Skip to main content
Log in

Enhancement of biofuel production by microalgae using cement flue gas as substrate

  • Resource Recovery from Wastewater, Solid Waste and Waste Gas: Engineering and Management Aspects
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The cement industry generates a substantial amount of gaseous pollutants that cannot be treated efficiently and economically using standard techniques. Microalgae, a promising bioremediation and biodegradation agent used as feedstock for biofuel production, can be used for the biotreatment of cement flue gas. In specific, components of cement flue gas such as carbon dioxide, nitrogen, and sulfur oxides are shown to serve as nutrients for microalgae. Microalgae also have the capacity to sequestrate heavy metals present in cement kiln dust, adding further benefits. This work provides an extensive overview of multiple approaches taken in the inclusion of microalgae biofuel production in the cement sector. In addition, factors influencing the production of microalgal biomass are also described in such an integrated plant. In addition, process limitations such as the adverse impact of flue gas on medium pH, exhaust gas toxicity, and efficient delivery of carbon dioxide to media are also discussed. Finally, the article concludes by proposing the future potential for incorporating the microalgae biofuel plant into the cement sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aslam A, Thomas-Hall SR, Mughal TA, Schenk PM (2017) Selection and adaptation of microalgae to growth in 100% unfiltered coal-fired flue gas. Bioresour Technol 233:271–283

    CAS  Google Scholar 

  • Aslam A, Thomas-Hall SR, Manzoor M, Jabeen F, Iqbal M, Uz Zaman Q, Schenk PM, Tahir MA (2018) Mixed microalgae consortia growth under higher concentration of CO2 from unfiltered coal fired flue gas: fatty acid profiling and biodiesel production. J Photochem Photobiol B 179:126–133

    CAS  Google Scholar 

  • Banerjee C, Singh PK, Shukla P (2016) Microalgal bioengineering for sustainable energy development: recent transgenesis and metabolic engineering strategies. Biotechnol J 11:303–314

    CAS  Google Scholar 

  • Bassalo MC, Liu R, Gill RT (2016) Directed evolution and synthetic biology applications to microbial systems. Curr Opin Biotechnol 39:126–133

    CAS  Google Scholar 

  • Bhakta JN, Lahiri S, Pittman JK, Jana BB (2015) Carbon dioxide sequestration in wastewater by a consortium of elevated carbon dioxide-tolerant microalgae. J CO2 Util 10:105–112

    CAS  Google Scholar 

  • Boningari T, Smirniotis PG (2016) Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement. Curr Opin Chem Eng 13:133–141

    Google Scholar 

  • Borkenstein CG, Knoblechner J, Frühwirth H, Schagerl M (2011) Cultivation of Chlorella emersonii with flue gas derived from a cement plant. J Appl Phycol 23:131–135

    CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    CAS  Google Scholar 

  • Brilman W, Alba LG, Veneman R (2013) Capturing atmospheric CO2 using supported amine sorbents for microalgae cultivation. Biomass Bioenergy 53:39–47

    CAS  Google Scholar 

  • Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992

    CAS  Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506

    CAS  Google Scholar 

  • Chen J-C, Wey M-Y, Ou W-Y (1999) Capture of heavy metals by sorbents in incineration flue gas. Sci Total Environ 228:67–77

    CAS  Google Scholar 

  • Chen C, Habert G, Bouzidi Y, Jullien A (2010) Environmental impact of cement production: detail of the different processes and cement plant variability evaluation. J Clean Prod 18:478–485

    CAS  Google Scholar 

  • Chen H-W, Yang T-S, Chen M-J, Chang Y-C, Lin C-Y, Eugene I, Wang C, Ho C-L, Huang K-M, Yu C-C (2012) Application of power plant flue gas in a photobioreactor to grow Spirulina algae, and a bioactivity analysis of the algal water-soluble polysaccharides. Bioresour Technol 120:256–263

    CAS  Google Scholar 

  • Chen C-Y, Zhao X-Q, Yen H-W, Ho S-H, Cheng C-L, Lee D-J, Bai F-W, Chang J-S (2013) Microalgae-based carbohydrates for biofuel production. Biochem Eng J 78:1–10

    CAS  Google Scholar 

  • Cheng D, Li X, Yuan Y, Yang C, Tang T, Zhao Q, Sun Y (2019) Adaptive evolution and carbon dioxide fixation of Chlorella sp. in simulated flue gas. Sci Total Environ 650:2931–2938

    CAS  Google Scholar 

  • Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, Lee D-J, Chang J-S (2017) Microalgae biorefinery: high value products perspectives. Bioresour Technol 229:53–62

