Skip to main content
Log in

Mobility and sorption assessment of selected pesticides in alluvial aquifer

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The objective of the paper was to use transport model of selected pesticides (carbendazim, acetamiprid and imidacloprid) in determination of linear sorption coefficients in alluvial aquifer. For constructing transport model, results of a field experiment at the location of Kovin-Dubovac drainage system in Serbia were used in order to set hydraulic parameters (hydraulic conductivity, aquifer layer thickness of the observed area, effective porosity etc.). The field experiment consisted of a tracer test during which concentrations of non-reactive tracer (Cl) and selected pesticides (carbendazim, acetamiprid and imidacloprid) were monitored. For better characterization of hydraulic parameters, a pumping test was conducted at the observed well and results were used in designing transport model. Simulation model was constructed with Lizza groundwater flow software and W.O.D.A. (Well Outline and Design Aid) solver. Obtained linear sorption coefficients in the sand and gravel water-bearing layer were 0.14 mL g−1 for carbendazim and 0.11 mL g−1 for acetamiprid and imidacloprid. Results from this study are a unique insight into mobility of observed pesticides in the alluvial groundwater in natural conditions and can be used in contamination assessment for drinking water wells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AERU (Agriculture and Environmental Research Unit at the University of Hertfordshire) (2015) The pesticide properties database https://sitem.herts.ac.uk/aeru/iupac/atoz.htm. Accessed 11 May 2018

  • Ahmad KS, Rashid N, Shaheen I, Zahra T (2015) Comparative study of sorption-desorption behavior of benzimidazole based pesticides on selected soils. Eurasian J Anal Chem 10(1):19–33

    Google Scholar 

  • Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Gándara J, Mejuto JC, García-Río L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Ecosyst Environ 123(4):247–260

    Article  CAS  Google Scholar 

  • Beinhorn M, Dietrich P, Kolditz O (2005) 3-D numerical evaluation of density effects on tracer tests. J Contam Hydrol 81:89–105

    Article  CAS  Google Scholar 

  • Carbo L, Martins EL, Dores EF, Spadotto CA, Weber OL, De-Lamonica-Freire EM (2007) Acetamiprid, carbendazim, diuron and thiamethoxam sorption in two Brazilian tropical soils. J Environ Sci Health B 42(5):499–507

    Article  CAS  Google Scholar 

  • Celia M, Bouloutas E, Zarba R (1990) A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour Res 26(7):1483–1496

    Article  Google Scholar 

  • Cox L, Koskinen WC, Yen PY (1997) Sorption−desorption of imidacloprid and its metabolites in soils. J Agric Food Chem 45(4):1468–1472

    Article  CAS  Google Scholar 

  • Dimkić M, Pušić M (2014) Correlation between entrance velocities, increase in local hydraulic resistances and redox potential of alluvial groundwater sources. Water Res Manag 4(1):3–23

    Google Scholar 

  • Dimkić M, Pušić M, Vidović D, Isailović V, Majkić B, Filipovic N (2010) Numerical model assessment of radial-well aging. J Comput Civ Eng 25(1):43–49

    Article  Google Scholar 

  • Dimkić M, Pušić M, Vidovic D, Petković A, Boreli-Zdravković D (2011) Several natural indicators of radial well ageing at the Belgrade Groundwater Source, part 1. Water Sci Technol 63(11):2560–2566

    Article  CAS  Google Scholar 

  • Dotlić M, Vidović D, Pokorni B, Pušić M, Dimkić M (2016) Second-order accurate finite volume method for well-driven flows. J Comput Phys 307:460–475

    Article  Google Scholar 

  • Dujaković N, Grujić S, Radišić M, Vasiljević T, Laušević M (2010) Determination of pesticides in surface and ground waters by liquid chromatography–electrospray–tandem mass spectrometry. Analytica Chimica Acta 678(1):63–72

    Article  CAS  Google Scholar 

  • European Commission (2018) European Commission Implementing Decision 2018/840 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council and repealing Commission Implementing Decision (EU) 2015/495

  • European Commission Acetamiprid SANCO/1392/2001 (2004) http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=activesubstance.ViewReview&id=314. Accessed 11 May 2018

  • Fernández-Bayo JD, Nogales R, Romero E (2007) Improved retention of imidacloprid (Confidor®) in soils by adding vermicompost from spent grape marc. Sci Total Environ 378(1–2):95–100

    Article  CAS  Google Scholar 

  • Gao JP, Maguhn J, Spitzauer P, Kettrup A (1998) Sorption of pesticides in the sediment of the Teufelsweiher pond (Southern Germany). I: equilibrium assessments, effect of organic carbon content and pH. Water Res 32(5):1662–1672

