Skip to main content
Log in

Concentrations of cylindrospermopsin toxin in water and tilapia fish of tropical fishponds in Egypt, and assessing their potential risk to human health

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Unlike microcystin, cylindrospermospin (CYN) concentrations in fishpond water and their accumulation in fish tissues have been largely unexplored. This study determined CYN levels in water and tilapia fish organs from three tropical fishponds in southern Egypt. Water and fish samples were collected monthly from fishponds for 12 months (Oct 2012 to Sep 2013). The results revealed that six CYN-producing species of cyanobacteria dominated phytoplankton populations and formed blooms in these fishponds during warm months. Among these species, Anabaena affinis, Planktothrix agardhii, Cylindrospermopsis catemaco, and C. philippinensis were assigned as CYN producers for the first time in the present study. The highest cell densities of CYN-producing species in fishponds were recorded in August and September 2013, correlating with high temperature, pH and nutrient concentrations. Dissolved CYN was found in fishpond waters at levels (0.3–2.76 μg L−1) very close to those of particulate CYN (0.4–2.37 μg L−1). CYN was also estimated in tilapia fish organs at levels up to 417 ng g−1 in the intestines, 1500 ng g−1 in the livers, and 280 ng g−1in edible muscles. Compared to the recommended guideline (0.03 μg kg−1 day−1), the estimated daily intake (EDI) of CYN in our samples of edible muscles exceeded this limit by a factor of 1.3–14 during summer and autumn. This might represent a risk to human health upon consumption of such contaminated fish muscles. Therefore, fishponds worldwide should be monitored for the presence toxic cyanobacteria to protect humans from their potent toxins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antal O, Karisztl-Gácsi M, Farkas A, Kovács A, TörT AAN, Kiss G, Saker ML, Tri JG, Bánfalvi G, Vehovszky Á (2011) Screening the toxic potential of Cylindrospermopsis raciborskii strains isolated from Lake Balaton. Hungary Toxicon 57:831–840

    Article  CAS  Google Scholar 

  • APHA (1995) Standard methods for the examination of water and wastewater, 14th edn. American Public Health Association, USA

    Google Scholar 

  • Backer LC, McNeel SV, Barber T, Kirkpatrick B, Williams C, Irvin M, Zhou Y, Johnson TB, Nierenberg K, Aubel M, LePrell R, Chapman A, Foss A, Corum S, Hill VR, Kieszak SM, Cheng YS (2010) Recreational exposure to microcystins during algal blooms in two California lakes. Toxicon 55:909–921

    Article  CAS  Google Scholar 

  • Baron-Sola A, Ouahid Y, delCampo FF (2012) Detection of potentially producing cylindrospermopsin and microcystin strains in mixed populations of cyanobacteria by simultaneous amplification of cylindrospermopsin and microcystin gene regions. Ecotoxicol Environ Safe 75:102–108

    Article  CAS  Google Scholar 

  • Bazin E, Mourot A, Humpage AR, Fessard V (2010) Genotoxicity of a freshwater cyanotoxin, cylindrospermopsin, in two human cell lines: Caco-2 and HepaRG. Environ Molecul Mutagen 51:251–259

    CAS  Google Scholar 

  • Berry JP, Lind O (2010) First evidence of “paralytic shellfish toxins” and cylindrospermopsin in a Mexican freshwater system, Lago Catemaco, and apparent bioaccumulation of the toxins in “tegogolo” snails (Pomacea patula catemacensis). Toxicon 55:930–938

    Article  CAS  Google Scholar 

  • Berry JP, Jaja-Chimedza A, Dávalos-Lind L, Lind O (2012) Apparent bioaccumulation of cylindrospermopsin and paralytic shellfish toxins by finfish in Lake Catemaco (Veracruz, Mexico). Food Additiv Contam: Part A 29:314–321

