saf Environ Prot 102:336-352

    CAS  Google Scholar 

  • Ahmad R (2009) Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). J Hazard Mater 171:767-773

    CAS  Google Scholar 

  • Anbia M, Salehi S (2012) Removal of acid dyes from aqueous media by adsorption onto amino-functionalized nanoporous silica SBA-3. Dyes Pigments 94:1-9

    CAS  Google Scholar 

  • Aniagor CO, Menkiti MC (2018) Kinetics and mechanistic description of adsorptive uptake of crystal violet dye by lignified elephant grass complexed isolate. J Environ Chem Eng 6:2105-2118

    CAS  Google Scholar 

  • Avrami M (1939) Kinetics of phase change. I: General theory. J Chem Phys 7:1103-1112

    CAS  Google Scholar 

  • Bairagi H, Khan MMR, Ray L, Guha AK (2011) Adsorption profile of lead on Aspergillus versicolor: a mechanistic probing. J Hazard Mater 186:756-764

    CAS  Google Scholar 

  • Bonilla-Petriciolet A, Mendoza-Castillo DI, Reynel-Ávila HE (2017) Adsorption processes for water treatment and purification. Springer International Publishing, Berlin

    Google Scholar 

  • Chakraborty S, Chowdhury S, Das Saha P (2011) Adsorption of crystal violet from aqueous solution onto NaOH-modified rice husk. Carbohydr Polym 86:1533-1541

    Google Scholar 

  • Chu KH (2019) Extracting surface diffusion coefficients from batch adsorption measurement data: application of the classic Langmuir kinetics model. Environ Technol (United Kingdom) 40:543-552

    CAS  Google Scholar 

  • Djelad A, Mokhtar A, Khelifa A, Bengueddach A, Sassi M (2019) Alginate-whey an effective and green adsorbent for crystal violet removal: kinetic, thermodynamic and mechanism studies. Int J Biol Macromol 139:944-954

    CAS  Google Scholar 

  • Dotto GL, Vieira MLG, Pinto LAA (2012) Kinetics and mechanism of tartrazine adsorption onto chitin and chitosan. Ind Eng Chem Res 51:6862-6868

    CAS  Google Scholar 

  • Elovich SY, Larinov OG (1962) Theory of adsorption from solutions of non-electrolytes on solid (I) equation adsorption from solutions and the analysis of its simplest form, (II) verification of the equation of adsorption isotherm from solutions. Izv Akad Nauk SSSR Otd Khim Nauk 2:209-216

    Google Scholar 

  • Essawy AA, Ali AEH, Abdel-Mottaleb MSA (2008) Application of novel copolymer-TiO2 membranes for some textile dyes adsorptive removal from aqueous solution and photocatalytic decolorization. J Hazard Mater 157:547-552

  • Freundlich H (1906) Over the adsorption in solution. Z Phys Chem 7:358-471

    Google Scholar 

  • Furusawa T, Smith JM (1973) Fluid—particle and intraparticle mass transport rates in slurries. Ind Eng Chem Fundam 12:197-203

    CAS  Google Scholar 

  • Georgin J, Marques BS, Peres EC, Allasia D, Dotto GL (2018) Biosorption of cationic dyes by Pará chestnut husk (Bertholletia excelsa). Water Sci Technol 77:1612-1621

    CAS  Google Scholar 

  • Georgin J, Franco DSP, Grassi P, Tonato D, Piccilli DGA, Meili L, Dotto GL (2019) Potential of Cedrella fissilis bark as an adsorbent for the removal of red 97 dye from aqueous effluents. Environ Sci Pollut Res 26:19207-19219

    CAS  Google Scholar 

  • Ghazali A, Shirani M, Semnani A, Zare-Shahabadi V, Nekoeinia M (2018) Optimization of crystal violet adsorption onto date palm leaves as a potent biosorbent from aqueous solutions using response surface methodology and ant colony. J Environ Chem Eng 6:3942-3950

    CAS  Google Scholar 

  • Gopi S, Pius A, Thomas S (2016) Enhanced adsorption of crystal violet by synthesized and characterized chitin nano whiskers from shrimp shell. J Water Proc Eng 14:1-8

    Google Scholar 

  • Hernandes PT, Oliveira MLS, Georgin G, Franco DSP, Allasia D, Dotto GL (2019) Adsorptive decontamination of wastewater containing methylene blue dye using golden trumpet tree bark (Handroanthus albus). Environ Sci Pollut Res 26:31-42

    Google Scholar 

  • Ho YS, Mckay G (1998) Kinetic models for the sorption of dye from aqueous solution by wood. Proc Saf Environ Prot 76:183-191

    CAS  Google Scholar 

  • Honorato AC, Machado JM, Celante G, Borges WGP, Dragunski DC, Caetano J (2015) Methylene blue biosorption using agroindustrial residues. Braz J Agric Environ Eng 19:705-710

