Skip to main content

Advertisement

Log in

The prevalence of Campylobacter species in broiler flocks and their environment: assessing the efficiency of chitosan/zinc oxide nanocomposite for adopting control strategy

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

There is a growing trend to implement biosecurity measures in small commercial broiler flocks and trying to replace ineffective antimicrobial with alternative materials to interevent a strategy for the control of Campylobacter bacteria in these farms. This study was designed to determine the prevalence rate of Campylobacter spp. in broiler flocks and their environment. Thereafter, assess the efficiency of chitosan, zinc oxide nanoparticles (ZnO NPs), and chitosan/ZnO NPs composite against Campylobacter strains to adopt a novel control strategy based on the ability to use those nanocomposites. A total of 220 samples were collected from broiler flocks, their environment, and farm attendants that direct contact with birds. All samples were subjected to microbiological investigation for isolation, then molecular identification of bacteria using PCR. ZnO NPs and chitosan/ZnO NPs composite were synthesized then characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared spectrum (FT-IR), and X-ray diffraction (X-RD). The efficiency of testing compounds was examined against 30 strains of Campylobacter coli (C. coli) to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The highest percentages of C. coli were isolated from the manure storage area, and broiler litter followed by flies, and feeders (66.7, 53.3, 40.0, and 33.3%, respectively). Both chitosan/ZnO NPs and ZnO NPs at a concentration of 0.5 μg/mL and 1.5 μg/mL, respectively showed complete efficiency (100%) against C. coli compared with chitosan compound. In conclusion, manure storage area and broiler litter represented the main reservoir of Campylobacter bacterial contaminant followed by flies in broiler poultry farms. Chitosan/ZnO NPs composite can be used in any biosecurity program of poultry farms as an alternative to ineffective antimicrobial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AbdElhady MM (2012) Preparation and characterization of chitosan/zinc oxide nanoparticles for imparting antimicrobial and UV protection to cotton fabric. Int J Carbohydr Chem. https://doi.org/10.1155/2012/840591

  • Al-Naamani L, Dobretsov S, Dutta J, Burgess JG (2017) Chitosan-ZnO nanocomposite coatings for the prevention of marine biofouling. Chemosphere 168:408–417

    Article  CAS  Google Scholar 

  • Althaus D, Zweifel C, Stephan R (2017) Analysis of a poultry slaughter process: influence of process stages on the microbiological contamination of broiler carcasses. Ital J Food Saf 6:7097. https://doi.org/10.4081/ijfs.2017.7097

    Article  CAS  Google Scholar 

  • Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A (2012) Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: a comparative study. Int J Nanomedicine 7:6003–6009

    Article  CAS  Google Scholar 

  • Barczynska A (2014) The effect of disinfectant exposure on Campylobacter spp. adaptation; a study on Campylobacter survival and on proteome and virulence genes expression. Doctor of Philosophy thesis, Microbiology Department, School of Natural Sciences, National University of Ireland, Galway

  • Blaak H, Van Hoek AHA, Hamidjaja MRA, Van der Plaats RQJ, Kerkhof-De Heer L, De Roda Husman AM, Schets FM (2015) Distribution, numbers, and diversity of ESBL-producing E. coli in the poultry farm environment. Plos One 10:e0135402. https://doi.org/10.1371/journal.pone.0135402

    Article  CAS  Google Scholar 

  • Boucher HW, Talbot GH, Bradley JS, Edward JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Barlett J (2009) Bad bugs, no drugs: no ESKAPE! An update from the infectious disease society of America. Clin Infect Dis 48:1–6

    Article  Google Scholar 

  • Boysen L, Rosenquist H, Larsson JT, Nielsen EM, Sørensen G, Nordentoft S et al (2014) Source attribution of human campylobacteriosis in Denmark. Epidemiol Infect 142:1599–1608

    Article  CAS  Google Scholar 

  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet F (2006) Toxicological impact studied based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870

    Article  CAS  Google Scholar 

  • Bui VKH, Park D, Lee YC (2017) Chitosan combined with ZnO, TiO2 and Ag nanoparticles for antimicrobial wound healing applications: a mini review of the research trends. Polymers 9:21. https://doi.org/10.3390/polym9010021

