Skip to main content
Log in

Optimization process of organic matter removal from wastewater by using Eichhornia crassipes

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study aimed to determine the optimal conditions for organic matter removal from wastewater by Eichhornia crassipes (E.C). As a matter of fact, a complete factorial design was used to determine the effect of residence time (X1), plant density (X2) and initial chemical oxygen demand (COD) concentration (X3) on the phytoremediation process. The process’s performance was measured on COD (Y1), NH4+ (Y2) and PO43− (Y3), with the results indicating a reduction of 8.59–81.71% of COD (Y1); 22.53–95.81% of NH4+ (Y2) and 0.54–99.35% of PO43− (Y3). Then, the first-order models obtained for COD, NH4+ and PO43− removal were validated using different statistical approaches such as statistical and experimental validation. Moreover, multi-response optimization was carried out through different scenarios. On the whole, the results obtained indicated that two serial ponds are required for an optimum organic matter removal by Eichhornia crassipes. Indeed, for the first pond, a residence time of 15 days is needed with a plant density of 60 ft/m2 and an initial concentration of about 944 mg/L. The second was the same residence time as the first with similar plant density of 60 ft/m2 and an initial load 192 mg/L (> 200 mg/L). Optimal organic matter removal from wastewater using Eichhornia crassipes requires two ponds arranged in chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AFNOR (1994a) Essais des Eaux. Détermination de la demande chimique en oxygène (DCO). (méthode volumétrique, NF T90-101). In: Qualité de l’eau. Association Française de normalisation, Paris

  • AFNOR (1994b) Essais des Eaux. Détermination de la demande biochimique en oxygène (DBO). (méthode manométrique, NF T90-103). In: Qualité de l’eau. Association Française de normalisation, Paris

  • AFNOR (1994c) Essais des Eaux. Détermination de l’ammonium (NH4 +). (méthode Nessler, NF T90-015). In: Qualité de l’eau. Association Française de normalisation, Paris

  • AFNOR (1994d) Essais des Eaux. Dosage des phosphates, des polyphosphates et du phosphore total (méthode spectrométrique, NF EN1189). In: Qualité de l’eau. Association Française de normalisation, Paris

  • Aina MP, Kpondjo NM, Adounkpe J, Chougourou D, Moudachirou M (2012) Study of the purification efficiencies of three floating macrophytes in wastewater treatment. International Research Journal of Environmental Sciences 1(3):37–43

    Google Scholar 

  • Akinbile CO, Yusoff MS (2012) Assessing water hyacinth (Eichhornia crassopes) and lettuce (Pistia stratiotes) effectiveness in aquaculture waste water treatment. International Journal of Phytoremediation 32(7):1387–1393. https://doi.org/10.1016/j.wasman.2012.03.002.

    Article  CAS  Google Scholar 

  • Chen X, Chen X, Wan X, Weng B, Huang Q (2010) Water hyacinth. (Eichhornia crassipes) waste as an adsorbent for phosphorus removal from swine wastewater. Bioresour Technol 101(23):9025–9030. https://doi.org/10.1016/j.biortech.2010.07.013

    Article  CAS  Google Scholar 

  • Chirisa I, Bandauko E, Matamanda A, Mandisvika G (2017) Decentralized domestic wastewater systems in developing countries: the case study of Harare (Zimbabwe). Appl Water Sci 7(3):1069–1078. https://doi.org/10.1007/s13201-016-0377-4

    Article  Google Scholar 

  • Delgado M, Guardiol AE, Bigeriego M (1995) Organic and inorganic nutrients removal from pig slurry by water hyacinth. Journal of Environmental Sciences and Health, Part A 30(7):1423–1434. https://doi.org/10.1080/10934529509376275

    Article  Google Scholar 

  • Feinberg M (1996) Valorisation of methods of analysis, a chemometric approach to quality assurance in the laboratory. Masson, Paris, pp 255–271