    Article  CAS  Google Scholar 

  • Bormans M, Lengronne M, Brient L, Duval C (2014) Cylindrospermopsin accumulation and release by the benthic cyanobacterium Oscillatoria sp. PCC 6506 under different light conditions and growth phases. Bull Environ Contam Toxicol 92:243–247

    Article  CAS  Google Scholar 

  • Brient L, Lengronne M, Bormans M, Fastner J (2009) First occurrence of cylindrospermopsin in freshwater in France. Environ Toxicol 24:415–420

    Article  CAS  Google Scholar 

  • Burford MA, Davis TW (2011) Physical and chemical processes promoting dominance of the toxic cyanobacterium Cylindrospermopsis raciborskii. Chin J Oceanol Limnol 29:883–891

    Article  CAS  Google Scholar 

  • Burford MA, Mcneale KL, Mckenzie-smith FJ (2006) The role of nitrogen in promoting the toxic cyanophyte Cylindrospermopsis raciborskii in a subtropical water reservoir. Freshw Biol 51:2143–2153

    Article  CAS  Google Scholar 

  • Codd GA, Morrison LF, Metcalf JS (2005) Cyanobacterial toxins: cyan toxins. J Appl Bacteriol 72:445–459

    Google Scholar 

  • Deblois CP, Aranda-Rodriguez R, Giani A, Bird DF (2008) Microcystin accumulation in liver and muscle of tilapia in two large Brazilian hydroelectric reservoirs. Toxicon 51:435–448

    Article  CAS  Google Scholar 

  • Dyble J, Gossiaux D, Landrum P, Kashian DR, Pothoven S (2011) A kinetic study of accumulation and elimination of microcystin-LR in yellow perch (Perca flavescens) tissue and implications for human fish consumption. Mar Drugs 9:2553–2571

    Article  CAS  Google Scholar 

  • Fadel A, Atoui I, Bruno J, Lemaire R, Vinçon-Leite B, Slim K (2014) Dynamics of the toxin cylindrospermopsin and the cyanobacterium Chrysosporum (Aphanizomenon) ovalisporum in a Mediterranean eutrophic reservoir. Toxins 6:3041–3057

    Article  CAS  Google Scholar 

  • Falconer IR, Humpage AR (2006) Cyanobacterial (blue green algal) toxins in water supplies: cylindrospermopsins. Environ Toxicol 21:299–304

    Article  CAS  Google Scholar 

  • Fastner J, Heinze R, Humpage AR, Mischke U, Eaglesham GK, Chorus I (2003) Cylindrospermopsin occurrence in two German lakes and preliminary assessment of toxicity and toxin production of Cylindrospermopsis raciborskii (cyanobacteria) isolates. Toxicon 42:313–321

    Article  CAS  Google Scholar 

  • Fergusson KM, Saint CP (2003) Multiplex PCR assay for Cylindrospermopsis raciborskii and cylindrospermopsin producing cyanobacteria. Environ Toxicol 18:120–125

    Article  CAS  Google Scholar 

  • Figueredo CC, Giani A (2009) Phytoplankton community in the tropical lake of Lagoa 863 Santa (Brazil): conditions favoring a persistent bloom of Cylindrospermopsis raciborskii. Limnol 39:264–272

    Article  Google Scholar 

  • Guzman-Guillen R, Moreno I, Prieto Ortega AI, Eugenia Soria-Diaz M, Vasconcelos V, Camean AM (2015) CYN determination in tissues from freshwater fish by LC-MS/MS: Validation and application in tissues from subchronically exposed tilapia (Oreochromis niloticus). Talanta 131:452–459

    Article  CAS  Google Scholar 

  • Guzman-Guillen R, Maisanaba S, Prieto Ortega AI, Valderrama-Fernández R, Jos Á, Cameán AM (2017a) Changes on cylindrospermopsin concentration and characterization of decomposition products in fish muscle (Oreochromis niloticus) by boiling and steaming. Food Control 77:210–220