    Article  CAS  Google Scholar 

  • Bull SA, Allen VM, Domingue G, Jørgensen F, Frost JA, Ure R et al (2006) Sources of Campylobacter spp. colonizing housed broiler flocks during rearing. Appl Environ Microbiol 72:645–652

    Article  CAS  Google Scholar 

  • Chowdhuri AR, Tripathy S, Chandra S, Roy S, Sahu SKA (2015) Zno decorated chitosan–graphene oxide nanocomposite shows significantly enhanced antimicrobial activity with Ros generation. RSC Adv 5:49420–49428

    Article  CAS  Google Scholar 

  • Chung YC, Su YP, Chen CC, Jia G, Wang HL, Wu JCG, Lin JG (2004) Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol Sin 25:932–936

    CAS  Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI) (2006) Methods for dilution antimicrobial susceptibility tests of bacteria isolated form aquatic animal; approved guideline M49–A. CLSI, Waune

    Google Scholar 

  • Denis M, Soumet C, Rivoal K, Ermel G, Blivet D, Salvat G, Colin P (1999) Development of a m-PCR for simultaneous identification of Campylobacter jejuni and C. coli. Lett Appl Microbiol 29:406–410

    Article  CAS  Google Scholar 

  • Domingues AR, Pires SM, Halasa T, Hald T (2012) Source attribution of human Campylobacter iosis using a meta-analysis of case-control studies of sporadic infections. Epidemiol Infect 140:970–981

    Article  CAS  Google Scholar 

  • Doyle MP, Roman DJ (1981) Growth and survival of Campylobacter fetus subsp. jejuni as a function of temperature and pH. J Food Prot 44(8):596–601

    Article  CAS  Google Scholar 

  • Ellis-Iversen J, Jorgensen F, Bull S, Powell L, Cook AJ, Humphrey TJ (2009) Risk factors for Campylobacter colonisation during rearing of broiler flocks in Great Britain. Prev Vet Med 89:178–184

    Article  CAS  Google Scholar 

  • European Food Safety Authority (EFSA), European Centre for Disease Prevention and Control (ECDC) (2016) the European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014. EFSA J 13:4329. https://doi.org/10.2903/j.efsa.2015.4329

    Article  CAS  Google Scholar 

  • Evans SJ (1992) Introduction and spread of thermophilic Campylobacter in broiler flocks. Vet Rec 131:574–576

    CAS  Google Scholar 

  • FDA (2012) Bad Bug Book. Foodborne pathogenic, microorganisms and natural toxins handbook, Second. pp 17–20

  • Friedman CR, Hoekstra RM, Samuel M, Marcus R, Bender J, Shiferaw B, Reddy S, Ahuja SD, Helfrick DL, Hardnett F, Carter M, Anderson B, Tauxe RV (2004) Emerging infections program food networking group. Risk factors for sporadic Campylobacter infection in the United States: a case control study in food net sites. Clin Infect Dis 38(Suppl.3):S285–S296

    Article  Google Scholar 

  • Ganan M, Carrascosa AV, Martinez-Rodriguez AJ (2009) Antimicrobial activity of chitosan against Campylobacter spp. and other microorganisms and its mechanism of action. J Food Protect 72(8):1735–1738

    Article  CAS  Google Scholar 

  • Georgiev M, Beauvais W, Guitian J (2017) Effect of enhanced biosecurity and selected on-farm factors on Campylobacter colonization of chicken broilers. Epidemiol Infect 145:553–567

    Article  CAS  Google Scholar 

  • Gibbens JC, Pascoe SJ, Evans SJ, Davies RH, Sayers AR (2001) A trial of biosecurity as a means to control Campylobacter infection of broiler chickens. Prev Vet Med 48:85–99

    Article  CAS  Google Scholar 

  • Gregory E, Barnhart DW, Dreeson NJ, Stern NJ, Corn JL (1997) Epidemiological study of Campylobacter spp. in broilers: source, time of colonisation and prevalence. Avian Dis 41:890–898

