Skip to main content
Log in

Dissolved oxygen prediction using a new ensemble method

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Prediction of dissolved oxygen which is an important water quality (WQ) parameter is crucial for aquatic managers who have responsibility for the ecosystem health’s maintenance and for the management of reservoirs related to WQ. This study proposes a new ensemble method, Bayesian model averaging (BMA), for estimating hourly dissolved oxygen. The potential of the BMA was investigated and compared with five data-driven methods, extreme leaning machine (ELM), artificial neural networks (ANNs), adaptive neuro-fuzzy inference system (ANFIS), classification and regression tree (CART), and multilinear regression (MLR), by considering hourly temperature, pH, and specific conductivity data as inputs. The methods were compared with respect to three statistics, root mean square errors (RMSE), Nash-Sutcliffe efficiency, and determination coefficient. Results based on two stations’ data indicated that the proposed method performed superior to the ELM, ANN, ANFIS, CART, and MLR in estimation of hourly dissolved oxygen; corresponding improvements obtained by BMA are about 5–8%, 13–12%, 7–9%, and 18–27% with respect to RMSE. The ELM also outperformed the other four methods (ANN, ANFIS, CART, and MLR), and the CART and MLR indicated the lowest estimation accuracy in both stations. Examination of various input combinations revealed that the most effective variable is water temperature while the specific conductivity has negligible effect on hourly dissolved oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmed AAM (2017) Prediction of dissolved oxygen in Surma River by biochemical oxygen demand and chemical oxygen demand using the artificial neural networks (ANNs). J King Saud Univ - Eng Sci 29(2):151–158

    Article  Google Scholar 

  • Akkoyunlu A, Altun H, Cigizoglu HK (2011) Depth-integrated estimation of dissolved oxygen in a lake. J Environ Eng 137(10):961–967

    Article  CAS  Google Scholar 

  • Alizamir M, Kisi O, Zounemat-Kermani M (2018) Modelling long-term groundwater fluctuations by extreme learning machine using hydro-climatic data. Hydrol Sci J 63(1):63–73

    Article  Google Scholar 

  • Antanasijevic’ D, Pocajt V, Peric’-Grujic’ A, Ristic’ M (2019) Multilevel split of high-dimensional water quality data using artificial neural networks for the prediction of dissolved oxygen in the Danube River. Neural Comput Applic. https://doi.org/10.1007/s00521-019-04079-y

  • Antanasijevic’ D, Pocajt V, Peric’-Grujic’ A, Ristic’ M (2013) Modelling of dissolved oxygen in the Danube River using artificial neural networks and Monte Carlo simulation uncertainty analysis. J Hydrol 519:1895–1907

    Article  Google Scholar 

  • Ay M, Kisi O (2012) Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado. J Environ Eng 138(6):654–662

    Article  CAS  Google Scholar 

  • Ay M, Kisi O (2017) Estimation of dissolved oxygen by using neural networks and neuro fuzzy computing techniques. KSCE J Civ Eng 21(5):1631–1639

    Article  Google Scholar 

  • Barzegar R, Asghari Moghaddam A, Adamowski J, Ozga-Zielinski B (2018) Multi-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine model. Stoch Env Res Risk A 32(3):799–813

    Article  Google Scholar 

  • Breiman L, Friedman J, Olshen R (1984) Classification and regression trees. Wadsworth Belement, California

    Google Scholar 

  • Brodnjak-Vonina D, Dobnik D, Novi M, Zupan J (2002) Chemometrics characterisation of the quality of river water. Anal Chim Acta 462(1):87–100

    Article  Google Scholar 

  • Bueno-Crespo A, García-Laencina PJ, Sancho-Gómez J-L (2013) Neural architecture design based on extreme learning machine. Neural Netw 48:19–24

    Article  Google Scholar 

  • Csábrági A et al (2019) Estimation of dissolved oxygen in riverine ecosystems: comparison of differently optimized neural networks. Ecol Eng 138:298–309

    Article  Google Scholar 

  • Deo RC, Downs N, Parisi A, Adamowski J, Quilty J (2017) Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle. Environ Res 155:141–166

    Article  CAS  Google Scholar 

  • Dogan E, Sengorur B, Koklu R (2009) Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique. J Environ Manag 90(2):1229–1235

    Article  CAS  Google Scholar 

  • Duan Q, Ajami NK, Gao X, Sorooshian S (2007) Multi-model ensemble hydrologic prediction using Bayesian model averaging. Adv Water Resour 30:1371–1386. https://doi.org/10.1016/j.advwatres.2006.11.014

    Article  Google Scholar 

  • Duan Q, Phillips TJ (2010) Bayesian estimation of local signal and noise in multi-model simulations of climate change. J Geophys Res Atmos 115:1–15. https://doi.org/10.1029/2009JD013654