    CAS  Google Scholar 

  • Chi Z, O’Fallon JV, Chen S (2011) Bicarbonate produced from carbon capture for algae culture. Trends Biotechnol 29:537–541

    CAS  Google Scholar 

  • Chi Z, Xie Y, Elloy F, Zheng Y, Hu Y, Chen S (2013) Bicarbonate-based integrated carbon capture and algae production system with alkalihalophilic cyanobacterium. Bioresour Technol 133:513–521

    CAS  Google Scholar 

  • Chiu S-Y, Kao C-Y, Chen C-H, Kuan T-C, Ong S-C, Lin C-S (2008) Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour Technol 99:3389–3396

    CAS  Google Scholar 

  • Chiu S-Y, Kao C-Y, Tsai M-T, Ong S-C, Chen C-H, Lin C-S (2009a) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838

    CAS  Google Scholar 

  • Chiu SY, Tsai MT, Kao CY, Ong SC, Lin CS (2009b) The air-lift photobioreactors with flow patterning for high-density cultures of microalgae and carbon dioxide removal. Eng Life Sci 9:254–260

    CAS  Google Scholar 

  • Chiu S-Y, Kao C-Y, Huang T-T, Lin C-J, Ong S-C, Chen C-D, Chang J-S, Lin C-S (2011) Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresour Technol 102:9135–9142

    CAS  Google Scholar 

  • Choi W, Kim G, Lee K (2012) Influence of the CO2 absorbent monoethanolamine on growth and carbon fixation by the green alga Scenedesmus sp. Bioresour Technol 120:295–299

    CAS  Google Scholar 

  • Choi YY, Hong ME, Jin ES, Woo HM, Sim SJ (2018) Improvement in modular scalability of polymeric thin-film photobioreactor for autotrophic culturing of Haematococcus pluvialis using industrial flue gas. Bioresour Technol 249:519–526

    CAS  Google Scholar 

  • Corcoran AA, Boeing WJ (2012) Biodiversity increases the productivity and stability of phytoplankton communities. PLoS One 7:e49397

    CAS  Google Scholar 

  • Cuellar-Bermudez SP, Garcia-Perez JS, Rittmann BE, Parra-Saldivar R (2015) Photosynthetic bioenergy utilizing CO2: an approach on flue gases utilization for third generation biofuels. J Clean Prod 98:53–65

    CAS  Google Scholar 

  • Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531

    Google Scholar 

  • De Bhowmick G, Koduru L, Sen R (2015) Metabolic pathway engineering towards enhancing microalgal lipid biosynthesis for biofuel application—a review. Renew Sust Energ Rev 50:1239–1253

    Google Scholar 

  • De Godos I, Mendoza J, Acién F, Molina E, Banks C, Heaven S, Rogalla F (2014) Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. Bioresour Technol 153:307–314

    Google Scholar 

  • De Morais MG, Costa JAV (2007) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129:439–445

    Google Scholar 

  • Dhankar RS, Srinivasan R, Das D (2017) Cement production, carbon dioxide emission, and its impact on environment in India. Clim Chang 26

  • Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412

    Google Scholar 

  • Douskova I, Doucha J, Livansky K, Machat J, Novak P, Umysova D, Zachleder V, Vitova M (2009) Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl Microbiol Biotechnol 82:179–185

    CAS  Google Scholar 

  • Du K, Wen X, Wang Z, Liang F, Luo L, Peng X, Xu Y, Geng Y, Li Y (2019) Integrated lipid production, CO 2 fixation, and removal of SO 2 and NO from simulated flue gas by oleaginous Chlorella pyrenoidosa. Environ Sci Pollut Res 26:16195–16209

    CAS  Google Scholar 

  • Duarte JH, Fanka LS, Costa JAV (2016) Utilization of simulated flue gas containing CO2, SO2, NO and ash for Chlorella fusca cultivation. Bioresour Technol 214:159–165

    CAS  Google Scholar 

  • Dubinsky Z, Stambler N (2009) Photoacclimation processes in phytoplankton: mechanisms, consequences, and applications. Aquat Microb Ecol 56:163–176

    Google Scholar 

  • Endres CH, Roth A, Brück TB (2018) Modeling microalgae productivity in industrial-scale vertical flat panel photobioreactors. Environ Sci Technol 52:5490–5498

    CAS  Google Scholar 

  • Fernández FGA, González-López C, Sevilla JF, Grima EM (2012) Conversion of CO 2 into biomass by microalgae: how realistic a contribution may it be to significant CO 2 removal? Appl Microbiol Biotechnol 96:577–586

    Google Scholar 

  • Fox JW (2005) Interpreting the ‘selection effect’of biodiversity on ecosystem function. Ecol Lett 8:846–856