    Article  CAS  Google Scholar 

  • Hansson I, Vagsholm I, Svensoon L, Olsson Engvall L (2007) Correlations between Campylobacter spp. prevalence in the environment and broiler flocks. J Appl Microbiol 103:640–649

    Article  CAS  Google Scholar 

  • Hirano S, Seino H, Akiyama Y, Nonaka I (1990) Chitosan: a biocompatible material for oral and intravenous administrations. In: Gebelein CG, Dunn RL (eds) Progress in biomedical polymers. Springer, New York, pp 283–290

    Chapter  Google Scholar 

  • Hung LC, Ismail R, Basri M, Nang HLL, Tejo BA, Abu Hassan H, May CY (2010) Testing of glyceryl monoesters for their anti-microbial susceptibility and their influence in emulsions. J Oil Palm Res 22:846–855

    CAS  Google Scholar 

  • Khan JA, Rathore RS, Abulreesh HH, Qais FA, Ahmad I (2018) Prevalence and antibiotic resistance profiles of Campylobacter jejuni isolated from poultry meat and related samples at retail shops in Northern India. Foodborne Pathog Dis 15(4). https://doi.org/10.1089/fpd.2017.2344

  • Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63

    Article  CAS  Google Scholar 

  • Kumar PTS, Laskmanan VK, Anilkumar TV, Ramya C, Reshmi P, Unnikrishnan AG, Nair SV, Jayakumar R (2012) Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: In vitro and in vivo evaluation. ACS Appl Mater Interfaces 4:2618–2629

    Article  CAS  Google Scholar 

  • Kurita K (1998) Chemistry and application of chitin and chitosan. Polym Degrad Stab 59:117–120

    Article  CAS  Google Scholar 

  • Loretz M, Stephan R, Zweifel C (2010) Antimicrobial activity of decontamination treatments for poultry carcasses: a literature survey. Food Control 21(6):791–804

    Article  CAS  Google Scholar 

  • Malini M, Thirumavalavan M, Yang WY, Lee JF, Annadurai GA (2015) Versatile chitosan/ZnO nanocomposite with enhanced antimicrobial properties. Int J Biol Macromol 80:121–129

    Article  CAS  Google Scholar 

  • Mughini-Gras L, Penny C, Ragimbeau C, Schets FM, Blaak H, Duim B, Wagenaar JA, de Boer A, Cauchie HM, Mossong J, van Pelt W (2016) Quantifying potential sources of surface water contamination with Campylobacter jejuni and Campylobacter coli. Water Res 101:36–45

    Article  CAS  Google Scholar 

  • Nachamkin I (2002) Chronic effects of Campylobacter infection. Microbes Infect 4:399–403

    Article  Google Scholar 

  • Nam KS, Choi YR, Shon YH (2001) Evaluation of the antimutagenic potential of chitosan oligosaccharide: Rec, Ames and Umu tests. Biotechnol Lett 23:971–975

    Article  CAS  Google Scholar 

  • No HK, Park NY, Lee SH, Meyers SP (2002) Antibacterial activity of chitosan and chitosan oligomers with different molecular weights. Int J Food Microbiol 74:65–72

    Article  CAS  Google Scholar 

  • Parthasarathi V, Thilagavathi G (2011) Synthesis and characterization of zinc oxide nanoparticle and its application on fabrics for microbe resistant defense clothing. Int J Pharm Sci 3(4):392–398

    CAS  Google Scholar 

  • Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G (2011) Selective toxicity of ZnO nanoparticles toward gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed Nanotechnol Biol Med 7:184–192

    Article  CAS  Google Scholar 

  • Roberts D, Greenwood M (2003) Isolation and enrichment of microorganisms. In: Roberts D, Greenwood M (eds) Practical food microbiology, 3rd edn. Blackwell Publishing Ltd., Malden, pp 131–192

    Chapter  Google Scholar 

  • Sahin O, Kassem II, Shen Z, Lin J, Rajashekara G, Zhang Q (2015) Campylobacter in poultry: ecology and potential interventions. Avian Dis 59:185–200