    Google Scholar 

  • Jia Z, Li Z, Ni T, Li S (2017) Adsorption of low-cost absorption materials based on biomass (Cortaderia selloana flower spikes) for dye removal: kinetics, isotherms and thermodynamic studies. J Mol Liq 229:285-292

    CAS  Google Scholar 

  • Khormaei M, Nasernejad B, Edrisi M, Eslamzadeh T (2007) Copper biosorption from aqueous solutions by sour orange residue. J Hazard Mater 149:269-274

    CAS  Google Scholar 

  • Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Kung Svenska Vetenskap 24:1-39

    Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361-1403

    CAS  Google Scholar 

  • Liang YD, He YJ, Wang TT, Lei LH (2019) Adsorptive removal of gentian violet from aqueous solution using CoFe2O4/activated carbon magnetic composite. J Water Proc Eng 27:77-88

    Google Scholar 

  • Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425-434

    CAS  Google Scholar 

  • Liu Y, Shen L (2008) A general rate law equation for biosorption. Biochem Eng J 38:390-394

    CAS  Google Scholar 

  • Liu L, Gao ZY, Su XP, Chen X, Jiang L, Yao JM (2015) Adsorption removal of dyes from single and binary solutions using a cellulose-based bioadsorbent. ACS Sust Chem Eng 3:432-442

    CAS  Google Scholar 

  • Liu M, Li X, Du Y, Han R (2018) Adsorption of methyl blue from solution using walnut shell and reuse in a secondary adsorption for Congo red. Bioresour Technol Rep 5:238-242

    Google Scholar 

  • Loebenstein WV (1962) Batch adsorption from solution. J Res Nat Bur Stand A Phys Chem 66A:503-515

    Google Scholar 

  • Ma W, Song X, Pan Y, Cheng Z, Xin G, Wang B, Wang X (2012) Adsorption behavior of crystal violet onto opal and reuse feasibility of opal-dye sludge for binding heavy metals from aqueous solutions. Chem Eng J 193-194:381-390

    CAS  Google Scholar 

  • Machado FM, Bergmann CP, Fernandes THM, Lima EC, Royer B, Calvete T, Fagan SB (2011) Adsorption of reactive red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. J Hazard Mater 192:1122-1131

    CAS  Google Scholar 

  • Martinez M, Miralles N, Hidalgo S, Fiol N, Villaescusa I, Poch J (2006) Removal of lead (II) and cádmium (II) from aqueous solutions using grape stalk waste. J Hazard Mater 133:203-211

    CAS  Google Scholar 

  • Montrucchio D, Miguel O, Zanin S, da Silva G, Cardozo A, Santos A (2012) Antinociceptive effects of a chloroform extract and the alkaloid dicentrine isolated from fruits of Ocotea puberula. Med Plant 78:1543-1548

    CAS  Google Scholar 

  • Pal A, Pan S, Saha S (2013) Synergistically improved adsorption of anionic surfactant and crystal violet on chitosan hydrogel beads. Chem Eng J 217:426-434

    CAS  Google Scholar 

  • Pavan FA, Camacho ES, Lima EC, Dotto GL, Branco VTA, Dias SLP (2014) Formosa papaya seed powder (FPSP): preparation, characterization and application as an alternative adsorbent for the removal of crystal violet from aqueous phase. J Environ Chem Eng 2:230-238

    CAS  Google Scholar 

  • Porkodi K, Vasanth Kumar K (2007) Equilibrium, kinetics and mechanism modeling and simulation of basic and acid dyes sorption onto jute fiber carbon: eosin yellow, malachite green and crystal violet single component systems. J Hazard Mater 143:311-327

    CAS  Google Scholar 

  • Puri C, Sumana G (2018) Highly effective adsorption of crystal violet dye from contaminated water using graphene oxide intercalated montmorillonite nanocomposite. Appl Clay Sci 166:102-112

    CAS  Google Scholar 

  • Quresshi K, Ahmad MZ, Bhatti IA, Iqbal M, Khan A (2015) Cytotoxicity reduction of wastewater treated by advanced oxidation process. Chem Int 1:53-59

    Google Scholar 

  • Rai P, Gautam RK, Banerjee S, Rawat V, Chattopadhyaya MC (2015) Synthesis and characterization of a novel SnFe 2 O 4 @activated carbon magnetic nanocomposite and its effectiveness in the removal of crystal violet from aqueous solution. J Environ Chem Eng 3:2281-2291

    CAS  Google Scholar 

  • Saeed A, Sharif M, Iqbal M (2010) Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption. J Hazard Mater 179:564-572

    CAS  Google Scholar 

  • Sarma GK, Sen Gupta S, Bhattacharyya KG (2016) Adsorption of crystal violet on raw and acid-treated montmorillonite, K10, in aqueous suspension. J Environ Manag 171:1-10

    CAS  Google Scholar 

  • Sartape AS, Mandhare AM, Jadhav VV, Raut PD, Anuse MA, Kolekar SS (2017) Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arab J Chem 10:S3229-S3238