    Article  CAS  Google Scholar 

  • Guzman-Guillen R, Prieto Ortega A,I, Moyano R, Blanco A, Vasconcelos V, Camean A (2017b) Dietary L-carnitine prevents histopathological changes in Tilapia (Oreochromis niloticus) exposed to cylindrospermopsin. Environ Toxicol 32:241–254

    Article  CAS  Google Scholar 

  • Haande S, Rohrlack T, Semyalo BP, Edvardsen B, Lyche-Solheim A, Sørensen K, Larsson P (2011) Phytoplankton dynamics and cyanobacterial dominance in Murchison Bay of Lake Victoria (Uganda) in relation to environmental conditions. Limnol 41:20–29

    Article  Google Scholar 

  • Hardy FJ, Johnson A, Hamel K, Preece EP (2015) Cyanotoxin bioaccumulation in freshwater fish, Washington state. USA Environ Monit Assess 187:667

    Article  Google Scholar 

  • Humpage AR, Falconer IR (2003) Oral toxicity of the cyanobacterial toxin cylindrospermopsin in male Swiss albino mice: determination of no observed adverse effect level for deriving a drinking water guideline value. Environ Toxicol 18:94–103

    Article  CAS  Google Scholar 

  • Humpage AR, Fenech M, Thomas P, Falconer IR (2000) Micronucleus induction and chromosome loss in WIL2-NS cells exposed to the cyanobacterial toxin, cylindrospermopsin. Mutat Res 472:155–161

  • Huszar VLM, Silva LHS, Marinho M, Domingos P, Sant’Anna CL (2000) Cyanoprokaryote assemblages in eight productive tropical Brazilian waters. Hydrobiol 424:67–77

  • Janse JH, Scheffer M, Lijklema L, Van Liere L, Sloot JS, Mooij WM (2010) Estimating the critical phosphorus loading of shallow lakes with the ecosystem model PCLake: sensitivity. calibration and uncertainty Ecol Model 221:654–665

    Article  CAS  Google Scholar 

  • Kinnear S (2010) Cylindrospermopsin: a decade of progress on bioaccumulation research. Marine Drugs 8:542–456

    Article  CAS  Google Scholar 

  • Kokociński M, Mankiewicz-Boczek J, Jurczak T, Spoof L, Meriluoto J, Rejmonczyk E (2013) Aphanizomenon gracile (Nostocales), a cylindrospermopsin-producing cyanobacterium in Polish lakes. Environ Sci Pollut Res 20:5243–5264

    Article  Google Scholar 

  • Komárek J, Anagnostidis K (2005) Cyanoprokaryota. 2. Teil: Oscillatoriales. Süßwasserflora von Mitteleuropa; Band 19/2. Elsevier, Műnchen, p 759

    Google Scholar 

  • Komarek J, Komarkova J (2003) Phenotype diversity of the cyanoprocaryotic genus Cylindrospermopsis (Nostocales); review 2002. Czech Phycol 3:1–30

    Google Scholar 

  • Lei L, Peng L, Huang X, Han BP (2014) Occurrence and dominance of Cylindrospermopsis raciborskii and dissolved cylindrospermopsin in urban reservoirs used for drinking water supply, South China. Environ. Monit Assess 186:3079–3090

    Article  CAS  Google Scholar 

  • Martins J, Vasconcelos V (2009) Microcystin dynamics in aquatic organisms. J Toxicol Environ Health B 12:65–82

    Article  Google Scholar 

  • Mazmouz R, Chapuis-Hugon F, Mann S, Pichon V, Méjean A, Ploux O (2010) Biosynthesis of cylindrospermopsin and 7-epicylindrospermopsin in Oscillatoria PCC 6506; identification of the gene cluster and toxin analysis. Appl Environ Microbiol 76:4943–4949

    Article  CAS  Google Scholar 

  • Messineo V, Melchiorre S, Di Corcia A, Gallo P, Bruno M (2010) Seasonal succession of Cylindrospermopsis raciborskii and Aphanizomenon ovalisporum blooms with cylindrospermopsin occurrence in the volcanic Lake Albano. central Italy Environ Toxicol 25:18–27