    Article  CAS  Google Scholar 

  • Ge X, Huang Z, Tian S, Huang Y, Zeng C (2012) Complexation of carbendazim with hydroxypropyl-β-cyclodextrin to improve solubility and fungicidal activity. Carbohydr Polym 89(1):208–212

    Article  CAS  Google Scholar 

  • Gupta M, Garg NK, Joshi H, Sharma MP (2014) Assessing the impact of irrigation treatments on thiram residual trends: correspondence with numerical modelling and field-scale experiments. Environ Monit Assess 186(3):1639–1654

    Article  CAS  Google Scholar 

  • Gustafson DI (1989) Groundwater ubiquity score: a simple method for assessing pesticide leachability. Environ Toxicol Chem 8(4):339–357

    Article  CAS  Google Scholar 

  • Jia L, Wong H, Wang Y, Garza M, Weitman SD (2003) Carbendazim: disposition, cellular permeability, metabolite identification, and pharmacokinetic comparison with its nanoparticle. J Pharm Sci 92(1):161–172

    Article  CAS  Google Scholar 

  • Keesstra SD, Geissen V, Mosse K, Piiranen S, Scudiero E, Leistra M, van Schaik L (2012) Soil as a filter for groundwater quality. Curr Opin Environ Sustain 4(5):507–516

    Article  Google Scholar 

  • Köhne JM, Köhne S, Šimůnek J (2009) A review of model applications for structured soils: b pesticide transport. J Contam Hydrol 104(1–4):36–60

    Article  CAS  Google Scholar 

  • Kosikowska M, Biziuk M (2010) Review of the determination of pesticide residues in ambient air. TrAC-Trend Anal Chem 29(9):1064–1072

    Article  CAS  Google Scholar 

  • Kovačević S, Radišić M, Mitrinović D, Vojt P, Živančev N (2017) Tracer test and behavior of selected pharmaceuticals. Water Sci Technol Water Supply 17(4):1043–1052

    Google Scholar 

  • Krishna KR, Philip L (2008) Adsorption and desorption characteristics of lindane, carbofuran and methyl parathion on various Indian soils. J Hazard Mater 160(2):559–567

    Article  CAS  Google Scholar 

  • Lammoglia S-K, Moeys J, Barriuso E, Larsbo M, Marín-Benito J-M, Justes E, Alleto L, Ubertosi M, Nicolardot B, Munier-Jolain N, Mamy L (2017) Sequential use of STICS crop model and of the MACRO pesticide fate model to simulate pesticides leaching in cropping systems. Environ Sci Pollut Res 24(8):6895–6909

    Article  CAS  Google Scholar 

  • Leiva JA, Nkedi-Kizza P, Morgan KT, Qureshi JA (2015) Imidacloprid sorption kinetics, equilibria, and degradation in sandy soils of Florida. J Agric Food Chem 63(20):4915–4921

    Article  CAS  Google Scholar 

  • Lizza-PAKP software (2004) R&D Center for Bioengineering, Kragujevac and Jaroslav Černi Institute for the Development of Water Resources, Belgrade, Serbia http://www.bioirc.ac.rs/index.php/groundwater-flow-software. Accessed 11 May 2018

  • Morales T, Uriarte JA, Angulo B, Olazar M, Arandes JM, Antigüedad I (2018) Characterization of flow and transport dynamics in karst aquifers by analyzing tracer test results in conduits and recharge areas (the Egino Massif, Basque Country, Spain): environmental and management implications. Environ Earth Sci 77(7):291

    Article  Google Scholar 

  • Murano H, Suzuki K, Kayada S, Mitsuhiko S, Yuge N, Arishiro T, Watanabe A, Isoi T (2018) Influence of humic substances and iron and aluminum ions on the sorption of acetamiprid to an arable soil. Sci Total Environ 615:1478–1484

    Article  CAS  Google Scholar 

  • Nash J, Sutcliffe J (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10(3):282–290

    Article  Google Scholar 

  • Nemeth-Konda L, Füleky G, Morovjan G, Csokan P (2002) Sorption behaviour of acetochlor, atrazine, carbendazim, diazinon, imidacloprid and isoproturon on Hungarian agricultural soil. Chemosphere 48(5):545–552

    Article  CAS  Google Scholar 

  • NORMAN List of Emerging Substances (2013) https://www.norman-network.net/?q=node/81. Accessed 15 Jan 2019

  • Pang L, Close ME (1999) Attenuation and transport of atrazine and picloram in an alluvial gravel aquifer. N Z J Mar Freshw Res 33:279–291