    Google Scholar 

  • Finlayson M, Chick A, Oertzen IV, Mitchell D (1987) Treatment of piggery effluent by an aquatic plant filter. Biological Wastes 19(3):179–196

    Article  CAS  Google Scholar 

  • Fox LJ, Struik PC, Appleton BL, Rule JH (2008) Nitrogen phytoremediation by water hyacinth (Eichhornia crassipes (Mart.) Solms). Water Air Soil Pollut 194(1–4):199–207. https://doi.org/10.1007/s11270-008-9708-x

    Article  CAS  Google Scholar 

  • Garg MP, Kumar A, Sahu CK (2017) Mathematical modeling and analysis of WEDM machining parameters of nickel-based super alloy using response surface methodology. Sādhanā 42(6):981–1005

    CAS  Google Scholar 

  • Ghaly AE, Kamal M, Mahmoud NS (2005) Phytoremediation of aquaculture wastewater for water recycling and production of fish feed. Environ Int 31(1):1–13. https://doi.org/10.1016/j.envint.2004.05.011

    Article  CAS  Google Scholar 

  • Gupta P, Roy S, Mahindrakar AB (2012) Treatment of water using water hyacinth, water lettuce and vetiver grass-a review. Resources and Environment 2(5):202–215. https://doi.org/10.5923/j.re.20120205.04

    Article  Google Scholar 

  • Jianbo LU, Zhihui FU, Zhaozheng YIN (2008) Performance of a water hyacinth (Eichhornia crassipes) system in the treatment of wastewater from a duck farm and the effects of using water hyacinth as duck feed. J Environ Sci 20(5):513–519

    Article  Google Scholar 

  • Khayet M, Zahrim AY, Hilal N (2011) Modelling and optimization of coagulation of highly concentrated industrial grade leather dye by response surface methodology. Chem Eng J 167:77–83

    Article  CAS  Google Scholar 

  • Kiran M, Srivastava J, Tripathi B (1991) Nitrogen retention capacity and the elimination of four elegant plants in tropical freshwater charcas. Wastwater Management 18:1387–1393

    Google Scholar 

  • Koné DM (2011) Infiltration-percolation on sand and coconut fiber, plant-based filters and domestic wastewater treatment in a predominantly agro-food environment under dry tropical climate: case of urban wastewater from Ouagadougou, Burkina Faso. PhD Dissertation, University of Ouagadougou and University Claude Bernard Lyon 1, 233p

  • Li Y, Park SY, Zhu J (2011) Solid-state anaerobic digestion for methane production from organic waste. Renew Sust Energ Rev 15(1):821–826

    Article  CAS  Google Scholar 

  • Loan NT, Phuong NM, Anh NTN (2014) The role of aquatic plants and microorganisms in domestic wastewater treatment. Environ Eng Manag J 13(8):2031–2038

    Article  Google Scholar 

  • Mayo AW, Hanai EE (2017) Modeling phytoremediation of nitrogen-polluted water using water hyacinth (Eichhornia crassipes). Physics and Chemistry of the Earth, Parts A/B/C 100:170–180. https://doi.org/10.1016/j.pce.2016.10.016

    Article  Google Scholar 

  • Mergaert K, Vanderhaegen B, Verstraete W (1992) Applicability and trends of anaerobic pretreatment of municipal wastewater. Water Res 26(8):1025–1033

    Article  CAS  Google Scholar 

  • Mishra S, Maiti A (2017) The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: a review. Environ Sci Pollut Res 24(9):7921–7937. https://doi.org/10.1007/s11356-016-8357-7

    Article  CAS  Google Scholar 

  • Mojiri A, Ahmad Z, Tajuddin RM, Arshad MF, Gholami A (2017) Ammonia, phosphate, phenol, and copper(II) removal from aqueous solution by subsurface and surface flow constructed wetland. Environ Monit Assess 189(7):337. https://doi.org/10.1007/s10661-017-6052-x

