Skip to main content
Log in

A quantum theory investigation on atmospheric oxidation mechanisms of acrylic acid by OH radical and its implication for atmospheric chemistry

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The hydroxyl radical, as the most important oxidant, controls the removal of some volatile organic compounds (VOCs) in the atmosphere. In this work, the atmospheric oxidation processes of acrylic acid by OH radical have been investigated by density functional theory (DFT). The energetic routes of the reaction of CH2CHCOOH with OH radical have been calculated accurately at the CCSD(T)/cc-pVTZ//M06-2X/6-311++G(d,p) level. It is implicated that the oxidation has five elementary reaction pathways mostly hinging on how hydroxyl radical approaches to the carbon skeleton of acrylic acid. The atmospheric degradation mechanisms of the CH2CHCOOH by OH radical are the formation of reactive intermediates IM1 and IM2. Meanwhile, the further oxidation mechanisms of IM1 and IM2 by O3 and NO are also investigated. The rate coefficients have been computed using tight transition state theory of the variflex code. The calculated rate coefficient is 2.3 × 10−11 cm3 molecule−1 s−1 at standard pressure and 298 K, which is very close to the laboratory data (1.75 ± 0.47 × 10−11 cm3 molecule−1 s−1). Moreover, the atmospheric lifetime of acrylic acid is about 6 h at 298 K and 1 atm, implying that the fast sinks of acrylic acid by hydroxyl radical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adamo C, Jacquemin D (2013) The calculations of excited-state properties with time-dependent density functional theory. Chem Soc Rev 42:845–856

    Article  CAS  Google Scholar 

  • Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  • Alvarez-Idaboy JR, Mora-Diez N, Vivier-Bunge A (2000) A quantum chemical and classical transition state theory explanation of negative activation energies in OH addition to substituted ethenes. J Am Chem Soc 122:3715–3720

    Article  CAS  Google Scholar 

  • Anglada JM, Solé A (2017) The atmospheric oxidation of HONO by OH, Cl, and ClO radicals. J Phys Chem A 121:9698–9707

    Article  CAS  Google Scholar 

  • Atkinson R (2000) Atmospheric chemistry of VOCs and NOx. Atmos Environ 34:2063–2101

  • Atkinson R, Arey J (2003) Atmospheric degradation of volatile organic compounds. Chem Rev 103:4605–4638

    Article  CAS  Google Scholar 

  • Baasandorj M, Knight G, Papadimitriou VC, Talukdar RK, Ravishankara AR, Burkholder JB (2010) Rate coefficients for the gas-phase reaction of the hydroxyl radical with CH2=CHF and CH2=CF2. J Phys Chem A 114:4619–4633

    Article  CAS  Google Scholar 

  • Baruah SD, Gour NK, Sarma PJ, Deka RC (2018) OH-initiated mechanistic pathways and kinetics of camphene and fate of product radical: a DFT approach. Environ Sci Pollut Res 25:2147–2156

    Article  CAS  Google Scholar 

  • Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  • Berndt T, Scholz W, Mentler B, Fischer L, Herrmann H, Kulmala M, Hansel A (2018) Accretion product formation from self- and cross-reactions of RO2 radicals in the atmosphere. Angew Chem Int Ed Engl 57:3820–3824

    Article  CAS  Google Scholar 

  • Blanco MB, Bejan I, Barnes I, Wiesen P, Teruel MA (2009) Temperature-dependent rate coefficients for the reactions of Cl atoms with methyl methacrylate, methyl acrylate and butyl methacrylate at atmospheric pressure. Atmos Environ 43:5996–6002

  • Chapleski RC Jr, Zhang YF, Troya D, Morris JR (2016) Heterogeneous chemistry and reaction dynamics of the atmospheric oxidants, O3, NO3, and OH, on organic surfaces. Chem Soc Rev 45:3731–3746

    Article  CAS  Google Scholar 

  • Cheng L, Yu XJ, Zhao K, Hou H, Wang BS (2017) Electronic structures and OH-induced atmospheric degradation of CF3NSF2: a potential green dielectric replacement for SF6. J Phys Chem A 121:2610–2619

    Article  CAS  Google Scholar 

  • Fang WH, Liu RZ (2000) Photodissociation of acrylic acid in the gas phase: an ab initio study. J Am Chem Soc 122:10886–10894

    Article  CAS  Google Scholar 

  • Frisch M, Trucks G, Schlegel HB, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09, revision D. 01. Gaussian, Inc., Wallingford CT