    Google Scholar 

  • Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M (1991) Enhanced growth of the red algaPorphyra yezoensis Ueda in high CO 2 concentrations. J Appl Phycol 3:355–362

    CAS  Google Scholar 

  • González-Fernández C, Mahdy A, Ballesteros I, Ballesteros M (2016) Impact of temperature and photoperiod on anaerobic biodegradability of microalgae grown in urban wastewater. Int Biodeterior Biodegrad 106:16–23

    Google Scholar 

  • Grierson S, Strezov V, Bengtsson J (2013) Life cycle assessment of a microalgae biomass cultivation, bio-oil extraction and pyrolysis processing regime. Algal Res 2:299–311

    Google Scholar 

  • Griffiths MJ, Harrison ST (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    CAS  Google Scholar 

  • Grobbelaar JU (1994) Turbulence in mass algal cultures and the role of light/dark fluctuations. J Appl Phycol 6:331–335

    Google Scholar 

  • Gross K, Cardinale BJ (2007) Does species richness drive community production or vice versa? Reconciling historical and contemporary paradigms in competitive communities. Am Nat 170:207–220

    Google Scholar 

  • Hamid SHA, Lananan F, Din WNS, Lam SS, Khatoon H, Endut A, Jusoh A (2014) Harvesting microalgae, Chlorella sp. by bio-flocculation of Moringa oleifera seed derivatives from aquaculture wastewater phytoremediation. Int Biodeterior Biodegrad 95:270–275

    Google Scholar 

  • Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I (1992) Tolerance of microalgae to high CO2 and high temperature. Phytochemistry 31:3345–3348

    CAS  Google Scholar 

  • He L, Subramanian VR, Tang YJ (2012) Experimental analysis and model-based optimization of microalgae growth in photo-bioreactors using flue gas. Biomass Bioenergy 41:131–138

    CAS  Google Scholar 

  • Hewes CD (2015) Transitional-state growth kinetics of Thalassiosira pseudonana (Bacillariophyceae) during self-shading in batch culture under light-limiting, nutrient-replete conditions: improving biomass for productivity (culture quality). Algal Res 12:550–560

    Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    CAS  Google Scholar 

  • Huntzinger DN, Eatmon TD (2009) A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. J Clean Prod 17:668–675

    CAS  Google Scholar 

  • Ibuot A, Dean AP, McIntosh OA, Pittman JK (2017) Metal bioremediation by CrMTP4 over-expressing Chlamydomonas reinhardtii in comparison to natural wastewater-tolerant microalgae strains. Algal Res 24:89–96

    Google Scholar 

  • Ishida Y, Hiragushi N, Kitaguchi H, Mitsutani A, Nagai S, Yoshimura M (2000) A highly CO2-tolerant diatom, Thalassiosira weissflogii H1, enriched from coastal sea, and its fatty acid composition. Fish Sci 66:655–659

    CAS  Google Scholar 

  • Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano-and micro-scaled oxide particles. Environ Pollut 157:1619–1625

    CAS  Google Scholar 

  • Jiang Y, Peng X, Zhang W, Liu T (2012) Enhancement of acid resistance of Scenedesmus dimorphus by acid adaptation. J Appl Phycol 24:1637–1641

    CAS  Google Scholar 

  • Jiang Y, Zhang W, Wang J, Chen Y, Shen S, Liu T (2013) Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresour Technol 128:359–364

    CAS  Google Scholar 

  • Jin Y, Veiga MC, Kennes C (2005) Bioprocesses for the removal of nitrogen oxides from polluted air. J Chem Technol Biotechnol 80:483–494

    CAS  Google Scholar 

  • Jin H-F, Santiago DE, Park J, Lee K (2008) Enhancement of nitric oxide solubility using Fe (II) EDTA and its removal by green algae Scenedesmus sp. Biotechnol Bioprocess Eng 13:48–52

    CAS  Google Scholar 

  • Judd SJ, Al Momani F, Znad H, Al Ketife A (2017) The cost benefit of algal technology for combined CO2 mitigation and nutrient abatement. Renew Sust Energ Rev 71:379–387

    CAS  Google Scholar 

  • Kanniche M, Gros-Bonnivard R, Jaud P, Valle-Marcos J, Amann J-M, Bouallou C (2010) Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl Therm Eng 30:53–62

    CAS  Google Scholar 

  • Kao C-Y, Chen T-Y, Chang Y-B, Chiu T-W, Lin H-Y, Chen C-D, Chang J-S, Lin C-S (2014) Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresour Technol 166:485–493

