Skip to main content
Log in

Levels of persistent toxic substances in different biochars and their potential ecological risk assessment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study investigated the levels of persistent toxic substances, such as 16 polycyclic aromatic hydrocarbons (Σ16PAHs) and heavy metals (Cu, As, Cd, Zn, Pb, Ni, Mo, and Cr) in biochars produced from crop residues (walnut shell, corn cob, corn straw, rice straw, and rice husk) at different heat treatment temperatures (HTTs, 250, 400, and 600 °C). The levels of Σ16PAHs in different biochars were 0.47–7.11 mg kg−1, with naphthalene and phenanthrene contributing the most. The Σ16PAHs had the positive correlations with H/C and (O + N)/C, but had negative correlations with biochar surface areas. This finding indicates the increasing hydrophobic π-π interactions between the PAHs and the aromatic sheets of biochars and even the trapping of PAHs within the micropores with the increase of HTTs. The levels of heavy metals in rice residue-derived biochars were significantly higher than those in other biochars. The heavy metals had positive correlations with ash contents in the biochars, indicating the enrichment of heavy metals in the ash. The potential ecological risks of PAHs and heavy metals (dosage: 1%, w/w; frequency: 1) were minimal according to the risk quotient of negligible concentrations (RQNCs: 2.50–47.40, << 800) and maximum permissible concentrations (RQMPCs: 0.02–0.48, << 1) for PAHs and the potential ecological risk indexes (PERI: 0.01–0.28, << 150) for heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Cao Z, Liu J, Luan Y, Li Y, Ma M, Xu J, Han S (2010) Distribution and ecosystem risk assessment of polycyclic aromatic hydrocarbons in the Luan River, China. Ecotoxicology 19:827–837

    Article  CAS  Google Scholar 

  • Devi P, Saroha AK (2014) Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals. Bioresour Technol 162:308–315

    Article  CAS  Google Scholar 

  • Fabbri D, Rombolà AG, Torri C, Spokas KA (2013) Determination of polycyclic aromatic hydrocarbons in biochar and biochar amended soil. J Anal Appl Pyrolysis 103:60–67

    Article  CAS  Google Scholar 

  • Freddo A, Cai C, Reid BJ (2012) Environmental contextualization of potential toxic elements and polycyclic aromatic hydrocarbons in biochar. Environ Pollut 171:18–24

    Article  CAS  Google Scholar 

  • Fuentes A, Lloréns M, Sáez J, Soler A, Aguilar MI, Ortuño JF, Meseguer VF (2004) Simple and sequential extractions of heavy metals from different sewage sludges. Chemosphere 54:1039–1047

    Article  CAS  Google Scholar 

  • Hakanson L (1980) An ecological risk index for aquatic pollution control: a sedimentological approach. Water Res 14:975–1001

    Article  Google Scholar 

  • Hale SE, Lehmann J, Rutherford D, Zimmerman AR, Bachmann RT, Shitumbanuma V, O’Toole A, Sundqvist KL, Arp HPH, Cornelissen G (2012) Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ Sci Technol 46:2830–2838

    Article  CAS  Google Scholar 

  • Hilber I, Blum F, Leifeld J, Schmidt H-P, Bucheli TD (2012) Quantitative determination of PAHs in biochar: a prerequisite to ensure its quality and safe application. J Agric Food Chem 60:3042–3050

    Article  CAS  Google Scholar 

  • Hseu Z-Y (2004) Evaluating heavy metal contents in nine composts using four digestion methods. Bioresour Technol 95:53–59

    Article  CAS  Google Scholar 

  • Hussain M, Farooq M, Nawaz A, Al-Sadi AM, Solaiman ZM, Alghamdi SS, Ammara U, Ok YS, Siddique KHM (2016) Biochar for crop production: potential benefits and risks. J Soils Sediments 17:685–716

    Article  Google Scholar 

  • Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44:1247–1253

    Article  CAS  Google Scholar 

  • Keiluweit M, Kleber M, Sparrow MA, Simoneit BRT, Prahl FG (2012) Solvent-extractable polycyclic aromatic hydrocarbons in biochar: influence of pyrolysis temperature and feedstock. Environ Sci Technol 46:9333–9341