    CAS  Google Scholar 

  • Mohamed ZA (2007) First report of toxic Cylindrospermopsis raciborskii and Raphidiopsis mediterranean (Cyanoprokaryota) in Egyptian fresh waters. FEMS Microbiol Ecol 59:749–761

    Article  CAS  Google Scholar 

  • Mohamed ZA (2016) Cyanobacterial toxins in water sources and their impacts on human health. In: McKeown A, Bugyi G (eds) Impact of water pollution on human health and environmental sustainability. IGI Global, Hershey, PA, pp 120–149

    Chapter  Google Scholar 

  • Mohamed ZA, Alamri SA (2012) Biodegradation of cylindrospermopsin toxin by microcystin-degrading bacteria isolated from cyanobacterial blooms. Toxicon 60:1390–1395

    Article  CAS  Google Scholar 

  • Mohamed ZA, Al-Shehri AM (2013) Assessment of cylindrospermopsin toxin in an arid Saudi lake containing dense cyanobacterial bloom. Environ Monitor Assess 185:2157–2166

    Article  CAS  Google Scholar 

  • Mohamed ZA, Carmichael WW, Hussein AA (2003) Estimation of microcystins in the freshwater fish Oreochromis niloticus in an Egyptian fish farm containing a Microcystis bloom. Environ Toxicol 18:137–141

    Article  CAS  Google Scholar 

  • OECD (1982) Eutrophication of waters - monitoring, assessment and control, Paris

  • Paerl HW, Fulton RS (2006) Ecology of harmful cyanobacteria. In: Graneli E, Turner JT (ed) Ecology of harmful marine algae. Springer-Verlag, Berlin, pp 95–107

  • Paerl HW, Otten TG (2013) Spatiotemporal patterns and ecophysiology of toxigenic microcystis blooms in lake Taihu, China: implications for water quality management. Environ Sci Technol 46:3480–3488

    Google Scholar 

  • Pichardo S, Devesa V, Puerto M, Vélez D, Cameán AM (2017) Intestinal transport of cylindrospermopsin using the Caco-2 cell line. Toxicol in Vitro 38:142–149

    Article  CAS  Google Scholar 

  • Recknagel F, Orr P, Cao H (2014) Inductive reasoning and forecasting of population dynamics of Cylindrospermopsis raciborskii in three sub-tropical reservoirs by evolutionary computation. Harmful Algae 31:26–34

    Article  CAS  Google Scholar 

  • Reynolds CS (1997) Vegetation processes in the pelagic: a model for ecosystem theory. Ecology Institute, Germany

    Google Scholar 

  • Rücker J, Stüken A, Nixdorf B, Fastner J, Chorus I, Wiedner C (2007) Concentrations of particulate and dissolved cylindrospermopsin in 21 Aphanizomenon dominated temperate lakes. Toxicon 50:800–809

    Article  Google Scholar 

  • Rzymski P, Poniedziałek B, Kokociski M (2014) Interspecific allelopathy in cyanobacteria: cylindrospermopsin and Cylindrospermopsis raciborskii effect on the growth and metabolism of Microcystis aeruginosa. Harmful Algae 35:1–8

    Article  CAS  Google Scholar 

  • Saker ML, Eaglesham GK (1999) The accumulation of cylindrospermopsin from the cyanobacterium Cylindrospermopsis raciborskii in tissues of the Redclaw crayfish Cherax quadricarinatus. Toxicon 37:1065–1077

    Article  CAS  Google Scholar 

  • Saker ML, Griffiths DJ (2000) The effect of temperature on growth and cylindrospermopsin content of seven isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from water bodies in northern Australia. Phycol 39:349–354

    Article  Google Scholar 

  • Saker ML, Metcalf JS, Codd GA, Vasconcelos VM (2004) Accumulation and depuration of the cyanobacterial toxin cylindrospermopsin in the freshwater mussel Anodonta cygnea. Toxicon 43:185–194