    CAS  Google Scholar 

  • Kassim MA, Meng TK (2017) Carbon dioxide (CO2) biofixation by microalgae and its potential for biorefinery and biofuel production. Sci Total Environ 584:1121–1129

    Google Scholar 

  • Keffer J, Kleinheinz G (2002) Use of Chlorella vulgaris for CO 2 mitigation in a photobioreactor. J Ind Microbiol Biotechnol 29:275–280

    CAS  Google Scholar 

  • Khataee A, Vafaei F, Jannatkhah M (2013) Biosorption of three textile dyes from contaminated water by filamentous green algal Spirogyra sp.: Kinetic, isotherm and thermodynamic studies. Int Biodeterior Biodegrad 83:33–40

    CAS  Google Scholar 

  • Kim HW, Marcus AK, Shin JH, Rittmann BE (2011) Advanced control for photoautotrophic growth and CO2-utilization efficiency using a membrane carbonation photobioreactor (MCPBR). Environ Sci Technol 45:5032–5038

    CAS  Google Scholar 

  • Kim G, Choi W, Lee C-H, Lee K (2013) Enhancement of dissolved inorganic carbon and carbon fixation by green alga Scenedesmus sp. in the presence of alkanolamine CO2 absorbents. Biochem Eng J 78:18–23

    CAS  Google Scholar 

  • Klein BC, Bonomi A, Maciel Filho R (2018) Integration of microalgae production with industrial biofuel facilities: a critical review. Renew Sust Energ Rev 82:1376–1392

    Google Scholar 

  • Knothe G (2010) Biodiesel and renewable diesel: a comparison. Prog Energy Combust Sci 36:364–373

    CAS  Google Scholar 

  • Kosourov S, Tsygankov A, Seibert M, Ghirardi ML (2002) Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: effects of culture parameters. Biotechnol Bioeng 78:731–740

    CAS  Google Scholar 

  • Kumar K, Banerjee D, Das D (2014) Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana. Bioresour Technol 152:225–233

    CAS  Google Scholar 

  • Kumar KS, Dahms H-U, Won E-J, Lee J-S, Shin K-H (2015) Microalgae–a promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352

    Google Scholar 

  • Lam MK, Lee KT, Mohamed AR (2012) Current status and challenges on microalgae-based carbon capture. Int J Greenhouse Gas Control 10:456–469

    CAS  Google Scholar 

  • Lananan F, Yunos FHM, Nasir NM, Bakar NSA, Lam SS, Jusoh A (2016) Optimization of biomass harvesting of microalgae, Chlorella sp. utilizing auto-flocculating microalgae, Ankistrodesmus sp. as bio-flocculant. Int Biodeterior Biodegrad 113:391–396

    Google Scholar 

  • Lara-Gil JA, Álvarez MM, Pacheco A (2014) Toxicity of flue gas components from cement plants in microalgae CO 2 mitigation systems. J Appl Phycol 26:357–368

    CAS  Google Scholar 

  • Lara-Gil JA, Senés-Guerrero C, Pacheco A (2016) Cement flue gas as a potential source of nutrients during CO2 mitigation by microalgae. Algal Res 17:285–292

    Google Scholar 

  • Lee S-Y, Park S-J (2015) A review on solid adsorbents for carbon dioxide capture. J Ind Eng Chem 23:1–11

    Google Scholar 

  • Lee J-S, Kim D-K, Lee J-P, Park S-C, Koh J-H, Cho H-S, Kim S-W (2002) Effects of SO2 and NO on growth of Chlorella sp. KR-1. Bioresour Technol 82:1–4

    CAS  Google Scholar 

  • Leung DY, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sust Energ Rev 39:426–443

    CAS  Google Scholar 

  • Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24:815–820

    CAS  Google Scholar 

  • Li C, He X, Zhu S, Zhou H, Wang Y, Li Y, Yang J, Fan J, Yang J, Wang G (2009) Crop diversity for yield increase. PLoS One 4:e8049

    Google Scholar 

  • Li F-F, Yang Z-H, Zeng R, Yang G, Chang X, Yan J-B, Hou Y-L (2011) Microalgae capture of CO2 from actual flue gas discharged from a combustion chamber. Ind Eng Chem Res 50:6496–6502

    CAS  Google Scholar 

  • Li T, Xu G, Rong J, Chen H, He C, Giordano M, Wang Q (2016) The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases. J Plant Physiol 195:73–79

    CAS  Google Scholar 

  • Liang F, Wen X, Luo L, Geng Y, Li Y (2014) Physicochemical effects on sulfite transformation in a lipid-rich Chlorella sp. strain. Chin J Oceanol Limnol 32:1288–1296

