Skip to main content

Advertisement

Log in

Influence of Leifsonia sp. on U(VI) removal efficiency and the Fe–U precipitates by zero-valent iron

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

A Correction to this article was published on 21 January 2020

This article has been updated

Abstract

Zero-valent iron (ZVI) has been widely applied to the remediation of uranium (U)-contaminated water. Notably, indigenous bacteria may possess potential positive or unfavorable influence on the mechanism and stability of Fe–U precipitates. However, the focus of the researches in this field has mainly been on physical and/or chemical aspects. In this study, batch experiments were conducted to explore the effects of an indigenous bacterium (Leifsonia sp.) on Fe–U precipitates and the corresponding removal efficiency by ZVI under different environmental factors. The results showed that the removal rate and capacity of U(VI) was significantly inhibited and decreased by ZVI when the pH increased to near-neutral level (pH = 6~8). However, in the ZVI + Leifsonia sp. coexistence system, the U(VI) removal efficiency were maintained at high levels (over 90%) within the experimental scope (pH = 3~8). This revealed that Leifsonia sp. had a synergistic effect on U(VI) remove by ZVI. According to scanning electron microscope and energy dispersive X-ray detector (SEM-EDX) analysis, dense scaly uranium-phosphate precipitation was observed on ZVI + Leifsonia sp. surface. The X-photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis indicated that Leifsonia sp. facilitated the generation of U(VI)-phosphates precipitates. The X-ray diffraction (XRD) analyses further revealed that new substances, such as (Fe(II)Fe(III)2(PO4)2(OH)2), Fe(II)(UO2)2(PO4)2·8H2O, Fe(II)Fe(III)5(PO4)4(OH)2·4H2O, etc., were produced in the coexisting system of ZVI and Leifsonia sp. This study provides new insights on the feasibility and validity of site application of ZVI to U(VI)-contaminated subsurface water in situ.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 21 January 2020

    The original publication of this paper contains a mistake.

References

  • Abdelouas A (2006) Uranium mill tailings: geochemistry, mineralogy and environmental impact. Elements 2:335–341

    Article  CAS  Google Scholar 

  • Basu H, Singhal RK, Pimple MV, Reddy AVR (2015) Synthesis and characterization of silica microsphere and their application in removal of uranium and thorium from water. Int J Environ Sci Technol 12:1899–1906

    Article  CAS  Google Scholar 

  • Černe M, Smodiš B, Štrok M, Jaćimović R (2018) Plant accumulation of natural radionuclides as affected by substrate contaminated with uranium-mill tailings. Water Air Soil Pollut 229:1–21

    Article  CAS  Google Scholar 

  • Choppin G, Liljenzin JO, Rydberg J, Ekberg C (2013) Chapter 22: Behavior of radionuclides in the environment. Radiochem Nucl Chem 84:753–788

    Article  Google Scholar 

  • Choudhary S, Sar P (2015) Interaction of uranium (VI) with bacteria: potential applications in bioremediation of U contaminated oxic environments. Rev Environ Sci Biotechnol 14:1–9

    Article  CAS  Google Scholar 

  • Dedkova VP, Shvoeva OP, Savvin SB (2008) Sorption-spectrometric determination of thorium(IV) and uranium(VI) with the reagent Arsenazo III on the solid phase of a fibrous material filled with a cation exchanger. J Anal Chem 63:430–434

    Article  CAS  Google Scholar 

  • Ding C, Cheng W, Sun Y, Wang X (2015) Effects of Bacillus subtilis on the reduction of U(VI) by nano-Fe 0. Geochim Cosmochim Acta 165:86–107

    Article  CAS  Google Scholar 

  • Ding L, Tan WF, Xie SB, Mumford K, Lv JW, Wang HQ, Fang Q, Zhang XW, Wu XY, Li M (2018) Uranium adsorption and subsequent re-oxidation under aerobic conditions by Leifsonia sp.-Coated biochar as green trapping agent. Environ Pollut 242:778–787