    Article  CAS  Google Scholar 

  • Koppolu L, Agblevor FA, Clements LD (2003) Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part II: lab-scale pyrolysis of synthetic hyperaccumulator biomass. Biomass Bioenergy 25:651–663

    Article  CAS  Google Scholar 

  • Kuśmiez M, Oleszczuk P, Kraska P, Palys E, Andruszczak S (2016) Persistence of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil. Chemosphere 146:272–279

    Article  Google Scholar 

  • Liu T, Liu B, Zhang W (2014) Nutrients and heavy metals in biochar produced by sewage sludge pyrolysis: its application in soil amendment. Pol J Environ Stud 23:271–275

    CAS  Google Scholar 

  • Oleszczuk P, Jośko I, Kuśmierz M (2013) Biochar properties regarding to contaminants content and ecotoxicological assessment. J Hazard Mater 260:375–382

    Article  CAS  Google Scholar 

  • Qiu M, Sun K, Jin J, Han L, Sun H, Zhao Y, Xia X, Wu F, Xing B (2015) Metal/metalloid elements and polycyclic aromatic hydrocarbon in various biochars: the effect of feedstock, temperature, minerals and properties. Environ Pollut 206:298–305

    Article  CAS  Google Scholar 

  • Quilliam RS, Rangecroft S, Emmett BA, Deluca TH, Jones DL (2013) Is biochar a source or sink for polycyclic aromatic hydrocarbon (PAH) compounds in agricultural soils? GCB Bioenergy 5:96–103

    Article  CAS  Google Scholar 

  • Rajapaksha AU, Chen SS, Tsang DCW, Zhang M, Vithanage M, Mandal S, Gao B, Balan NS, Ok YS (2016) Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere 148:276–291

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Qayyum MF, Ibrahim M, Zia-ur-Rehman M, Abbas T, Ok YS (2016) Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environ Sci Pollut Res 23:2230–2248

    Article  CAS  Google Scholar 

  • Shen X, Huang D-Y, Ren X-F, Zhu H-H, Wang S, Xu C, He Y-B, Luo Z-C, Zhu Q-H (2016) Phytoavailability of Cd and Pb in crop straw biochar-amended soil is related to the heavy metal content of both biochar and soil. J Environ Manag 168:245–251

    Article  CAS  Google Scholar 

  • Sun K, Kang M, Zhang Z, Jin J, Wang Z, Pan Z, Xu D, Wu F, Xing B (2013) Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene. Environ Sci Technol 2013:11473–11481

    Article  Google Scholar 

  • Wang C, Wang Y, Herath HMSK (2017) Polycyclic aromatic hydrocarbons (PAHs) in biochar-their formation, occurrence and analysis: a review. Org Geochem 114:1–11

    Article  CAS  Google Scholar 

  • Zhang G, Guo X, Zhao Z, He Q, Wang S, Zhu Y, Yan Y, Liu X, Sun K, Zhao Y, Qian T (2016) Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil. Environ Pollut 218:513–522

    Article  CAS  Google Scholar 

  • Zielińska A, Oleszczuk P (2015) The conversion of sewage sludge into biochar reduces polycyclic aromatic hydrocaron content and ecotoxicity but increase trace metal content. Biomass Bioenergy 75:235–244

    Article  Google Scholar 

  • Zielińska A, Oleszczuk P (2016) Effect of pyrolysis temperatures on freely dissolved polycyclic aromatic hydrocarbon (PAH) concentrations in sewage sludge-derived biochars. Chemosphere 153:68–74

    Article  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (Project Nos. 41402305 and 41401584) and the Science Technology Research and Extension Project of Shanxi Provincial Water Resources Department (Project No. 2015SHJ3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengsong Zhang.

Additional information

Responsible editor: Hailong Wang

Electronic supplementary material

ESM 1

(DOC 376 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Zhao, Z., Guo, X. et al. Levels of persistent toxic substances in different biochars and their potential ecological risk assessment. Environ Sci Pollut Res 25, 33207–33215 (2018). https://doi.org/10.1007/s11356-018-3280-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3280-8

Keywords

Navigation