    CAS  Google Scholar 

  • Liu Z, Wang D, Peng B, Chai L, Liu H, Yang S, Yang B, Xiang K, Liu C (2017) Transport and transformation of mercury during wet flue gas cleaning process of nonferrous metal smelting. Environ Sci Pollut Res 24:22494–22502

    CAS  Google Scholar 

  • Maeda K, Owada M, Kimura N, Omata K, Karube I (1995) CO 2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Convers Manag 6:717–720

    Google Scholar 

  • Mahasenan N, Smith S, Humphreys K (2003) The cement industry and global climate change: current and potential future cement industry CO2 emissions, Greenhouse Gas Control Technologies-6th International Conference. Elsevier, pp 995–1000

  • Matsumoto H, Hamasaki A, Sioji N, Ikuta Y (1997) Influence of CO2, SO2 and NO in flue gas on microalgae productivity. J Chem Eng Jpn 30:620–624

    CAS  Google Scholar 

  • Matter JM, Stute M, Snæbjörnsdottir SÓ, Oelkers EH, Gislason SR, Aradottir ES, Sigfusson B, Gunnarsson I, Sigurdardottir H, Gunnlaugsson E (2016) Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science 352:1312–1314

    CAS  Google Scholar 

  • Maza-Márquez P, Martinez-Toledo MV, Fenice M, Andrade L, Lasserrot A, Gonzalez-Lopez J (2014) Biotreatment of olive washing wastewater by a selected microalgal-bacterial consortium. Int Biodeterior Biodegrad 88:69–76

    Google Scholar 

  • McCoy ST, Rubin ES (2008) An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage. J Greenhouse Gas Control 2:219–229

    CAS  Google Scholar 

  • Miller SA, John VM, Pacca SA, Horvath A (2018) Carbon dioxide reduction potential in the global cement industry by 2050. Cem Concr Res 114:115–124

    CAS  Google Scholar 

  • Mobin S, Alam F (2017) Some promising microalgal species for commercial applications: a review. Energy Procedia 110:510–517

    CAS  Google Scholar 

  • Mohsenpour SF, Willoughby N (2016) Effect of CO2 aeration on cultivation of microalgae in luminescent photobioreactors. Biomass Bioenergy 85:168–177

    CAS  Google Scholar 

  • Nagappan S, Verma SK (2016a) The static extraction of lipid from microalgae Desmodesmus sp. MCC34. Res J Biotechnol 11:5–9

    Google Scholar 

  • Nagappan S, Verma SK (2016b) Growth model for raceway pond cultivation of Desmodesmus sp. MCC34 isolated from a local water body. Eng Life Sci 16:45–52

    CAS  Google Scholar 

  • Nagappan S, Verma SK (2018) Co-production of biodiesel and alpha-linolenic acid (omega-3 fatty acid) from microalgae, Desmodesmus sp. MCC34. Energy Source Part A 40:2933–2940

    CAS  Google Scholar 

  • Nagappan S, Devendran S, Tsai P-C, Dahms H-U, Ponnusamy VK (2019a) Potential of two-stage cultivation in microalgae biofuel production. Fuel 252:339–349

    CAS  Google Scholar 

  • Nagappan S, Devendran S, Tsai P-C, Dinakaran S, Dahms H-U, Ponnusamy VK (2019b) Passive cell disruption lipid extraction methods of microalgae for biofuel production–a review. Fuel 252:699–709

    CAS  Google Scholar 

  • Nagappan S, Kumar RR, Balaji JR, Singh S, Verma SK (2019c) Direct saponification of wet microalgae by methanolic potassium hydroxide using acetone as co-solvent. Bioresour Technol Rep 5:351–354

    Google Scholar 

  • Nagase H, Yoshihara K-I, Eguchi K, Yokota Y, Matsui R, Hirata K, Miyamoto K (1997) Characteristics of biological NOx removal from flue gas in a Dunaliella tertiolecta culture system. J Ferment Bioeng 83:461–465

    CAS  Google Scholar 

  • Nagase H, Eguchi K, Yoshihara K-I, Hirata K, Miyamoto K (1998) Improvement of microalgal NOx removal in bubble column and airlift reactors. J Ferment Bioeng 86:421–423

    CAS  Google Scholar 

  • Narala RR, Garg S, Sharma KK, Thomas-Hall SR, Deme M, Li Y, Schenk PM (2016) Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system. Front Energy Res 4:29

    Google Scholar 

  • Negoro M, Shioji N, Miyamoto K, Micira Y (1991) Growth of microalgae in high CO 2 gas and effects of SO x and NO x. Appl Biochem Biotechnol 28:877