    Google Scholar 

  • Gai YB, Ge MF, Wang WG (2011) Kinetics of the gas-phase reactions of some unsaturated alcohols with Cl atoms and O3. Atmos Environ 45:53–59

    Article  CAS  Google Scholar 

  • Galano A, Muñoz-Rugeles L, Alvarez-Idaboy JR, Bao JL, Truhlar DG (2016) Hydrogen abstraction reactions from phenolic compounds by peroxyl radicals: multireference character and density functional theory rate constants. J Phys Chem A 120:4634–4642

    Article  CAS  Google Scholar 

  • Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  • Hein R, Crutzen PJ, Heimann M (1997) An inverse modeling approach to investigate the global atmospheric methane cycle. Glob Biogeochem Cycles 11:43–76

    Article  CAS  Google Scholar 

  • Hippler H, Viskolcz B (2000) Addition complex formation vs. direct abstraction in the OH+ C2H4 reaction. Phys Chem Chem Phys 2:3591–3596

    Article  CAS  Google Scholar 

  • Hratchian HP, Schlegel HB (2005) Using hessian updating to increase the efficiency of a hessian based predictor-corrector reaction path following method. J Chem Theory Comput 1:61–69

    Article  CAS  Google Scholar 

  • Johnston HS, Heicklen J (1962) Tunnelling corrections for unsymmetrical Eckart potential energy barriers. J Phys Chem 66:532–533

    Article  Google Scholar 

  • Kamal MS, Razzak SA, Hossain MM (2016) Catalytic oxidation of volatile organic compounds (VOCs)—a review. Atmos Environ 140:117–134

    Article  CAS  Google Scholar 

  • Kendall RA, Dunning TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  • Khaled F, Giri BR, Szőri M, Mai TV-T, Huynh LK, Farooq A (2017) A combined high-temperature experimental and theoretical kinetic study of the reaction of dimethyl carbonate with OH radicals. Phys Chem Chem Phys 19:7147–7157

    Article  CAS  Google Scholar 

  • Klippenstein S, Wagner A, Dunbar R, Wardlaw D, Robertson S (1999) VARIFLEX, version 1.00

  • Kozuch S, Martin Jan ML (2011) The rate-determining step is dead. Long live the rate-determining state! Chem Phys Chem 12:1413–1418

    Article  CAS  Google Scholar 

  • Krapf M, Haddad IE, Bruns EA, Molteni U, Daellenbach KR, Prévôt ASH, Baltensperger U, Dommen J (2016) Labile peroxides in secondary organic aerosol. Cell Chem 1:603–616

    CAS  Google Scholar 

  • Kurylo MJ, Orkin VL (2003) Determination of atmospheric lifetimes via the measurement of OH radical kinetics. Chem Rev 103:5049–5076

    Article  CAS  Google Scholar 

  • Lee TJ, Taylor PR (1989) A diagnostic for determining the quality of single-reference electron correlation methods. Int J Quantum Chem 36:199–207

    Article  Google Scholar 

  • Lily M, Baidya B, Chandra AK (2017) Theoretical studies on atmospheric chemistry of HFE-245mc and perfluoro-ethyl formate: reaction with OH radicals, atmospheric fate of alkoxy radical and global warming potential. Chem Phys Lett 669:211–217

    Article  CAS  Google Scholar 

  • Lynch BJ, Zhao Y, Truhlar DG (2005) The 6-31B(d) basis set and the BMC-QCISD and BMC-CCSD multicoefficient correlation methods. J Phys Chem A 109:1643–1649

    Article  CAS  Google Scholar 

  • McDonald BC, de Gouw JA, Gilman JB (2018) Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science 359:760–764

    Article  CAS  Google Scholar 

  • McLean A, Chandler G (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18. J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  • Miller JA, Klippenstein SJ, Raffy C (2002) Solution of some one-and two-dimensional master equation models for thermal dissociation: the dissociation of methane in the low-pressure limit. J Phys Chem A 106:4904–4913

    Article  CAS  Google Scholar 

  • Miller JA, Klippenstein SJ (2006) Master equation methods in gas phase chemical kinetics. J Phys Chem A 110:10528–10544

    Article  CAS  Google Scholar 

  • Milhøj BO, Sauer SP (2015) Kinetics and thermodynamics of the reaction between the •OH radical and adenine: a theoretical investigation. J Phys Chem A 119:6516–6527

    Article  CAS  Google Scholar 

  • Murdoch JR (1981) What is the rate-limiting step of a multistep reaction? J Chem Educ 58:32–36