    Article  CAS  Google Scholar 

  • Duan S, Xu X, Liu X, Wang Y, Hayat T, Alsaedi A, Meng Y, Li J (2018) Highly enhanced adsorption performance of U(VI) by non-thermal plasma modified magnetic Fe3O4 nanoparticles. J Colloid Interface Sci 513:92–103

    Article  CAS  Google Scholar 

  • Duan S, Wu L, Li J, Huang Y, Tan X, Wen T, Hayat T, Alsaedi A, Wang X (2019) Two-dimensional copper-based metal-organic frameworks nano-sheets composites: one-step synthesis and highly efficient U(VI) immobilization. J Hazard Mater 373:580–590

    Article  CAS  Google Scholar 

  • Duff MC, Coughlin JU, Hunter DB (2002) Uranium co-precipitation with iron oxide minerals. Geochim Cosmochim Acta 66:3533–3547

    Article  CAS  Google Scholar 

  • Fajardo C, Ortíz LT, Rodríguez-Membibre ML, Nande M, Lobo MC, Martin M (2012) Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: a molecular approach. Chemosphere 86:802–808

    Article  CAS  Google Scholar 

  • Feng J, Liang C, Wang L, Zhang X (2011) Kinetics of Cr(VI) removal from aqueous solution with nanoscale zero-valent iron. Sci Technol Rev 29:37–41

    CAS  Google Scholar 

  • Fiedor JN, Bostick WD, Jarabek RJ, Farrell J (1998) Understanding the mechanism of uranium removal from groundwater by zero-valent iron using X-ray photoelectron spectroscopy. Environ Sci Technol 32:1466–1473

    Article  CAS  Google Scholar 

  • Gok C, Aytas S (2009) Biosorption of uranium(VI) from aqueous solution using calcium alginate beads. J Hazard Mater 168:369–375

    Article  CAS  Google Scholar 

  • Hua C, Zhang R, Li L, Zheng X (2012) Adsorption of phenol from aqueous solutions using activated carbon prepared from crofton weed. Desalin Water Treat 37:230–237

    Article  CAS  Google Scholar 

  • Huang W et al (2017) Microscopic and spectroscopic insights into uranium phosphate mineral precipitated by Bacillus Mucilaginosus. ACS Earth Space Chem 1:483–492

    Article  CAS  Google Scholar 

  • Jialin MA (2015) The adsorption behavior on uranium by three kinds of microorganisms. China Environ Sci 35:825–832

    Google Scholar 

  • Kirschling TL, Gregory KB, Minkley EG, Lowry GV, Tilton RD (2010) Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ Sci Technol 44:3474–3480

    Article  CAS  Google Scholar 

  • Klas S, Kirk DW (2013) Advantages of low pH and limited oxygenation in arsenite removal from water by zero-valent iron. J Hazard Mater 252:77–82

    Article  CAS  Google Scholar 

  • Korichi S, Bensmaili A (2009) Sorption of uranium (VI) on homoionic sodium smectite experimental study and surface complexation modeling. J Hazard Mater 169:780–793

    Article  CAS  Google Scholar 

  • Li XQ, Zhang WX (2007) Sequestration of metal cations with zero valent iron nanoparticles: a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J Phys Chem C 111:6939–6946

    Article  CAS  Google Scholar 

  • Li X, Wu J, Liao J, Zhang D, Yang J, Feng Y, Zeng J, Wen W, Yang Y, Tang J, Liu N (2013) Adsorption and desorption of uranium (VI) in aerated zone soil. J Environ Radioact 115:143–150

    Article  CAS  Google Scholar 

  • Li ZJ, Wang L, Yuan LY, Xiao CL, Mei L, Zheng LR, Zhang J, Yang JH, Zhao YL, Zhu ZT, Chai ZF, Shi WQ (2015) Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite. J Hazard Mater 290:26–33

    Article  CAS  Google Scholar 

  • Li F et al (2016) Microorganism-derived carbon microspheres for uranium removal from aqueous solution. Chem Eng J 284:630–639