    Google Scholar 

  • Neumann P, Torres A, Fermoso FG, Borja R, Jeison D (2015) Anaerobic co-digestion of lipid-spent microalgae with waste activated sludge and glycerol in batch mode. Int Biodeterior Biodegrad 100:85–88

    CAS  Google Scholar 

  • Odjadjare EC, Mutanda T, Olaniran AO (2017) Potential biotechnological application of microalgae: a critical review. Crit Rev Biotechnol 37:37–52

    CAS  Google Scholar 

  • Olaizola M (2003) Microalgal removal of CO 2 from flue gases: changes in medium pH and flue gas composition do not appear to affect the photochemical yield of microalgal cultures. Biotechnol Bioprocess Eng 8:360–367

    CAS  Google Scholar 

  • Olofsson M, Lindehoff E, Frick B, Svensson F, Legrand C (2015) Baltic Sea microalgae transform cement flue gas into valuable biomass. Algal Res 11:227–233

    Google Scholar 

  • Ong S-C, Kao C-Y, Chiu S-Y, Tsai M-T, Lin C-S (2010) Characterization of the thermal-tolerant mutants of Chlorella sp. with high growth rate and application in outdoor photobioreactor cultivation. Bioresour Technol 101:2880–2883

    CAS  Google Scholar 

  • Ono E, Cuello JL (2007) Carbon dioxide mitigation using thermophilic cyanobacteria. Biosyst Eng 96:129–134

    Google Scholar 

  • Ort DR, Zhu X, Melis A (2011) Optimizing antenna size to maximize photosynthetic efficiency. Plant Physiol 155:79–85

    CAS  Google Scholar 

  • Ouyang Y, Zhao Y, Sun S, Hu C, Ping L (2015) Effect of light intensity on the capability of different microalgae species for simultaneous biogas upgrading and biogas slurry nutrient reduction. Int Biodeterior Biodegrad 104:157–163

    CAS  Google Scholar 

  • Park KY, Kweon J, Chantrasakdakul P, Lee K, Cha HY (2013) Anaerobic digestion of microalgal biomass with ultrasonic disintegration. Int Biodeterior Biodegrad 85:598–602

    CAS  Google Scholar 

  • Pawlowski A, Mendoza J, Guzmán J, Berenguel M, Acién F, Dormido S (2014) Effective utilization of flue gases in raceway reactor with event-based pH control for microalgae culture. Bioresour Technol 170:1–9

    CAS  Google Scholar 

  • Perazzoli S, Bruchez BM, Michelon W, Steinmetz RL, Mezzari MP, Nunes EO, da Silva ML (2016) Optimizing biomethane production from anaerobic degradation of Scenedesmus sp. biomass harvested from algae-based swine digestate treatment. Int Biodeterior Biodegrad 109:23–28

    CAS  Google Scholar 

  • Pereira K (2012) Sand mining: The high volume–low value paradox. Coastal care. Retrieved November 20, 2013. Online at: http://coastalcare.org/2012/10/sand-mining-the-high-volume-low-value-paradox/

  • Pires J, Alvim-Ferraz M, Martins F, Simões M (2012) Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew Sust Energ Rev 16:3043–3053

    CAS  Google Scholar 

  • Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279:1–49

    CAS  Google Scholar 

  • Praveenkumar R, Kim B, Choi E, Lee K, Park J-Y, Lee J-S, Lee Y-C, Oh Y-K (2014) Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas. Bioresour Technol 171:500–505

    CAS  Google Scholar 

  • Radmann EM, Camerini FV, Santos TD, Costa JAV (2011) Isolation and application of SOX and NOX resistant microalgae in biofixation of CO2 from thermoelectricity plants. Energy Convers Manag 52:3132–3136

    CAS  Google Scholar 

  • Ramanan R, Kannan K, Deshkar A, Yadav R, Chakrabarti T (2010) Enhanced algal CO2 sequestration through calcite deposition by Chlorella sp. and Spirulina platensis in a mini-raceway pond. Bioresour Technol 101:2616–2622

    CAS  Google Scholar 

  • Rio S, Verwilghen C, Ramaroson J, Nzihou A, Sharrock P (2007) Heavy metal vaporization and abatement during thermal treatment of modified wastes. J Hazard Mater 148:521–528

    CAS  Google Scholar 

  • Sakai N, Sakamoto Y, Kishimoto N, Chihara M, Karube I (1995) Chlorella strains from hot springs tolerant to high temperature and high CO2. Energy Convers Manag 36:693–696

    CAS  Google Scholar 

  • Salih FM (2011) Microalgae tolerance to high concentrations of carbon dioxide: a review. J Environ Prot (Irvine, Calif) 2:648

