Skip to main content
Log in

Arsenic fractionation and its impact on physiological behavior of sunflower (Helianthus annuus L.) in three texturally different soils under alkaline calcareous conditions

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Soil textural composition may be important to control arsenic (As) behavior in soil and movement to plant. Two independent parallel experiments comprising of five As levels (0, 50, 100, 150, and 200 mg As kg−1 soil) and three soil textural types (sandy, loamy, and clayey) were designed for determining As fractionation in soils and its consequential effects on growth, yield, and physiological characteristics of sunflower (Helianthus annuus L.). Six As fractions, i.e., NH4Cl-extractable, NH4F-extractable, NaOH-extractable, H2SO4-extractable, H2O2-extractable, and HNO3-extractable, were determined. On an average, NH4Cl-extractable As (the most phytoavailable among the extracted fractions) was 48.9, 19.8, and 6.6% of the total As while the bioaccumulation factor for root ranged between 1.9 and 9.5, 1.8 and 4.4, and 0.8 and 2.1 for sandy, loamy, and clayey textured soils, respectively. There was an increase of 8.3, 5.6, and 6.0 times in malondialdehyde with a subsequent reduction in photosynthetic rate by 53.3, 42.7, and 38.0% and achene yield 90.0, 87.1, and 85.5% in sandy, loamy, and clayey textured soils, respectively at 200 mg As kg−1 as compared with the control. Antioxidant enzyme activities were increased with increasing As addition, and maximum activities were found at 150 mg As kg−1, where catalase activities were 377.7, 341.6, and 292.0%; peroxidase 788.5, 758.6, and 737.0%; and superoxide dismutase 235.7, 191.8, and 177.2% higher in sandy, loamy, and clayey textured soils, respectively as compared with the control. In conclusion, As fractionation was markedly influenced by soil texture, and toxic effects of As on growth, yield and physiological characteristics of sunflower were maximum in sandy followed by loamy and clayey textured soils in descending order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, Amjad M, Hussain M, Natasha (2018) Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Public Health 15:59

    Article  CAS  Google Scholar 

  • Abdul HBO, Thomas BV (2009) Translocation and bioaccumulation of trace metals in desert plants of Kuwait Governorates. Res J Environ Sci 3:581–587

    Article  Google Scholar 

  • Abedin MJ, Cresser MS, Meharg AA, Feldmann J, Howells JC (2002) Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environ Sci Technol 36:962–968

    Article  CAS  Google Scholar 

  • Adriano DC (2001) Arsenic. In: Trace elements in terrestrial environments. Springer, Berlin, Germany, pp 219–261

    Chapter  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Awasthi S, Chauhan R, Srivastava S, Tripathi RD (2017) The journey of arsenic from soil to grain in rice. Front Plant Sci 8:1007

    Article  Google Scholar 

  • Azeem W, Ashraf M, Shahzad SM, Imtiaz M, Akhtar M, Rizwan MS (2017) Phosphate-arsenate relations to affect arsenic concentration in plant tissues, growth, and antioxidant efficiency of sunflower (Helianthus annuus L.) under arsenic stress. Environ Sci Pollut Res 24:24376–24386

    Article  CAS  Google Scholar 

  • Begum MC, Islam MS, Islam M, Amin R, Parvez MS, Kabir AH (2016) Biochemical and molecular responses underlying differential arsenic tolerance in rice (Oryza sativa L.). Plant Physiol Biochem 104:266–277

    Article  CAS  Google Scholar 

  • Bhadauria R (2019) Arsenic toxicity: an overview. Horticult Int J 3:20–22

    Google Scholar 

  • Bigham JM (1996) Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage. Appl Geochem 11:845–849

    Article  Google Scholar 

  • Bouyoucos GJ (1962) Hydrometer method improved for making particle size analyses of soils. Agron J 54:464–465

    Article  Google Scholar 

  • Bücker-Neto L, Paiva ALS, Machado RD, Arenhart RA, Margis-Pinheiro M (2017) Interactions between plant hormones and heavy metals responses. Genet Mol Biol 40:373–386