    Article  CAS  Google Scholar 

  • Liu M, Dong F, Yan X, Zeng W, Hou L, Pang X (2010) Biosorption of uranium by Saccharomyces cerevisiae and surface interactions under culture conditions. Bioresour Technol 101:8573–8580

    Article  CAS  Google Scholar 

  • Liu A, Liu J, Pan B, Zhang WX (2014) Formation of lepidocrocite (γ-FeOOH) from oxidation of nanoscale zero-valent iron (nZVI) in oxygenated water. RSC Adv 4:57377–57382

    Article  CAS  Google Scholar 

  • Liu JX, Xie SB, Wang YH, Liu YJ, Cai PL, Xiong F, Wang WT (2015) U(VI) reduction by Shewanella oneidensis mediated by anthraquinone-2-sulfonate. Trans Nonferrous Metals Soc China 25:4144–4150

    Article  CAS  Google Scholar 

  • Liu S, Yang Y, Liu T, Wu W (2017) Recovery of uranium(VI) from aqueous solution by 2-picolylamine functionalized poly(styrene-co-maleic anhydride) resin. J Colloid Interface Sci 497:385–392

    Article  CAS  Google Scholar 

  • Liu L, Liu J, Liu X, Dai C, Zhang Z, Song W, Chu Y (2019a) Kinetic and equilibrium of U(VI) biosorption onto the resistant bacterium Bacillus amyloliquefaciens. J Environ Radioact 203:117–124

    Article  CAS  Google Scholar 

  • Liu X, Sun J, Xu X, Alsaedi A, Hayat T, Li J (2019b) Adsorption and desorption of U(VI) on different-size graphene oxide. Chem Eng J 360:941–950

    Article  CAS  Google Scholar 

  • Mason CFV, Turney WRJR, Thomson BM, Lu N, Chisholm-Brause CJ (1997) Carbonate leaching of uranium from contaminated soils. Environ Sci Technol 31:2707–2711

    Article  CAS  Google Scholar 

  • Missana T, Maffiotte C, Garcia-Gutiérrez M (2003) Surface reactions kinetics between nanocrystalline magnetite and uranyl. J Colloid Interface Sci 261:154–160

    Article  CAS  Google Scholar 

  • Mkandawire M (2013) Biogeochemical behaviour and bioremediation of uranium in waters of abandoned mines. Environ Sci Pollut Res Int 20:7740–7767

    Article  CAS  Google Scholar 

  • Newsome L, Morris K, Lloyd JR (2014) The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem Geol 363:164–184

    Article  CAS  Google Scholar 

  • Peng X, Xi B, Zhao Y, Shi Q, Meng X, Mao X, Jiang Y, Ma Z, Tan W, Liu H, Gong B (2017) Effect of arsenic on the formation and adsorption property of ferric hydroxide precipitates in ZVI treatment. Environ Sci Technol 51:10100–10108

    Article  CAS  Google Scholar 

  • Qiu SR et al (2001) Characterization of uranium oxide thin films grown from solution onto Fe surfaces. Appl Surf Sci 181:211–224

    Article  CAS  Google Scholar 

  • Riba O, Scott TB, Ragnarsdottir KV, Allen GC (2008) Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles. Geochim Cosmochim Acta 72:4047–4057

    Article  CAS  Google Scholar 

  • Salome KR, Green SJ, Beazley MJ, Webb SM, Kostka JE, Taillefert M (2013) The role of anaerobic respiration in the immobilization of uranium through biomineralization of phosphate minerals. Geochim Cosmochim Acta 106:344–363

    Article  CAS  Google Scholar 

  • Santos-Francés F, Pacheco EG, Martínez-Graña A, Rojo PA, Sánchez AG (2018) Concentration of uranium in the soils of the west of Spain. Environ Pollut 236:1–11