    Article  Google Scholar 

  • Elkiran G, Nourani V, Abba SI (2019) Multi-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approach. J Hydrol 577:123962

    Article  CAS  Google Scholar 

  • Fijani E, Barzegar R, Deo R, Tziritis E, Konstantinos S (2018) Design and implementation of a hybrid model based on two-layer decomposition method coupled with extreme learning machines to support real-time environmental monitoring of water quality parameters. Sci Total Environ 648:839–853

    Article  Google Scholar 

  • Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993

    Article  CAS  Google Scholar 

  • Hagan MT, Delmuth H, Beale M (1996) Neural network design. PWS Publishing Company, Boston

    Google Scholar 

  • Hao Y, Baikb J, Choi M (2019) Combining generalized complementary relationship models with the Bayesian model averaging method to estimate actual evapotranspiration over China. Agric For Meteorol 279(2019):107759

    Article  Google Scholar 

  • He J, Chua A, Ryanb MC, Valeoa C, Zaitlin B (2011) Abiotic influences on dissolved oxygen in a riverine environment. Ecol Eng 37:1804–1814

    Article  Google Scholar 

  • Heddam S (2017) Fuzzy neural network (EFuNN) for modelling dissolved oxygen concentration (DO). Intell Syst Environ Manag: Theory and Applications, Intelligent Systems Reference Library 113:231–253. https://doi.org/10.1007/978-3-319-42993-9_11

    Article  Google Scholar 

  • Heddam S, Kisi O (2017) Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors. DOI 24:16702–16724. https://doi.org/10.1007/s11356-017-9283-z

    Article  CAS  Google Scholar 

  • Heddam S, Kisi O (2018) Modelling daily dissolved oxygen concentration using least square support vector machine, multivariate adaptive regression splines and M5 model tree. J Hydrol. https://doi.org/10.1016/j.jhydrol.2018.02.061

  • Hoang T-HT, Nguyen VD, Van AD, Nguyen HTT (2019) Decision tree techniques to assess the role of daily DO variation in classifying shallow eutrophicated lakes in Hanoi, Vietnam. Water Qual Res J. https://doi.org/10.2166/wqrj.2019.105

  • Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. IEEE Int Conf Neural Netw Conf Proc 2:985–990

    Google Scholar 

  • Huang GB, Wang DH, Lan Y (2011) Extreme learning machines: a survey. Int J Mach Learn Cybern 2(2):107–122

    Article  Google Scholar 

  • Huang J, Gao J (2017) An ensemble simulation approach for artificial neural network: an example from chlorophyll a simulation in Lake Poyang, China. Ecol Inform 37:52–58

    Article  Google Scholar 

  • Jang S (1993) Adaptive network-based fuzzy inference system. IEEE Journal 23(3):665–685

    Google Scholar 

  • Jang JSR, Sun CT (1997) Neuro-fuzzy and soft computing: a computing approach to learning and machine intelligence. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Keshtegar B, Heddam S (2017) Modeling daily dissolved oxygen concentration using modified response surface method and artificial neural network: a comparative study. Neural Comput Applic. https://doi.org/10.1007/s00521-017-2917-8

  • Keshtegar B, Heddam S, Hosseinabadi H (2019) The employment of polynomial chaos expansion approach for modeling dissolved oxygen concentration in river. Environ Earth Sci 78:34–18. https://doi.org/10.1007/s12665-018-8028-8

    Article  CAS  Google Scholar 

  • Kisi O, Alizamir M (2018) Modelling reference evapotranspiration using a new wavelet conjunction heuristic method: wavelet extreme learning machine vs wavelet neural networks. Agric For Meteorol 263:41–48

    Article  Google Scholar 

  • Li Y, Andersen HE, McGaughey R (2008) A comparison of statistical methods for estimating forest biomass from light detection and ranging data. West J Appl For 23:223–231

    Article  Google Scholar 

  • Liu S, Yan M, Tai H, Xu L, Li D (2012). Prediction of dissolved oxygen content in aquaculture of Hyriopsis cumingii using Elman neural network. In: Li D, Chen Y (eds) Computer and computing technologies in agriculture V. CCTA 2011. IFIP advances in information and communication technology 370. Springer, Berlin

  • Marquardt D (1963) An algorithm for least-squares estimations of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441

    Article  Google Scholar 

  • Martí P, Shiri J, Duran-Ros M, Arbat G, de Cartagena FR, Puig-Bargués J (2013) Artificial neural networks vs. gene expression programming for estimating outlet dissolved oxygen in micro-irrigation sand filters fed with effluents. Comput Electron Agric 99:176–185

    Article  Google Scholar 

  • Moazamnia M, Hassanzadeh Y, Nadiri AA, Khatibi R, Sadeghfam S (2019) Formulating a strategy to combine artificial intelligence models using Bayesian model averaging to study a distressed aquifer with sparse data availability. J Hydrol. https://doi.org/10.1016/j.jhydrol.2019.02.011