    Article  CAS  Google Scholar 

  • Peiró-García J, Nebot-Gil I (2003) Ab initio study on the mechanism of the atmospheric reaction OH+O3→HO2+O2. Chem Phys Chem 4:843–847

    Article  CAS  Google Scholar 

  • Poling BE, Prausnitz JM, O’Connell JP (2001) The properties of gases and liquids, 5th edn. McGraw-Hill, New York

    Google Scholar 

  • Pople JA, Head-Gordon M, Raghavachari K (1987) Quadratic configuration interaction. A general technique for determining electron correlation energies. J Chem Phys 87:5968–5975

    Article  CAS  Google Scholar 

  • Riva M (2016) Multiphase chemistry of highly oxidized molecules: the case of organic hydroperoxides. Cell Chem 1:522–530

    Google Scholar 

  • Senosiain JP, Klippenstein SJ, Miller JA (2006) Reaction of ethylene with hydroxyl radicals: a theoretical study. J Phys Chem A 110:6960–6970

    Article  CAS  Google Scholar 

  • Shen XL, Zhao Y, Chen ZM, Huang D (2013) Heterogeneous reactions of volatile organic compounds in the atmosphere. Atmos Environ 68:297–314

    Article  CAS  Google Scholar 

  • Song XL, Zügner GL, Farkas M, Illés Á, Sarzyński D, Rozgonyi T, Wang BS, Dóbé S (2015) Experimental and theoretical study on the OH-reaction kinetics and photochemistry of acetyl fluoride (CH3C (O) F), an atmospheric degradation intermediate of HFC-161 (C2H5F). J Phys Chem A 119:7753–7765

    Article  CAS  Google Scholar 

  • Sun JY, Wang RS, Wang BS (2011) Theoretical study on the gas phase reaction of acrylonitrile with a hydroxyl radical. Phys Chem Chem Phys 13:16585–16595

    Article  CAS  Google Scholar 

  • Teruel MA, Blanco MB, Luque GR (2007) Atmospheric fate of acrylic acid and acrylonitrile: rate constants with Cl atoms and OH radicals in the gas phase. Atmos Environ 41:5769–5777

    Article  CAS  Google Scholar 

  • Vereecken L, Glowacki DR, Pilling MJ (2015) Theoretical chemical kinetics in tropospheric chemistry: methodologies and applications. Chem Rev 115:4063–4114

    Article  CAS  Google Scholar 

  • Yu XJ, Hou H, Wang BS (2017) Double-layered composite methods extrapolating to complete basis-set limit for the systems involving more than ten heavy atoms: application to the reaction of heptafluoroisobutyronitrile with hydroxyl radical. J Phys Chem A 121:9020–9032

    Article  CAS  Google Scholar 

  • Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241

    Article  CAS  Google Scholar 

  • Zhao Y, Truhlar DG (2006) Assessment of model chemistries for noncovalent interactions. J Chem Theory Comput 2:1009–1018

    Article  CAS  Google Scholar 

  • Zhou L, Ravishankara AR, Brown SS, Idir M, Daële V, Mellouki A (2017) Kinetics of the reactions of NO3 radical with methacrylate esters. J Phys Chem A 121:4464–4474

    Article  CAS  Google Scholar 

  • Zhou CW, Li ZR, Li X (2009) Kinetics and mechanism for formation of enols in reaction of hydroxide radical with propene. J Phys Chem A 113:2372–2382

    Article  CAS  Google Scholar 

  • Zhu JQ, Wang SY, Tsona NT, Jiang XT, Wang YF, Ge MF, Du L (2017) Gas-phase reaction of methyl n-propyl ether with OH, NO3, and Cl: kinetics and mechanism. J Phys Chem A 121:6800–6809

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 21507027, 21707062, and 41775119). The authors acknowledge the Youth Fund Project of HuBei Provincial Department of Education (Q20132501) and Hubei Key Laboratory of Pollutant Analysis & Reuse Technology Open Fund (PA160204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyu Sun.

Additional information

Responsible editor: Gerhard Lammel

Electronic supplementary material

ESM 1

(DOC 1014 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, H., Wu, W., Shao, Y. et al. A quantum theory investigation on atmospheric oxidation mechanisms of acrylic acid by OH radical and its implication for atmospheric chemistry. Environ Sci Pollut Res 25, 24939–24950 (2018). https://doi.org/10.1007/s11356-018-2561-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2561-6

Keywords

Navigation