    Article  CAS  Google Scholar 

  • Chungao C, Zihui L (1988) Speciation of arsenic in water, suspended solids and sediment of Xiangjiang river, China. Sci Total Environ 77:69–82

    Article  Google Scholar 

  • Dai ZY, Shu WS, Liao B, Wan CY, Li JT (2011) Intraspecific variation in cadmium tolerance and accumulation of a high biomass tropical tree Averrhoa carambola L.: implication for phytoextraction. J Environ Monit 13:1723–1729

    Article  CAS  Google Scholar 

  • Datta R, Sarkar D (2004) Arsenic geochemistry in three soils contaminated with sodium arsenite pesticide: an incubation study. Environ Geosci 11:87–97

    Article  Google Scholar 

  • de la Fuente C, Clemente R, Alburquerque JA, Vélez D, Bernal MP (2010) Implications of the use of As-rich groundwater for agricultural purposes and the effects of soil amendments on As solubility. Environ Sci Technol 44:9463–9469

    Article  CAS  Google Scholar 

  • Deng G, Li M, Li H, Yin L, Li W (2014) Exposure to cadmium causes declines in growth and photosynthesis in the endangered aquatic fern (Ceratopteris pteridoides). Aquat Bot 112:23–32

    Article  CAS  Google Scholar 

  • Díaz OP, Tapia Y, Pastene R, Cazanga M, Segura R, Peredo S (2016) Lupinus microcarpus growing in arsenic-agricultural soils from Chile: toxic effects and it potential use as phytoremediator plant. J Environ Prot 7:116–128

    Article  CAS  Google Scholar 

  • Dobran S, Zagury GJ (2006) Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content. Sci Total Environ 364:239–250

    Article  CAS  Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F test. Biometrics 11:1–42

    Article  Google Scholar 

  • Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:182

    Article  CAS  Google Scholar 

  • Gao S, Goldberg S, Herbel MJ, Chalmers AT, Fujii R, Tanji KK (2006) Sorption processes affecting arsenic solubility in oxidized surface sediments from Tulare Lake Bed, California. Chem Geol 228:33–43

    Article  CAS  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis, part 1. Physical and mineralogical methods, agronomy monograph No. 9, 2nd edn. American Society of Agronomy/Soil Science Society of America, Madison, WI, pp 383–411

    Google Scholar 

  • Girouard E, Zagury GJ (2009) Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation and particle-size fraction. Sci Total Environ 407:2576–2585

    Article  CAS  Google Scholar 

  • Govarthanan M, Mythili R, Selvankumar T, Kamala-Kannan S, Kim H (2018) Myco-phytoremediation of arsenic- and lead-contaminated soils by Helianthus annuus and wood rot fungi, Trichoderma sp. isolated from decayed wood. Ecotoxcol Environ Saf 151:279–284

    Article  CAS  Google Scholar 

  • Gräfe M, Sparks DL (2006) Solid phase speciation of arsenic. In: Naidu R et al (eds) Managing arsenic in the environment: from soils to human health. CSIRO Pub, Collingwood, Australia, pp 75–92

    Google Scholar 

  • Gunes A, Ataoglu N, Turan M, Esitken A, Ketterings QM (2009) Effects of phosphate solubilizing microorganisms on strawberry yield and nutrient concentrations. J Plant Nutr Soil Sci 172:385–392

    Article  CAS  Google Scholar 

  • Gupta DK, Tripathi RD, Mishra S, Srivastava S, Dwivedi S, Rai UN (2008) Arsenic accumulation in root and shoot vis-a-vis its effects on growth and level of phytochelatins in seedlings of Cicer arietinum L. J Environ Biol 29:281–286

    CAS  Google Scholar 

  • Hartley W, Lepp NW (2008) Remediation of arsenic contaminated soils by iron-oxide application, evaluated in terms of plant productivity, arsenic and phytotoxic metal uptake. Sci Total Environ 390:35–44