    CAS  Google Scholar 

  • Schadeck Netto M, da Silva NF, Mallmann ES et al (2019) Effect of salinity on the adsorption behavior of methylene blue onto comminuted raw avocado residue: CCD-RSM design. Water Air Soil Pollut:230. https://doi.org/10.1007/s11270-019-4230-x

  • Shakoor S, Nasar A (2018) Adsorptive decontamination of synthetic wastewater containing crystal violet dye by employing Terminalia arjuna sawdust waste. Groundw Sust Dev 7:30-38

    Google Scholar 

  • Shoukat S, Bhatti HN, Iqbal M, Noreen S (2017) Mango stone biocomposite preparation and application for crystal violet adsorption: a mechanistic study. Microporous Mesoporous Mater 239:180-189

    CAS  Google Scholar 

  • Silva JS, Rosa MP, Beck PH, Peres EC, Dotto GL, Kessler F, Grasel FS (2018) Preparation of an alternative adsorbent from Acacia Mearnsii wastes through acetosolv method and its application for dye removal. J Clean Prod 180:386-394

    Google Scholar 

  • Sips RJ (1948) On the structure of a catalyst surface. J Chem Phys 16:490-495

    CAS  Google Scholar 

  • Sun P, Hui C, Azim Khan R, Du J, Zhang Q, Zhao YH (2015) Efficient removal of crystal violet using Fe3O4-coated biochar: the role of the Fe3O4 nanoparticles and modeling study their adsorption behavior. Sci Rep 5

  • Tahir M, Bhatti HN, Iqbal M (2016) Solar red and brittle blue direct dyes adsorption onto Eucalyptus angophoroides bark: equilibrium, kinetics and thermodynamic studies. J Environ Chem Eng 4:2431-2439

    Google Scholar 

  • Tahir N, Bhatti HN, Iqbal M, Noreen S (2017) Biopolymers composites with peanut hull waste biomass and application for crystal violet adsorption. Int J Biol Macromol 94:210-220

    CAS  Google Scholar 

  • Uddin MT, Rahman MA, Rukanuzzaman M, Islam MA (2017) A potential low cost adsorbent for the removal of cationic dyes from aqueous solutions. Appl Water Sci 7:2831-2842

    CAS  Google Scholar 

  • Vuono D, Catizzone E, Aloise A, Policicchio A, Agostino RG, Migliori M, Giordano G (2017) Modelling of adsorption of textile dyes over multi-walled carbon nanotubes: equilibrium and kinetic. Chin J Chem Eng 25:523-532

    CAS  Google Scholar 

  • Wang H, Yao Q, Wang C et al (2016) A simple, one-step hydrothermal approach to durable and robust superparamagnetic, superhydrophobic and electromagnetic wave-absorbing wood. Sci Rep 6:2-11

    Google Scholar 

  • Weber WJ, Miller CT (1988) Modelling the sorption of hydrophobic contaminants by aquifermaterials--I rates and equilibria. Water Res 22:457-464

    CAS  Google Scholar 

  • Weber CT, Foletto EL, Meili L (2013) Removal of tannery dye from aqueous solution using papaya seed as an efficient natural biosorbent. Water Air Soil Pollut:224. https://doi.org/10.1007/s11270-012-1427-7

  • Weber CT, Collazzo GC, Mazutti MA, Foletto EL, Dotto GL (2014) Removal of hazardous pharmaceutical dyes by adsorption onto papaya seeds. Water Sci Technol 70:102-107. https://doi.org/10.2166/wst.2014.200

    Article  CAS  Google Scholar 

  • Wilke CR, Chang P (1955) Correlation of diffusion coefficients in dilute solutions. AICHE J 1:264-268

    CAS  Google Scholar 

  • Xu Z, Wang Q, Jiang Z, Yang X, Ji Y (2007) Enzymatic hydrolysis of pretreated soybean straw. Biomass Bioenergy 31:162-167

    CAS  Google Scholar 

  • Yuan G, Zhao B, Chu KH (2020) Adsorption of fluoride by porous adsorbents: estimating pore diffusion coefficients from batch kinetic data. Environ Eng Res 25:645-651. https://doi.org/10.4491/eer.2019.205

    Article  Google Scholar 

  • Zangaro W, Nisizaki SMA, Domingos JCB, Nakano EM (2003) Mycorrhizal response and successional status in 80 woody species from southern Brazil. J Trop Ecol 19:315-324

    Google Scholar 

  • Zhang Q, Zhang T, He T, Chen L (2014) Removal of crystal violet by clay/PNIPAm nanocomposite hydrogels with various clay contents. Appl Clay Sci 90:1-5

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcos L. S. Oliveira or Guilherme L. Dotto.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgin, J., Franco, D.S.P., Netto, M.S. et al. Evaluation of Ocotea puberula bark powder (OPBP) as an effective adsorbent to uptake crystal violet from colored effluents: alternative kinetic approaches. Environ Sci Pollut Res 27, 25727–25739 (2020). https://doi.org/10.1007/s11356-020-08854-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08854-6

Keywords

Navigation