    Article  CAS  Google Scholar 

  • Scott TB, Allen GC, Heard PJ, Randell MG (2005) Reduction of U(VI) to U(IV) on the surface of magnetite. Geochim Cosmochim Acta 69:5639–5646

    Article  CAS  Google Scholar 

  • Song WC, Shao DD, Songsheng LU, Wang XK (2014) Simultaneous removal of uranium and humic acid by cyclodextrin modified graphene oxide nanosheets. SCIENCE CHINA Chem 57:1291–1299

    Article  CAS  Google Scholar 

  • Soudek P, Petrova S, Benesova D, Kotyza J, Vagner M, Vankova R, Vanek T (2010) Study of soil-plant transfer of Ra-226 under greenhouse conditions. J Environ Radioact 101:446–450

    Article  CAS  Google Scholar 

  • Sun Y, Ding C, Cheng W, Wang X (2014) Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron. J Hazard Mater 280:399–408

    Article  CAS  Google Scholar 

  • Tan WF, Wang YC, Mumford K, Li JX, Xu XM, Ding L (2018) Performances of purified indigenous Leifsonia sp. and its mechanism in the removal of Cr(VI) under shaking condition. Int J Environ Sci Technol

  • Wang JS, Hu XJ, Liu YG, Xie SB, Bao ZL (2010) Biosorption of uranium (VI) by immobilized Aspergillus fumigatus beads. J Environ Radioact 101:504–508

    Article  CAS  Google Scholar 

  • Wang T, Zheng X, Wang X, Lu X, Shen Y (2017) Different biosorption mechanisms of Uranium(VI) by live and heat-killed Saccharomyces cerevisiae under environmentally relevant conditions. J Environ Radioact 167:92–99

    Article  CAS  Google Scholar 

  • Wang et al (2019) Ultra-thin iron phosphate nanosheets for high efficient U(VI) adsorption. J Hazard Mater 371:83–93

    Article  CAS  Google Scholar 

  • Xie Y, Dong H, Zeng G, Tang L, Jiang Z, Zhang C, Deng J, Zhang L, Zhang Y (2017) The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review. J Hazard Mater 321:390–407

    Article  CAS  Google Scholar 

  • Yousef LA, Morsy AMA, Hagag MS (2019) Uranium ions adsorption from acid leach liquor using acid cured phosphate rock: kinetic, equilibrium, and thermodynamic studies. Sep Sci Technol 1–10

  • Zhang Z, Bin et al (2018a) Ordered mesoporous polymer–carbon composites containing amidoxime groups for uranium removal from aqueous solutions. Chem Eng J 341:208–217

    Article  CAS  Google Scholar 

  • Zhang Z, Xin LH, Song W, Ma W, Hu W, Chen T, Liu L (2018b) Accumulation of U(VI) on the Pantoea sp TW18 isolated from radionuclide-contaminated soils. J Environ Radioact 192:219–226

    Article  CAS  Google Scholar 

  • Zhao D, Wang X, Yang S, Guo Z, Sheng G (2012) Impact of water quality parameters on the sorption of U(VI) onto hematite. J Environ Radioact 103:20–29

    Article  CAS  Google Scholar 

  • Zheng XY, Shen YH, Wang XY, Wang TS (2018) Effect of pH on uranium(VI) biosorption and biomineralization by Saccharomyces cerevisiae. Chemosphere 203:109–116

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support by the National Natural Science Foundation of China (No. 11605087 and No. 11475080), China’s Post-doctoral Science Fund (No. 2017M610500), and the Natural Science Foundation of Hunan Province, China (No. 2019JJ50513). All the support is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfa Tan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Bingcai Pan

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original article was revised: The original publication of this paper contains a mistake. The correct figure 7 is presented in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, S., Xiao, X., Tan, W. et al. Influence of Leifsonia sp. on U(VI) removal efficiency and the Fe–U precipitates by zero-valent iron. Environ Sci Pollut Res 27, 5584–5594 (2020). https://doi.org/10.1007/s11356-019-07306-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07306-0

Keywords

Navigation