    Article  CAS  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Meharg AA (2001) Copper and arsenate induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ 24:713–722

    Article  CAS  Google Scholar 

  • Hasan SA, Hayat S, Ali B, Ahmad A (2008) 28-homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. Environ Pollut 151:60–66

    Article  CAS  Google Scholar 

  • Hasan SA, Hayat S, Ahmad A (2011) Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere 84:1446–1451

    Article  CAS  Google Scholar 

  • Hernandez JA, Almansa MS (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant 115:251–257

    Article  CAS  Google Scholar 

  • Hudson-Edwards KA, Houghton SL, Osborn A (2004) Extraction and analysis of arsenic in soils and sediments. Trends Anal Chem 23:745–752

    Article  CAS  Google Scholar 

  • Imran MA, Sajid ZA, Chaudhry MN (2015) Arsenic (As) toxicity to germination and vegetative growth of sunflower (Helianthus annuus L.). Pol J Environ Stud 24:1993–2002

    Article  CAS  Google Scholar 

  • Imtiaz M, Tu S, Xie Z, Han D, Ashraf M, Rizwan MS (2015) Growth, V uptake, and antioxidant enzymes responses of chickpea (Cicer arietinum L.) genotypes under vanadium stress. Plant Soil 390:17–27

    Article  CAS  Google Scholar 

  • Inskeep WP, McDermott TR, Fendorf S (2002) Arsenic (V)/(III) cycling in soils and natural waters: chemical and microbiological processes. In: Frankenberger JWT (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, USA, pp 183–215

    Google Scholar 

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, Berlin Heidelberg New York, p 550

    Book  Google Scholar 

  • Khalid S, Shahid M, Niazi NK, Rafiq M, Bakhat HF, Imran M, Abbas T, Bibi I, Dumat C (2017) Arsenic behavior in soil-plant system: biogeochemical reactions and chemical speciation influences. In: Enhancing cleanup of environmental pollutants. Springer, Berlin, Germany, pp 97–140

    Chapter  Google Scholar 

  • Li HS (2000) Principles and techniques of plant physiological biochemical experiment. Higher Education Press, Beijing, pp 261–263

    Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  • Liu X, Zhang S, Shan X, Zhu YJ (2005) Toxicity of arsenate and arsenite on germination, seedling growth and amylolytic activity of wheat. Chemosphere 61:293

    Article  CAS  Google Scholar 

  • Lombs E, Zhao FJ, Dunham SJ, McGrath SP (2001) Phytoremediation of heavy metal contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J Environ Qual 30:1919–1926

    Article  Google Scholar 

  • Malik RN, Husain SZ, Nazir I (2010) Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan. Pak J Bot 42:123–127

    Google Scholar 

  • Marsa SM, Rossi FR, Valdez HA, Gomez-Casati DF, Zirulnik F (2015) Study of oxidative stress and genotoxicity by arsenic contamination in Glycine max L. Int J Plant Soil Sci 8:1–15

    Article  Google Scholar 

  • Martin M, Violante A, Ajmone-Marsan F, Barberis E (2014) Surface interactions of arsenite and arsenate on soil colloids. Soil Sci Soc Am J 78:157–170

    Article  CAS  Google Scholar 

  • Mascher R, Lippmann B, Holzinger S, Bergmann H (2002) Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci 163:961–969

    Article  CAS  Google Scholar 

  • Meharg AA, Williams PN, Adomako E, Lawgali YL, Campell RCJ, Sun G, Zhu YG, Feldman J, Raab A, Zhao FJ, Islam R, Hossain S, Yanai J (2009) Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol 43:1612–1617

    Article  CAS  Google Scholar 

  • Mehlich A (1984) Mehlich no. 3 soil test extractant: a modification of Mehlich no. 2 extractant. Commun Soil Plant Anal 15:1409–1416

    Article  CAS  Google Scholar 

  • Mello JWV, Roy WR, Talbott JL, Stucki JW (2006) Mineralogy and arsenic mobilization in arsenic-rich Brazilian soils and sediments. J Soils Sediments 6:9–19