    Article  Google Scholar 

  • Salah N, Habib SS, Khan ZH, Adnan Memic A, Azam A, Alarfaj E, Nabeel ZS, Al-Hamedi S (2011) High-energy ball milling technique for ZnO nanoparticles as antibacterial material. Int J Nanomed 6:863–869

    Article  CAS  Google Scholar 

  • Salehi R, Arami M, Mahmoodi NM, Bahrami H, Khorramfar S (2010) Novel biocompatible composite (chitosan zinc oxide nanoparticle): preparation, characterization and dye adsorption properties. Colloids Surf B 80(1):86–93

    Article  CAS  Google Scholar 

  • Samzadeh-Kermani A, Miri S (2014) Synthesis, characterization and bacrerial property of chitosan-graft-polyaniline/montmorillonite/ZnO nanocomposite. Kor J Chem Eng 32:1137–1141

    Article  CAS  Google Scholar 

  • Schets FM, Jacobs-Reitsma WF, Van der Plaats RQJ, Heer LK, Van Hoek AHAM, Hamidjaja RA, Husman AMDR, Blaak H (2017) Prevalence and types of Campylobacter on poultry farms and in their direct environment. J Water Health 13:e0190647. https://doi.org/10.1371/journal.pone.0190647

    Article  CAS  Google Scholar 

  • Sibanda N, McKenna A, Richmond A, Ricke SC, Callaway T, Stratakos AC, Gundogdu O, Corcionivoschi N (2018) A review of the effect of management practices on Campylobacter prevalence in poultry farms. Front Microbiol 9:2002. https://doi.org/10.3389/fmicb.2018.02002

    Article  Google Scholar 

  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano Micro Lett 7:219–242

    Article  CAS  Google Scholar 

  • Sterk A, Schijven J, De Roda Husman AM, De Nijs T (2016) Effect of climate change on runoff of Campylobacter and Cryptosporidium from land to surface water. Water Res 95:90–102

    Article  CAS  Google Scholar 

  • Van Steenwinkel S, Ribbens S, Ducheyne E, Goossens E, Dewulf J (2011) Assessing biosecurity practices, movements and densities of poultry sites across Belgium, resulting in different farm risk-groups for infectious disease introduction and spread. PrevVet Med 98(4):259–270

    Google Scholar 

  • Wardani G, Mahmiah, Sudjarwo SA (2018) In vitro antibacterial activity of chitosan nanoparticles against Mycobacterium tuberculosis. Pharmacog J 10(1):162–166

    Article  CAS  Google Scholar 

  • Whiley H, Van den Akker B, Giglio S, Bentham R (2013) The role of environmental reservoirs in human Campylobacteriosis. Int J Environ Res Public Health 10:5886–5907

    Article  Google Scholar 

  • Whyte P, McGill K, Cowley D, Madden RH, Moran L, Scates P, Carroll C, O’Leary A, Fanning S, Collins JD, McNamara E, Moore JE, Cormican M (2004) Occurrence of Campylobacter in retail foods in Ireland. Int J Food Microbiol 95:111–118

    Article  CAS  Google Scholar 

  • Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77:2325–2331

    Article  CAS  Google Scholar 

  • Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9:479–489

    Article  CAS  Google Scholar 

  • Zhang X, Tang M, Zhou Q, Zhang J, Yang X, Gao Y (2018) Prevalence and characteristics of Campylobacter throughout the slaughter process of different broiler batches. Front Microbiol 9:2092. https://doi.org/10.3389/fmicb.2018.02092

    Article  Google Scholar 

Download references

Acknowledgments

All thanks and appreciation to the workers of broiler poultry farms for their contribution in the samples collected during the study period.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asmaa Nady Mohammed.

Ethics declarations

The protocol of study was in accordance with the ethical standards of Institutional Animal Care and Use Committee (IACUC), and Institutional Review Board (IRB, Ref. No: IORG 0009255), Beni-Suef University.

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, A.N., Abdel Aziz, S.A.A. The prevalence of Campylobacter species in broiler flocks and their environment: assessing the efficiency of chitosan/zinc oxide nanocomposite for adopting control strategy. Environ Sci Pollut Res 26, 30177–30187 (2019). https://doi.org/10.1007/s11356-019-06030-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06030-z

Keywords

Navigation