    CAS  Google Scholar 

  • Santiago DE, Jin H-F, Lee K (2010) The influence of ferrous-complexed EDTA as a solubilization agent and its auto-regeneration on the removal of nitric oxide gas through the culture of green alga Scenedesmus sp. Process Biochem 45:1949–1953

    CAS  Google Scholar 

  • Saravanan AP, Mathimani T, Deviram G, Rajendran K, Pugazhendhi A (2018) Biofuel policy in India: a review of policy barriers in sustainable marketing of biofuel. J Clean Prod 193:734–747

    Google Scholar 

  • Schneider M, Romer M, Tschudin M, Bolio H (2011) Sustainable cement production—present and future. Cem Concr Res 41:642–650

    CAS  Google Scholar 

  • Singh R, Shukla A (2014) A review on methods of flue gas cleaning from combustion of biomass. Renew Sust Energ Rev 29:854–864

    CAS  Google Scholar 

  • Somers MD, Quinn JC (2019) Sustainability of carbon delivery to an algal biorefinery: a techno-economic and life-cycle assessment. J CO2 Util 30:193–204

    CAS  Google Scholar 

  • Sousa C, De Winter L, Janssen M, Vermuë MH, Wijffels RH (2012) Growth of the microalgae Neochloris oleoabundans at high partial oxygen pressures and sub-saturating light intensity. Bioresour Technol 104:565–570

    CAS  Google Scholar 

  • Stathi P, Litina K, Gournis D, Giannopoulos TS, Deligiannakis Y (2007) Physicochemical study of novel organoclays as heavy metal ion adsorbents for environmental remediation. J Colloid Interface Sci 316:298–309

    CAS  Google Scholar 

  • Stewart C, Hessami M-A (2005) A study of methods of carbon dioxide capture and sequestration––the sustainability of a photosynthetic bioreactor approach. Energy Convers Manag 46:403–420

    CAS  Google Scholar 

  • Sumprasit N, Wagle N, Glanpracha N, Annachhatre AP (2017) Biodiesel and biogas recovery from Spirulina platensis. Int Biodeterior Biodegrad 119:196–204

    CAS  Google Scholar 

  • Sun Z, Zhang D, Yan C, Cong W, Lu Y (2015) Promotion of microalgal biomass production and efficient use of CO2 from flue gas by monoethanolamine. J Chem Technol Biotechnol 90:730–738

    CAS  Google Scholar 

  • Svensson R, Odenberger M, Johnsson F, Strömberg L (2004) Transportation systems for CO2––application to carbon capture and storage. Energy Convers Manag 45:2343–2353

    CAS  Google Scholar 

  • Talec A, Philistin M, Ferey F, Walenta G, Irisson J-O, Bernard O, Sciandra A (2013) Effect of gaseous cement industry effluents on four species of microalgae. Bioresour Technol 143:353–359

    CAS  Google Scholar 

  • Thomas DM, Mechery J, Paulose SV (2016) Carbon dioxide capture strategies from flue gas using microalgae: a review. Environ Sci Pollut Res 23:16926–16940

    CAS  Google Scholar 

  • Travieso L, Canizares R, Borja R, Benitez F, Dominguez A, Dupeyrón YR, Valiente V (1999) Heavy metal removal by microalgae. Bull Environ Contam Toxicol 62:144–151

    CAS  Google Scholar 

  • Van Oss HG, Padovani AC (2003) Cement manufacture and the environment part II: environmental challenges and opportunities. J Ind Ecol 7:93–126

    Google Scholar 

  • Varshney P, Mikulic P, Vonshak A, Beardall J, Wangikar PP (2015) Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour Technol 184:363–372

    CAS  Google Scholar 

  • Vergara C, Muñoz R, Campos J, Seeger M, Jeison D (2016) Influence of light intensity on bacterial nitrifying activity in algal-bacterial photobioreactors and its implications for microalgae-based wastewater treatment. Int Biodeterior Biodegrad 114:116–121

    CAS  Google Scholar 

  • Verma R, Srivastava A (2018) Carbon dioxide sequestration and its enhanced utilization by photoautotroph microalgae. Environ Dev 27:95–106

    Google Scholar 

  • Vuppaladadiyam AK, Yao JG, Florin N, George A, Wang X, Labeeuw L, Jiang Y, Davis RW, Abbas A, Ralph P (2018) Impact of flue gas compounds on microalgae and mechanisms for carbon assimilation and utilization. ChemSusChem 11:334–355

    CAS  Google Scholar 

  • Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157:1171–1177

    CAS  Google Scholar 

  • Wang H, Zhang W, Chen L, Wang J, Liu T (2013) The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresour Technol 128:745–750