    Article  CAS  Google Scholar 

  • Mench M, Schwitzguebel JP, Schroeder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification, and sequestration, and consequences to food safety. Environ Sci Pollut Res 16:876–900

    Article  CAS  Google Scholar 

  • Miller RO (1998) Nitric-perchloric wet acid digestion in an open vessel. In: Kalra YP (ed) Handbook of reference methods for plant analysis. CRC Press, Washington DC, pp 57–62

    Google Scholar 

  • Mohamed AA, Castagna A, Ranieri A, di Toppi LS (2012) Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatins biosynthesis. Plant Physiol 57:15–22

    CAS  Google Scholar 

  • Moreno-Jiménez E, Peñalosa JM, Esteban E, Bernal MP (2009) Feasibility of arsenic phytostabilisation using Mediterranean shrubs: impact of root mineralization on As availability in soils. J Environ Monit 11:1375–1380

    Article  CAS  Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon and organic matter. In: Page AL et al (eds) Methods of soil analysis, part-ii, chemical and microbiological properties, 2nd edn. Am Soc Agron Inc, Madison WI, pp 539–579

    Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with NaHCO3. USDA Cir.939, U.S. Washington

    Google Scholar 

  • Piracha MA, Ashraf M, Shahzad SM, Siddiqui AR, Nazeer S (2016) Arsenic behavior in different textured soils amended with phosphate rock and farm yard manure. J Environ Agric 1:55–67

    Google Scholar 

  • Quazi S, Sarkar D, Datta R (2010) Effect of soil aging on arsenic fractionation and bioaccessibility in inorganic arsenical pesticide contaminated soils. Appl Geochem 25:1422–1430

    Article  CAS  Google Scholar 

  • Quazi S, Sarkar D, Datta R (2013) Human health risk from arsenical pesticide contaminated soils: a long-term greenhouse study. J Hazard Mater 262:1031–1038

    Article  CAS  Google Scholar 

  • Raab A, Schat H, Meharg AA, Feldmann J (2005) Uptake, translocation and transformation of arsenate and arsenite in sunflower (Helianthus annuus L.): formation of arsenic phytochelatin complexes during exposure to high arsenic concentrations. New Phytol 168:551–558

    Article  CAS  Google Scholar 

  • Robinson GR Jr, Ayotte JD (2006) The influence of geology and land use on arsenic in stream sediments and ground waters in New England, USA. Appl Geochem 21:1482–1497

    Article  CAS  Google Scholar 

  • Saidi I, Yousfi N, Borgi MA (2017) Salicylic acid improves the antioxidant ability against arsenic-induced oxidative stress in sunflower (Helianthus annuus) seedling. J Plant Nutr 40:2326–2335

    Article  CAS  Google Scholar 

  • Selvankumar T, Radhika R, Mythili R, Arunprakash S, Srinivasan P, Govarthanan M, Kim H (2017) Isolation, identification and characterization of arsenic transforming exogenous endophytic Citrobacter sp. RPT from roots of Pteris vittata. 3. Biotech 7:264

    CAS  Google Scholar 

  • Seth CS, Chaturvedi PK, Misra V (2007) Toxic effect of arsenate and cadmium alone and in combination on giant duckweed (Spirodela polyrrhiza L.) in response to its accumulation. Environ Toxicol 22:539–549

    Article  CAS  Google Scholar 

  • Sgherri C, Milone MTA, Clijsters H, Navari-Izzo F (2001) Antioxidative enzymes in two wheat cultivars, differently sensitive to drought and subjected to subsymptomatic copper doses. J Plant Physiol 158:1439–1447

    Article  CAS  Google Scholar 

  • Sharma I, Travlos IS (2012) Phosphate supply as a promoter of tolerance to arsenic in pearl millet. Int J plant Prod 6:443–456

    CAS  Google Scholar 

  • Silva JRR, Fernandes AR, Junior MLS, Santos CRC, Lobato AKS (2018) Tolerance mechanisms in Cassia alata exposed to cadmium toxicity—potential use for phytoremediation. Photosynthetica 56:495–504