    Article  CAS  Google Scholar 

  • Pang G-F, Cao Y-Z, Zhang J-J, Fan C-L, Liu Y-M, Li X-M, Jia G-Q, Li Z-Y, Shi Y-Q, Wu Y-P, Guo T-T (2006) Validation study on 660 pesticide residues in animal tissues by gel permeation chromatography cleanup/gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. J Chromatogr A 1125(1):1–30

    Article  CAS  Google Scholar 

  • Paszko T (2014) Adsorption, degradation and mobility of carbendazim in profiles of Polish mineral soils. Geoderma 226-227:160–169

    Article  CAS  Google Scholar 

  • Peng G, Qiang H, Lu Y, Mmereki D, Zhong Z (2016) Determination of organophosphorus pesticides and their major degradation product residues in food samples by HPLC-UV. Environ Sci Pollut Res 23(19):19409–19416

    Article  CAS  Google Scholar 

  • Ptak T, Piepenbrink M, Martac E (2004) Tracer tests for the investigation of heterogeneous porous media and stochastic modelling of flow and transport—a review of some recent developments. J Hydrol 294:122–163

    Article  CAS  Google Scholar 

  • Radović T, Grujić S, Petković A, Dimkić M, Laušević M (2015) Determination of pharmaceuticals and pesticides in river sediments and corresponding surface and ground water in the Danube River and tributaries in Serbia. Environ Monit Assess 187(1):1–17

    Article  CAS  Google Scholar 

  • Reynoso EC, Torres E, Bettazzi F, Palchetti I (2019) Trends and perspectives in immunosensors for determination of currently-used pesticides: the case of glyphosate, organophosphates and neonicotinoids. Biosensors 9(1):20

    Article  CAS  Google Scholar 

  • Schipper PNM, Vissers MJM, van der Linden AA (2008) Pesticides in groundwater and drinking water wells: overview of the situation in the Netherlands. Water Sci Technol 57(8):1277–1286

    Article  CAS  Google Scholar 

  • Sharma MK, Jain CK, Rao GT, Rao VG (2015) Modelling of lindane transport in groundwater of metropolitan city Vadodara, Gujarat, India. Environ Monit Assess 187(5):295

    Article  CAS  Google Scholar 

  • Sousa J, Ribeiro A, Barbosa M, Pereira F, Silva A (2018) A review on environmental monitoring of water organic pollutants identified by EU guidelines. J Hazard Mater 334:146–162

    Article  CAS  Google Scholar 

  • Tuxen N, Tüchsen PL, Rügge K, Alberchtsen H-J, Bjerg PL (2000) Fate of seven pesticides in an aerobic aquifer studied in column experiments. Chemosphere 41(9):1485–1494

    Article  CAS  Google Scholar 

  • US EPA - Pesticides - Fact Sheet for Acetamiprid (2002) https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-099050_15-Mar-02.pdf. Accessed 11 May 2018

  • Vidovic D, Dotlic M, Pokorni B (2014a) W.O.D.A solver, http://www.sourceforge.net/projects/wodasolver/. Accessed 11 May 2018

  • Vidovic D, Dotlic M, Pokorni B, Pusic M, Dimkic M (2014b) Simulating unsaturated flow with a finite volume method. Water Res Manag 4(1):23–30

    Google Scholar 

  • Vienken T, Huber E, Kreck M, Huggenberger P, Dietrich P (2017) How to chase a tracer—combining conventional salt tracer testing and direct push electrical conductivity profiling for enhanced aquifer characterization. Adv Water Resour 99:60–66

    Article  Google Scholar 

  • Willmott CJ (1981) On the validation of models. Phys Geogr 2(2):184–194

    Article  Google Scholar 

  • Wood TJ, Goulson D (2017) The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Environ Sci Pollut Res 24(21):17285–17325

    Article  CAS  Google Scholar 

  • Yazgan MS, Wilkins RM, Sykas C, Hoque E (2005) Comparison of two methods for estimation of soil sorption for imidacloprid and carbofuran. Chemosphere 60(9):1325–1331

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, under the Project No. TR 37014 and the project “Study of Well Ageing and Maintenance” of the Ministry of Agriculture, Forestry and Water Management/National Water Directorate, Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nevena V. Živančev.

Additional information

Responsible editor: Ester Heath

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Živančev, N.V., Kovačević, S.R., Radović, T.T. et al. Mobility and sorption assessment of selected pesticides in alluvial aquifer. Environ Sci Pollut Res 26, 28725–28736 (2019). https://doi.org/10.1007/s11356-019-06055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06055-4

Keywords

Navigation