    Article  CAS  Google Scholar 

  • Montgomery DC (2001) Design and analysis of experiments, 5th edn. Wiley, New York

    Google Scholar 

  • Noukeu NA, Gouado I, Priso RJ, Ndongo D, Taffouo VD, Dibong SD, Ekodeck GE (2016) Characterization of effluent from food processing industries and stillage treatment trial with Eichhornia crassipes (Mart.) and Panicum maximum (Jacq.). Water Resources and Industry 16:1–18

    Article  Google Scholar 

  • Pena L, Oliveira M, Fragoso R, Duarte E (2017) Potential of duckweed for swine wastewater nutrient removal and biomass valorisation through anaerobic co-digestion. Water and Environment Systems 5(2):127–138

    Google Scholar 

  • Pooralhossini J, Zanjanchi MA, Ghaedi M, Asfaram A, Azqhandi MHA (2018) Statistical optimization and modeling approach for azo dye decolorization: combined effects of ultrasound waves and nanomaterial-based adsorbent. Appl Organomet Chem 32(3):p.e 4205

  • Ouattara J-M. P, Coulibaly L, Manizan PN, et Gourene G (2008) Traitement des Eaux Résiduaires Urbaines par un Marais Artificiel à Drainage Vertical Planté Avec Panicum Maximum sous Climat Tropical. Eur J Sci Res 23(1):25–40

  • Rezania S, Ponraj M, Talaiekhozani A, Mohamad SE, Din MFM, Taib SM, Sabbagh F, Sairan FM (2015) Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J Environ Manag 163:125–133. https://doi.org/10.1016/j.jenvman.2015.08.018

    Article  CAS  Google Scholar 

  • Rezania S, Din MF, Taib SM, Dahalan FA, Songip AR, Singh L, Kamyab H (2016a) The efficient role of aquatic plant (water hyacinth) in treating domestic wastewater in continuous system. International Journal of Phytoremediation 18(7):679–685. https://doi.org/10.1080/15226514.2015.1130018

    Article  CAS  Google Scholar 

  • Rezania S, Ponraj M, Fadhil Md Din M, Chelliapan S, Md Sairan F (2016b) Effectiveness of Eichhornia crassipes in nutrient removal from domestic wastewater based on its optimal growth rate. Desalination and Water Treatment Desalination and Water Treatment 57(1):360–365

    CAS  Google Scholar 

  • Seghezzo L, Zeeman G, Van Lier JB, Hamelers HVM, Lettinga G (1998) A review: the anaerobic treatment of sewage in UASB and EGSB reactors. Bioresour Technol 65(3):175–190

    Article  CAS  Google Scholar 

  • Shah M, Hashim NH, Arshad A, Abdul RG (2014) Performance assessment of aquatic macrophytes for treatment of municipal wastewater. J Environ Health Sci Eng 12(1):106–138

    Article  Google Scholar 

  • Swain G, Adhikari S, Mohanty P (2014) Phytoremediation of copper and cadmium from water using water hyacinth, Eichhornia crassipes. International Journal of Agricultural Science and Technology 2(1). https://doi.org/10.14355/ijast.2014.0301.01

  • WHO (2006) Guidelines for the safe use of wastewater, excreta and grey water, vol I. World Health organization.

  • Williams SR (2009) Apparatus and Method for Agricultural Animal Wastewater Treatment. United States Patent Application Number: 20090250393. Thesis.

  • Yobouet YA, Adouby K, Drogui P (2016) Experimental methodology to assess retention of heavy metals using soils from municipal waste landfills. Water Air Soil Pollut 227(1):227–237. https://doi.org/10.1007/s11270-015-2706-x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Pépin Aina.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahunon, S.E.R., Aina, M.P., Akowanou, A.V.O. et al. Optimization process of organic matter removal from wastewater by using Eichhornia crassipes. Environ Sci Pollut Res 25, 29219–29226 (2018). https://doi.org/10.1007/s11356-018-2771-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2771-y

Keywords

Navigation