    CAS  Google Scholar 

  • Watanabe Y, Hall DO (1995) Photosynthetic CO2 fixation technologies using a helical tubular bioreactor incorporating the filamentous cyanobacterium Spirulina platensis. Energy Convers Manag 36:721–724

    CAS  Google Scholar 

  • Whitton R, Ometto F, Pidou M, Jarvis P, Villa R, Jefferson B (2015) Microalgae for municipal wastewater nutrient remediation: mechanisms, reactors and outlook for tertiary treatment. Environ Technol Rev 4:133–148

    CAS  Google Scholar 

  • Wodzinski RS, Alexander M (1978) Effect of sulfur dioxide on algae 1. J Environ Qual 7:358–360

    CAS  Google Scholar 

  • Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JB, Lotze HK, Micheli F, Palumbi SR (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790

    CAS  Google Scholar 

  • Wu LF, Chen PC, Lee CM (2013) The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae. Int Biodeterior Biodegrad 85:506–510

    CAS  Google Scholar 

  • Yadav G, Karemore A, Dash SK, Sen R (2015) Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ. Bioresour Technol 191:399–406

    CAS  Google Scholar 

  • Yang S, Wang J, Cong W, Cai Z, Ouyang F (2004a) Effects of bisulfite and sulfite on the microalga Botryococcus braunii. Enzym Microb Technol 35:46–50

    CAS  Google Scholar 

  • Yang S, Wang J, Cong W, Cai Z, Ouyang F (2004b) Utilization of nitrite as a nitrogen source by Botryococcus braunii. Biotechnol Lett 26:239–243

    CAS  Google Scholar 

  • Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20:14–27

    CAS  Google Scholar 

  • Yang P, Li X, Tong Z-J, Li Q-S, He B-Y, Wang L-L, Guo S-H, Xu Z-M (2016) Use of flue gas desulfurization gypsum for leaching Cd and Pb in reclaimed tidal flat soil. Environ Sci Pollut Res 23:7840–7848

    CAS  Google Scholar 

  • Yeh JT, Resnik KP, Rygle K, Pennline HW (2005) Semi-batch absorption and regeneration studies for CO2 capture by aqueous ammonia. Fuel Process Technol 86:1533–1546

    CAS  Google Scholar 

  • Yen HW, Ho SH, Chen CY, Chang JS (2015) CO2, NOx and SOx removal from flue gas via microalgae cultivation: a critical review. Biotechnol J 10:829–839

    CAS  Google Scholar 

  • Yoo C, Jun S-Y, Lee J-Y, Ahn C-Y, Oh H-M (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101:S71–S74

    CAS  Google Scholar 

  • Yoshihara K-I, Nagase H, Eguchi K, Hirata K, Miyamoto K (1996) Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivated in a long tubular photobioreactor. J Ferment Bioeng 82:351–354

    CAS  Google Scholar 

  • Yu J, Sun L, Wang B, Qiao Y, Xiang J, Hu S, Yao H (2016) Study on the behavior of heavy metals during thermal treatment of municipal solid waste (MSW) components. Environ Sci Pollut Res 23:253–265

    CAS  Google Scholar 

  • Yue L, Chen W (2005) Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae. Energy Convers Manag 46:1868–1876

    CAS  Google Scholar 

  • Zeiler KG, Heacox DA, Toon ST, Kadam KL, Brown LM (1995) The use of microalgae for assimilation and utilization of carbon dioxide from fossil fuel-fired power plant flue gas. Energy Convers Manag 36:707–712

    CAS  Google Scholar 

  • Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR, McHenry MP (2016) Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manag 181:817–831

    CAS  Google Scholar 

  • Zheng Y, Jensen AD, Windelin C, Jensen F (2012) Review of technologies for mercury removal from flue gas from cement production processes. Prog Energy Combust Sci 38:599–629

    CAS  Google Scholar 

Download references

Funding

This study received financial support from the Ministry of Science and Technology-Taiwan Research Grant (107-2113-M-037-007-MY2); the Research Center for Environmental Medicine, Kaohsiung Medical University, Taiwan; “The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project” by the Ministry of Education (MOE) in Taiwan; the NSYSU-KMU collaboration research project (NSYSU-KMU 107-I004) in Taiwan; and the Sri Venkateswara College of Engineering–Sriperumpudur, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinoth Kumar Ponnusamy.

Additional information

Responsible editor: Ta Yeong Wu

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagappan, S., Tsai, PC., Devendran, S. et al. Enhancement of biofuel production by microalgae using cement flue gas as substrate. Environ Sci Pollut Res 27, 17571–17586 (2020). https://doi.org/10.1007/s11356-019-06425-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06425-y

Keywords

Navigation