  • Morellos A et al (2016) Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosyst Eng doi.org/10.1016/j.biosystemseng.2016.04.018

  • Noori R, Safavi S, Shahrokni SAN (2013) A reduced-order adaptive neurofuzzy inference system model as a software sensor for rapid estimation of five-day biochemical oxygen demand. J Hydrol 495:175–185

    Article  CAS  Google Scholar 

  • Olyaie E, Abyaneh HZ, Mehr AD (2017) A comparative analysis among computational intelligence techniques for dissolved oxygen prediction in Delaware River. Geosci Front 8:517–527

    Article  CAS  Google Scholar 

  • Qi CS, Yu ZH, Hou Z (2010) Study on quality prediction of the complex production based on CART algorithm. Modul Mach Tool Automatic Manuf Tech 3:94–97

    Google Scholar 

  • Raftery AE, Gneiting T, Balabdaoui F, Polakowski M (2005) Using Bayesian model averaging to calibrate forecast ensembles. Mon Weather Rev 133:1155–1174

    Article  Google Scholar 

  • Raheli B, Aalami MT, Ahmed El-Shafie A, Ghorbani MA, Deo C, R. (2017) Uncertainty assessment of the multilayer perceptron (MLP) neural network model with implementation of the novel hybrid MLP-FFA method for prediction of biochemical oxygen demand and dissolved oxygen: a case study of Langat River. Environ Earth Sci 76:503. https://doi.org/10.1007/s12665-017-6842-z

    Article  CAS  Google Scholar 

  • Ranković V, Radulović J et al (2010) Neural network modeling of dissolved oxygen in the Gruža reservoir, Serbia. Ecol Model 221(8):1239–1244

  • Sengorur B, Dogan E, Koklu R, Samandar A (2006) Dissolved oxygen estimation using artificial neural network for water quality control. Fresenius Environ Bull 15(9a):1064–1067

    CAS  Google Scholar 

  • Schmid BH, Koskiaho J (2006) Artificial neural network modeling of dissolved oxygen in a wetland pond: the case of Hovi Finland. J Hydrol Eng 11(2):188–192

    Article  Google Scholar 

  • Singh KP, Basant A, Malik A, Jain G (2009) Artificial neural network modeling of the river water quality - a case study. Ecol Model 220(6):888–895

    Article  CAS  Google Scholar 

  • Tao H, Bobaker AM, Ramal MM, Yaseen ZM, Hossain MS, Shahid S (2018) Determination of biochemical oxygen demand and dissolved oxygen for semi-arid river environment: application of soft computing models. Environ Sci Pollut Res 26:923–937. https://doi.org/10.1007/s11356-018-3663-x

    Article  CAS  Google Scholar 

  • Vrugt JA, Robinson BA (2007) Treatment of uncertainty using ensemble methods: comparison of sequential data assimilation and Bayesian model averaging. Water Resour Res 43:W01411

    Article  Google Scholar 

  • Xu J, Anctil F, Boucher MA (2019) Hydrological post-processing of streamflow forecasts issued from multi-model ensemble prediction systems. J Hydrol 578:124002

    Article  Google Scholar 

  • Yadav B, Ch S, Mathur S, Adamowski J (2017) Assessing the suitability of extreme learning machines (ELM) for groundwater level prediction. J Water Land Dev 32(1):103–112

    Article  Google Scholar 

  • Yaseen ZM, Deo RC, Hilal A, Abd AM, Bueno LC, Salcedo-Sanz S, Nehdi ML (2018) Predicting compressive strength of lightweight foamed concrete using extreme learning machine model. Adv Eng Softw 115:112–125

    Article  Google Scholar 

  • Zhang HJ, Zhang PX, Chen JH (2005) On-line quality inspection of spot welding based on classification and regression tree (CART). J Lanzhou Univ Technol 31(4):10–14

    Google Scholar 

  • Zhu S, Heddam S (2019) Prediction of dissolved oxygen in urban rivers at the Three Gorges Reservoir, China: extreme learning machines (ELM) versus artificial neural network (ANN). Water Qual Res J. https://doi.org/10.2166/wqrj.2019.053

  • Zounemat-Kermani M, Seo Y, Kim S, Ghorbani MA, Samadianfard S, Naghshara S, Kim NW, Singh VP (2019) Can decomposition approaches always enhance soft computing models? Predicting the dissolved oxygen concentration in the St. Johns River, Florida. Appl Sci 9:2534. https://doi.org/10.3390/app9122534

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meysam Alizamir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kisi, O., Alizamir, M. & Docheshmeh Gorgij, A. Dissolved oxygen prediction using a new ensemble method. Environ Sci Pollut Res 27, 9589–9603 (2020). https://doi.org/10.1007/s11356-019-07574-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07574-w

Keywords

Navigation