    Article  CAS  Google Scholar 

  • Schembri MA, Neilan BA, Saint CP (2001) Identification of genes implicated in toxin production in the cyanobacterium, Cylindrospermopsis raciborskii. Environ Toxicol 16:413–421

    Article  CAS  Google Scholar 

  • Seifert M, McGregor G, Eaglesham G, Wickramasinghe W, Shawe G (2007) First evidence for the production of cylindrospermopsin and deoxy-cylindrospermopsin by the freshwater benthic cyanobacterium, Lyngbya wollei (Farlow ex Gomont) Speziale and Dyck. Harmful Algae 6:73–80

    Article  CAS  Google Scholar 

  • Singh RN (1961) Role of blue-green algae in nitrogen economy of Indian agriculture. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Sotton B, Domaizon I, Anneville O, Cattanéo F, Guillard J (2015) Nodularin and cylindrospermopsin: a review of their effects on fish. Rev Fish Biol Fisheries 25:1–19

    Article  Google Scholar 

  • Spoof L, Berg KA, Rapala J, Lathi K, Lepisto L, Metcalf JS, Codd GA, Meuilotot J (2006) First observation of cylindrospermospin in Anabaena lapponica isolated from the boreal environment (Finland). Environ Toxicol 21:552–560

    Article  CAS  Google Scholar 

  • Sprőber P, Shafik HM, Présing M, Kovács AW, Herodek S (2003) Nitrogen uptake and fixation in the cyanobacterium Cylindrospermopsis raciborskii under different nitrogen conditions. Hydrobiol 506-509:169–174

    Article  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue green algae (order Chroococcales). Bacteriol Rev 35:171–205

    CAS  Google Scholar 

  • Svirčev Z, Lujić J, Marinović Z, Drobac D, Tokodi N, Stojiljković B, Meriluoto J (2015) Toxicopathology induced by microcystins and nodularin: a histopathological review. J Environ Sci Health, Part C 33:125–167

    Article  Google Scholar 

  • Talling JF, Driver O (1963) Some problems in the estimation of chlorophyll a in phytoplankton. In: Dotty M (ed) Primary productivity measurements, marine and freshwater. US Atomic Energy Commission, Washington, DC, pp 142–146

    Google Scholar 

  • Viktória B, Vasas G, Dobronoki D, Gonda S, Nagy S, Bácsi I (2015) Effects of cylindrospermopsin producing cyanobacterium and its crude extracts on a benthic green alga—competition or allelopathy? Marine Drugs 13:6703–6722

    Article  Google Scholar 

  • Wiedner C, Rucker J, Fastner J, Chorus I, Nixdorf B (2008) Seasonal dynamics of cylindrospermopsin and cyanobacteria in two German lakes. Toxicon 52:677–686

    Article  CAS  Google Scholar 

  • Wormer L, Cires A, Carrasco D, Quesada A (2008) Cylindrospermopsin is not degraded by co-occurring natural bacterial communities during a 40-day study. Harmful Algae 7:206–213

    Article  Google Scholar 

  • Zagatto PA, Buratini SA, Aragão M, Ferrão-Filho AS (2012) Neurotoxicity of two Cylindrospermopsis raciborskii strains to mice, daphnia and fish. Environ Toxicol Chem 31:857–862

    Article  CAS  Google Scholar 

  • Zhang D, Xie P, Chen J (2010) Effects of temperature on the stability of microcystins in muscle of fish and its consequences for food safety. Bull Environ Contam Toxicol 84:202–207

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakaria A. Mohamed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Vitor Manuel Oliveira Vasconcelos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, Z.A., Bakr, A. Concentrations of cylindrospermopsin toxin in water and tilapia fish of tropical fishponds in Egypt, and assessing their potential risk to human health. Environ Sci Pollut Res 25, 36287–36297 (2018). https://doi.org/10.1007/s11356-018-3581-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3581-y

Keywords

Navigation