    Article  CAS  Google Scholar 

  • Simmler M, Suess E, Christl I, Kotsev T, Kretzschmar R (2016) Soil-to-plant transfer of arsenic and phosphorus along a contamination gradient in mining-impacted Ogasta River flood plain. Sci Total Environ 572:742–754

    Article  CAS  Google Scholar 

  • Smedley P, Kinniburgh D (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Smith E, Juhasz AL, Weber J (2009) Arsenic uptake and speciation in vegetables grown under greenhouse conditions. Environ Geochem Health 31:125

    Article  CAS  Google Scholar 

  • Sommers LE, Nelson DW (1972) Determination of total phosphorus in soils: a rapid perchloric acid digestion procedure. Proc Soil Sci Soc Am 36:902–904

    Article  CAS  Google Scholar 

  • Stoeva N, Bineva T (2003) Oxidative changes and photosynthesis in oat plants grown in As-contaminated soil. Bulg J Plant Physiol 29:87–95

    Google Scholar 

  • Strawn DG (2018) Review of interactions between phosphorus and arsenic in soils from four case studies. Geochem Trans 19:10

    Article  CAS  Google Scholar 

  • Taggart MA, Carlisle M, Pain DJ, Wiliams R, Osborn D, Joyson A, Meharg AA (2004) The distribution of arsenic in soils affected by Analcollar mine spill, SW Spain. Sci Total Environ 323:137–152

    Article  CAS  Google Scholar 

  • Taggart MA, Mateo R, Charnock JM, Bahrami F, Green AJ, Meharg AA (2009) Arsenic rich iron plaque on macrophyte roots—an ecotoxicological risk? Environ Pollut 157:946–954

    Article  CAS  Google Scholar 

  • Thomas GW (1982) Exchangeable cations. In: Page AL et al (eds) Methods of soil analysis, part-ii, chemical and microbiological properties, 2nd edn. Agronomy Monograph 9, Am Soc Agron, Madison, WI, pp 159–165

    Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372

    Article  CAS  Google Scholar 

  • Violante A, Pigna M (2002) Competitive sorption of arsenate and phosphate on different clay minerals and soils. Soil Sci Soc Am J 66:1788–1796

    Article  CAS  Google Scholar 

  • Whitlow TH, Bassuk NL, Ranney TG, Reichert DL (1992) An improved method for using electrolyte leakage to assess membrane competence in plant tissues. Plant Physiol 98:198–205

    Article  CAS  Google Scholar 

  • Yadav SK (2009) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Yang L, Donahoe RJ (2007) The form, distribution and mobility of arsenic in soils contaminated by arsenic trioxide, at sites in Southeast USA. Appl Geochem 122:320–341

    Article  CAS  Google Scholar 

  • Yang Q, Tu S, Wang G, Liao X, Yan X (2012) Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L. Int J Phytorem 14:89–99

    Article  Google Scholar 

  • Yolcubal I, Akyol H (2008) Adsorption and transport of arsenate in carbonate-rich soils: coupled effects of nonlinear and rate-limited sorption. Chemosphere 73:1300–1307

    Article  CAS  Google Scholar 

  • Zhang ZL, Qu WJ (2003) Experimental guidance for plant physiology. Higher Education Press, Beijing, China, pp 40–45

    Google Scholar 

  • Zhang H, Selim HM (2008) Reaction and transport of arsenic in soils: equilibrium and kinetic modeling. Adv Agron 98:45–115

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ashraf.

Additional information

Responsible editor: Roberto Terzano

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piracha, M.A., Ashraf, M. & Niaz, A. Arsenic fractionation and its impact on physiological behavior of sunflower (Helianthus annuus L.) in three texturally different soils under alkaline calcareous conditions. Environ Sci Pollut Res 26, 17438–17449 (2019). https://doi.org/10.1007/s11356-019-05141-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05141-x

Keywords

Navigation